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Chaos Shift Keying: Modulation and
Demodulation of a Chaotic Carrier Using
Self-Synchronizing Chua’s Circuits

Hervé Dedieu, Member, IEEE, Michael Peter Kennedy, Member, IEEE, and Martin Hasler, Fellow, IEEE

Abstract— We describe a technique for transmitting digital
information using a chaotic carrier. Each symbol to be trans-
mitted is coded as an attractor in Chua’s circuit. The sym-
bols are detected at the receiver by cascaded self-synchronizing
Chua’s circuit subsystems. A proof of the synchronization effect is
demonstrated using weak assumptions on the statistical behavior
of the chaotic carrier to be transmitted. Furthermore a bound
for the average time of synchronization is given. Results of both
practical experimentation and simulations are presented which
verify our approach.

[. INTRODUCTION

A. Background

T HAS BEEN REPORTED in very recent studies [1}-[4]
that it is possible to design synchronizing systems driven
by chaotic signals. Although the concept of chaotic systems
‘seems to defy synchronization’ since two identical chaotic
systems started at nearly the same initial conditions have
trajectories which quickly become uncorrelated, Pecora and
Carroll [1]-[4] have theoretically and experimentally shown
that it is possible to create chaotic systems in such a way that
* a first (chaotic) system called the driving system transmits
some of its state variables (called the driving signals) to
a second system called the response system. This forces
the state variables of the response system to synchronize
with the other state variables not passed to the response
system.

* A necessary and sufficient condition for the synchroniza-
tion given by Pecora and Carroll is that all the conditional
Lyapunov exponents associated with some variational
equation be negative. The term “conditional” comes from
the fact that the Lyapunov exponents depend on the
driving signals.

The importance of the discovery by Pecora and Carroll has
been quickly highlighted in the signal processing and circuits
and systems communities. Oppenheim et al. [5] have reported
some applications of what they have called “chaotic switching”
and “chaotic masking and modulation.” In particular, they
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showed how the concept of synchronization can be used to
mask information by adding a chaotic signal to a speech signal
to be transmitted. The chaotic signal used as a noise-like signal
is recovered by the receiver using the synchronization effect.
The speech signal is simply obtained by subtraction. More
recently Kocarev et al. [6] have also applied the ideas of
Pecora and Carroll in the context of chaotic masking (“secure
communications”). They used a Chua’s circuit as a simple
generator of chaotic signals. They experimentally showed the
synchronization effect in an application very similar to the
one described in [5] in which the information signal is buried
in the chaotic signal. It should be noted that in the two
approaches the power level of the information signal must
be significantly lower than the power of the chaotic signal in
order for synchronization to be possible.

B. Motivation

In the context of chaotic masking, the addition of a chaotic
signal to an information signal suffers from certain disadvan-
tages. Principal among these is the requirement that the level of
the information signal be lowered to at least 30 dB below the
level of the chaotic signal. The consequence is that it is difficult
to ensure a correct detection if a noise of the same power level
as the information signal corrupts the chaotic signal. Instead
of adding a chaotic noise to an information signal, a rather
different point of view is taken in this paper in which the
chaotic signal itself directly bears the information. In taking
from the work of Kocarev et al. [6], we use a Chua’s circuit
to develop a shift keying technique for the coding/decoding
of binary signals where the carrier signal is chaotic. The main
points we address in this paper are the following.

* We propose a simple architecture for the implementation

of modulation with an analog chaotic carrier.

* We prove the synchronization effect. We do not use the
computation of the conditional Lyapunov exponents and
use instead weak assumptions on the driving signal.

* We explain how to compute a bound for the average time
of synchronization.

e We verify our approach by simulation and experiment.

II. MODULATION AND DEMODULATION OF
CHAOTIC SIGNALS USING CHUA’S CIRCUIT

The transmitter is based on a Chua’s circuit (see Fig. 2)
whose chaotic behavior has been widely studied [8]-{11]. It

1057-7130/93$03.00 © 1993 IEEE



DEDIEU et al.: CHAOS SHIFT KEYING

consists of a single nonlinear resistor (see Fig. 1) and four
linear circuit elements: two capacitors, an inductor and a
resistor. Details of the synthesis of the nonlinear resistor can be
found in [7}. The modulation device runs as follows. A binary
data stream (the signal to be transmitted) “modulates” the
chaotic carrier ve1(¢). If an input bit +1 has to be transmitted
the switch of Fig. 2 is kept open for a time interval 7. If the
next bit to be transmitted is —1, the switch is closed connecting
in parallel the resistor r with the nonlinear negative resistor.
During the transmission of the —1 bit, the device can be seen as
a Chua’s circuit with a three-segment piecewise-linear resistor
having a slope G, = Go + % in the central region and a
slope G} = G1 + % in the outer region. The breakpoints B,
remain unchanged. The following three equations describe the
dynamics of the modulation system:

¢ dv?i;(t) - %(Ucz(t) ~vei(t)) = hx(ver(t)) (D)

220 - Loyt —ver) +int) @
dipa(t)

L=0— = ~ve2(t). )

The function Ay in (1) has the following meaning; during a
bit 1 transmission hy = h,, where h, is the three-segment
piecewise-linear function with slopes Gy, G and breakpoints
—B, and +B,; during a bit —1 transmission k4 = h_ where
h_ is the three-segment piecewise-linear function with slopes

0, G and breakpoints —B, and +B,. We suppose that
the signal vey(t) is transmitted to the receiver without any
alteration. The receiver is made of three subsystems (See Figs.
3-5). The goal of the first subsystem is to create as close
as possible a copy of the. signal vcg(t), this signal will be
referred to as ve21(t). The first subsystem is governed by the
two following equations:

2dvcgl(t) _ 1

C - E(vm(t) —ven(t)) +ire(t) 4
dira(t
L, ®

The second and the third subsystem are designed to produce
the signals vci2(t) and i ,(t). As it will be shown in
the theoretical part veya(t) converges to veq(t) during the
transmission of +1 bit while v ,(t) converges to vei (1)
during the transmission of —1 bit. Equation (6) governs the
second subsystem while (7) governs the third subsystem.

) dvcm(t) 1

G— =ﬁ(vcm(t)—71012(t))—h+(vc12(t)) (6

dubpy(t) 1 , .
20128 - L (0) — vor) — h_(orat). )

Additional elements for the circuits of Figs. 3-5 remain to be
designed for the synchronization detectors.
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Fig. 2. Transmitter for binary CSK using Chua’s circuit. Chaotic signal vc,
is transmitted. The Chua diode N is defined by (35).

L1

FIRST RECEIVER SUBSYSTEM
Fig. 3.

Receiver: First subsystem.

C1= T v

v Ngp

SECOND RECEIVER SUBSYSTEM

Fig. 4. Receiver: Second subsystem.

III. THEORY

We suppose here that a bit 41 is transmitted during a time
interval 7" that is very large compared to the circuit time
constants in order to give asymptotic convergence results on
the difference between ves(t) and veia(t). Two questions
of interest have to be solved: Can we ensure asymptotic
convergence of veia(t) to ver(t) (ee., lim_oo(ver(t) —
ve12(t)) = 0) independent of the initial values of voltages and
currents of the receiver? Can we give an approximate value
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Fig. 5. Receiver: Third subsystem.

of the time T of bit transmission that ensures no intersymbol
interference if one wants to design a synchronization detector?

A. Synchronization of vea(t) and veai(t)
when a + 1 is Transmitted

The first question is how close are the signals vea(t)
and vcoi(t) during the transmission and what should be the
transmission duration in order that vco(t) and veg:(t) be as
arbitrarily close as we want?

Let €3(t) be defined as follows:

€2(t) = vea (1) — vea(t). ®

Let Air(0) and Avez(0) be the differences in initial condi-
tions, i.e.,

Avce(0) = ve21(0) —vee(0)  Air(0) = ir2(0) —iri(0).

()]
Looking at (2)—(5) it is straightforward to show that
Aip(0) _ &
e2(t) = (szqu)e "2 sin (wot)
_t 1
+ Avea(0)e [cos (wot) — sin (wot)}. (10)
TaWo
With 75 and wg defined as
To = 2RCQ (] 1)
1 1
=4 — = 5. 12
I\ IO, T ARecE 12

As vea(t) and veoi(t) result from the excitation of two
identical asymptotically stable linear systems with the same
driving signal vy (t), it is obvious that the difference between
the two signals decreases exponentially to zero as shown by
(10). The time constant 7o of the exponential gives us a first
parameter to assess the value of 7.

B. Synchronization of vc1(t) and veqa(t)
When o Bit +1 Is Transmitted

As a simplification we suppose that vee1(t) = vea(t) (ee.,
€2(t) = 0), this is not a restrictive assumption since we have
seen that vco; () converges exponentially towards veo(t). For
notational convenience, let us define €;(¢) as follows:

61(t) = ’1)012(t) — UCl(t). (13)
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Fig. 6. g.(t) is the slope of the dashed line.
Let us replace % by G, from (1) and (6) we get
deq (t)
C = —Gey(t
15 e1(t)
t)—h
[ (vci2(t) — he(ver(t)) a(t). (4

ve12(t) — ver(t)
It is obvious that the term inside the brackets in (14) is
the slope of the straight line which joins the two points
(verz(t), he(veia(t)) and (ver(t), by (vei(t)) (see Fig. 6).
Let g.(t) denote this slope and let us define the function h.(t)
such that

he(t) = G + ge(t). (15)

Note that for all ¢
G+ Gy < he(t) < G+ Gy. (16)

Equation (14) can be written in the following compact form

o de(liit) = —h(t)ear ().

a7

Clearly, (17) has an equilibrium point at €,(t) = 0, ie,
when ve12(t) = ver(t). We will show in addition that this
equilibrium point is szable. The solution of (17) is given by

t
e1(t) = e (0)eTr Jo he(T) T (18)

Property 1: The difference ¢, (t) for any time ¢ has the same
sign as €1(0).

This property is obvious from (18). Consider now the
domain D of Fig. 7 defined by

D = (—oc, u_| U [uy, +o0) (19)
with u_ and u4 defined as follows:
= (Go — G1) + (Go — Gz)Bp, wy = —u_  (20)

Gy — Gy
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Fig. 8. Behavior of the chaotic signal v (t) and of the binary message.

and G in (20) chosen in such a way that

-G <Gy <Gy @2n

Property 2: A sufficient condition for the variable h(t) to
be positive is that at least one of the two signals vei(t) or
vee1(t) be in the domain D.

The proof of property 2 is obvious. Since one of the two
signals is at least in D we have Gy < g.(t) < Gy. From (16)
and (21), it is clear that h.(t) > G2+ G > 0.

Property 3: a) In the case where ¢;(0) is negative, a
sufficient condition ‘for the variable h(t) to be positive is
that vc1(t) be in the domain Dy = (—co, —Bp] U [ug, +00).
b) In the case where €;(0) is positive, a sufficient condition
for the variable h.(t) to be positive is that vo1(t) be in the
domain Dy = (—o0, u_] U [B,, +00).

The proof follows from properties 1 and 2. Suppose that
€1(0) is negative.

From property 1 we have that vo1(t) > vei2(t) for any
time ¢, thus if voy(t) is in (—oo, —B,] then vei2(t) is also
in (=00, —B,]. For v (t) in (—oo, —Bp), he(t) = G + Gy
that is a positive quantity from (21).
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Fig. 9. Double scroll attractor in the phase plane vci(t), veo(t) during
modulation.

From property 2, we know that a sufficient condition for
he(t) to be positive is that vc1 (£) be in D. As a result if €1(0)
is negative, a sufficient condition for h.(t) to be positive is
that v (t) be in DU (—oo, —Bp] = Dj. A similar proof can
be shown for case b) of property 3.

Let us now consider the relative duration time of ves(t)
in the region (—B,, u4), this relative duration time will be
referred to as c(t). Let us define an index variable I, (7) which
has the following meaning

if (Tok} (’T‘ (

) €(-B ,U+),
if ver(7) € (—Bp 22

17
fa(r) = {07 P> Uy).
The relative duration time of v (t) in the area (—Bp, uq)
is then defined as

a(t) = %/0 I, (7)dr. (23)

In a similar fashion we define an index variable Ig(7) which
has the following meaning

1, if vo1(7) € (=00, —By),
Io(r) = {0, ifvei(r) & (—o0, =B, 2P
The relative duration time of v (t) in the area (—oco, —Bp)
is then defined as
1 t
50 = 7 [ o) es)
0

Let oo and [ be the two variables defined as follows:

oo = limy_, (), Boe = lim;_ oo B(t).  (26)
For simplicity we assume that these limits exist, but the
subsequent arguments could be adapted to limsup for ao, and
liminf for (u.

Property 4: 1f there exists a constant G such that

a) -G < Gy < Gy

b) and that the maximum relative duration times o, and
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Fig. 11. v(q5(t) as a function of vc(t) during the transmission of several
bits +1, —1.
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Gﬂaoo + Glﬂoo + G2(1 — Qo — ﬂoo) > -G,

then €; converges exponentially towards zero with a time
constant which is at least
_ G
G + Goaoo + Glﬂoo + G2(1 — Qoo — Erxz) '
Proof: Assume that ¢;(0) is negative, by symmetry a
similar proof can be given if ¢;(0) is positive.
We can write

/0 h(r) dr = /0 (P h(r) dr + /0 La(r)he(r) dr

+/ 1= I.(7) = Ig(T)|he(r)dr. (29)
0

@0

(28)

71

Observe that from the definition of I,(7) and I3(7) we have

Ia(T)hE(T) 2 (G"'GO)IG(T)’
Ig(T)he(T) = (G+G1)Ia(7),
(1—1o(7)=I5(7))he(T) > (G+G2)[1~IQ(T)—I[,(T)(]3.O)
From (29), (30), (23), and (25), it follows that

/ hu(rydr > [(G T Go)alt) + (G + GHB()

3

2

1
o~

O 0
>

-1

-2

-3 -2 -1 0 1 2 3
VC1
Fig. 12. vcy2(t) as a function of v (¢) during the transmission of several
bits +1.
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Fig. 13.  v12(t) as a function of vy () during the transmission of several
bits —1.

+ (G + G2)[1 — at) — B()]|t. 31
From (26), the limit of (31) becomes

t
llmt_.,oo/ hg(’f) dr Z
0
llmt_}co[G + Gy + Glﬂoo + Gg(l — Qoo — ﬂoo)]t

(32)
Equations (18) and (32) show that if
G+ Gooo + G100 + G2(1 — oo — o) > 0
then
lim; o061 () = 0. (33)

Property 4 allows the computation of the average duration
time of synchronization if one knows the relative duration
times o, and 3. These relative duration times have to be
assessed via simulation. Observe that «.,, has to be evaluated
for different values of G5 in order to find the best bound for
the exponential factor 7.
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Fig. 14. Receiver for binary CSK using the transmitter in Fig. 2. (a) The
first subsystem restores vc, (= Uc'21) from v, . (b) The second subsystems,
which are “tuned” to +1 and —1, produce signals vc,, and vi, . When a
+1 is transmitted, vc,, synchronizes with vc,; when a —1 is transmitted,
ve,, synchronizes with ve;.

C. Desynchronization of vcy(t) and veya(t)
When a Bit —1 Is Transmitted

In this subsection, we show that vy (t) and vei2(t) desyn-
chronize when a bit—1 is transmitted.

As before, we define €;(t) = ve12(t) — ver(t). When a —1
is transmitted, we now have

o) dﬁéit) = —Ger(t) — [hs(ver2(t)) = h—(ver (8))].

If ve1(t) and veia(t) are to remain synchronized, then
€1(t) = 0 must be a stable fixed point of (34). Substituting
ds&—t(” = 0 and €1(t) = 0 into (34), we get hy(vear(t)) =
h_(ve1(t)) or equivalently,

hi(v(t)) = h_(v(1)),

which is not true. Thus, we have proven by contradiction that
ve1(t) = vei2(t) is not a solution when a —1 is transmitted.

(34)

IV. EXAMPLE FOR EVALUATING A LOWER BOUND ON T’

Consider Chua’s circuit shown in Fig. 2 the component
values of which are given in Table 1. For differents values
of Gy such that —G < G2 < G, we show in Table II the
corresponding value of u. calculated from (20). The relative
duration times ., and S, were evaluated over a total duration
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Fig. 15. Attractors in the transmitter corresponding to the Py;(+41) and
P_1(—1) parameter sets: (a) +1; (b) —1. In both cases, the horizontal and
vertical axes are vc, and vc,, respectively.

of 1 s. Table II shows that 71 is at least 411 us while 75 is
336 us. This shows in this particular case that 7 + 7 will
fix the bit duration 7. In order to have a decrease of 99% in
€1(0), T should be at least 3.5 ms.

V. SIMULATIONS

We present here simulations using the subsystems described
from Figs. 2 and 5. The value of » was chosen in order that
G} and G exhibit variations of 1% with respect to Go and
G;. The other values were chosen according to Table II. The
value of 71" was 4.65 ms.

Fig. 8 shows the chaotic message from time 10 ms to time
40 ms and the corresponding binary message. Fig. 9 shows
the double scroll attractor in the phase-plane (ve1 (), vea(t))
during the transmission of the binary message presented in
Fig. 8. Fig. 10 shows the relationship between vci2(t) and
v (t) during the transmission of 120 bits which were alterna-
tively +1, —1 while Fig. 11 displays the relationship between
vg12(t) and vey(t) during the same transmission. Obviously
the receiver subsystems are not synchronized during the whole
transmission (it is hoped that the receiver not matched to
receive the right bit exhibits a desynchronized behavior).
Finally, Fig. 12 shows the relationship between vc12(t) and
ve1(t) during the transmission of sixty nonconsecutive +1
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Fig. 16. Phase portrait for the receiver’s +1 subsystem: (a) +1 transmitted
(synchronization); (b) —1 transmitted (no synchronization). In both cases, the
horizontal and vertical axes are v, and ve,, respectively.

TABLE 1
VALUES OF THE ELEMENTS OF THE CHuA's CIRCUIT

RQ) LmH) CoF) Cy®mF) Go(pS) Gi S Bp(V)
1680 18 10 100 —753 —396 1
TABLE 11
U4. (so, T1 AS A FUNCTION OF G3. 85, AND Ty
Go (uS) uy (V) Qo Foo T(ps) T2 (us)
—595 2.59 0.5351 0.435 411 336
—594 2.61 0.5379 0.435 473 336
—592 2.64 0.5416 0.435 748 336
—591 2.66 0.5451 0.435 1500 336
—589 2.69 0.5484 0.435 4272 336

bits. The signals were sampled during the last half duration of
each bit in order to avoid transients. Fig. 13 is the alter ego
figure of Fig. 12; it shows the relationship between v, (t)
and v (t) during the transmission of sixty nonconsecutive
—1 bits.

V1. EXPERIMENTAL RESULTS

In our demonstration of binary CSK, the transmitter and
receiver consist of a Chua’s circuit and matched Chua’s
circuit subsystems (see Figs. 2 and 14). The transmitter is
switched between two parameter sets Py; and P_;—and their

NORM SM

Pox| 1V Aox 1V

2] L QU
N\
N

RM SM

/7

Y,
Pox| 1V Aox 1V

AFE1ms -y

(b

Fig. 17. Phase portrait for the receiver’s —1 subsystem: (a) +1 transmitted
(no synchronization); (b) —1 transmitted (synchronization). In both cases, the
horizontal and vertical axes are v¢, and z;’cu, respectively.

associated chaotic attractors (Fig. 15)—corresponding to +1
and —1 respectively, by switching a resistor 7 in parallel with
the Chua diode Ng [7]. The chaotic voltage across capacitor
C} is sent from the transmitter to the receiver, where it first
synchronizes with vc,, and then with either ve,, or v,
depending on whether a +1 or a —1 has been transmitted.

The component values for the linear parts of the transmitter
and receiver were as follows: L = 18 mH (TOKO 10RB),
Cy = 100 nF, C; = 10 nF and R = 1730 Q (all components
were measured with +1% accuracy). The Chua diode is
defined by its driving-point characteristic:

. 1
in = Grog + 5(Go = Gy)|vw + Byl ~ [or = Byl) (3

where Gop = —0.753 mS, G; = —0.396 mS, and B, = 1
V; the analog switch S is a Siliconix DG308 and r = 150
k. The subsystems of the receiver were matched to those of
the transmitter. Explicitly, the parameter sets corresponding to
+1 and —1 are

Py ={L, Cy, R, Gy, Gy, By, C1}, P_;
= {L3 Csy, R, Gy + 1/7‘7 G+ 1/’!‘, Bp, Cl}
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Fig. 18. Experimentally recorded time waveforms for the receiver’s +1
subsystem: (a) +1 transmitted (synchronization occurs within 10 ms); (b)
—1 transmitted (loss of synchronization within 10 ms). Upper trace: vc,;
lower trace: vc,,. Horizontal axis: time (1 ms per division).

Pox| 2V

A. Static Performance

We first verified that the receiver subsystems synchronized
with the appropriate transmitted signal. When the signal cor-
responding to a +1 attractor was transmitted, the receiver’s
+1 subsystem synchronized with the received signal; when a
—1 was transmitted, it did not (see Fig. 16). Similarly, when
the resistor 7 was connected across the Chua diode in the
transmitter circuit and a —1 thus transmitted, the receiver’s
—1 subsystem synchronized with the incoming signal; when a
+1 was transmitted, it did not (see Fig. 17).

B. Dynamic Performance

In order to evaluate the dynamic performance of our bi-
nary CSK system based on Chua’s circuit, we transmitted a
repetitive 50 Hz plus-one-minus-one sequence by applying a
square wave to the gate of the analog switch S. This switched
the transmitter signal back and forth between the +1 and —1
attractors.

Typical receiver waveforms are shown in Figs. 18 and 19.
In each case, full synchronization and desynchronization occur
within 10 ms.

sTA +10.0Q0ms NORM SM

AR !
wuvvv\ AA/ Y

[

Pox| 2V Aox 2V AF1lms

ATA +10.Q0ms NORM

N

AR A AR

AR LA Y
EEii

(b)

Fig. 19. Experimentally recorded time waveforms for the receiver’s —1
subsystem: (a) +1 transmitted (loss of synchronization within 10 ms); (b)
—1 transmitted (synchronization occurs within 10 ms). Upper trace: vc,:
lower trace: 1"Cu. Horizontal axis: time (1 ms per division).

VII. CONCLUSION

We have proposed a simple architecture for chaotic shift
keying modulation and demodulation. A proof has been given
for the synchronization effect. As in the work of Pecora
and Carroll [1]-[4] we needed some a priori information
on the driving signal to prove the synchronization effect.
In the general case treated by Pecora and Carroll this a
priori information is computed via the conditional Lyapunov
exponents. In the particular case we dealt with here we
used a Chua’s circuit in which it was simpler to make
assumptions on the relative duration times of the driving
signal in two areas of the piecewise-linear characteristic of
the Chua’s diode. Furthermore this simpler approach leads
to reasonable lower bound for the average time of synchro-
nization which is of prime importance to ensure correct bit
transmission. Simulations have been carried out in accor-
dance with the theory. We built a binary CSK system using
Chua’s circuits and verified our theoretical predictions and
simulations. Despite the fact that the values of the compo-
nents at the transmitter and the receiver were not exactly
matched, the circuit behaved in close accordance with the
simulations.
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