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ABSTRACT

A method for the spectral analysis of the spatial modes of a 1D
arrays of Chua’s circuits is proposed. The analysis is based on two
steps: (a) the state is represented in terms of a set of spatial eigen-
functions; (b) a set of nonlinear differential equations involving the
coefficients of the eigenfunctions is derived; this set is completely
equivalent to the original set of equations describing the circuit ar-
ray. The spectral analysis allows to explain some spatio-temporal
dynamic phenomena occurring in arrays of Chua’s circuits. The
technique can be extended to more complex 1D arrays and to 2D
arrays of nonlinear cells.

1. INTRODUCTION

Dynamic arrays of nonlinear cells have found several applications
in image processing and for modelling pattern formation and wave
phenomena in physics, chemistry and biology [1]. In most appli-

cations the cells are identic and the interactions among the cells

are described by space-invariant templates. Such arrays are dy-
namical systems described by a large set of nonlinear differential
equations: therefore the study of their dynamics has been mainly
carried out through extensive computer simulations.

An alternative way for studying the dynamic phenomena oc-
curring in these networks are the spectral techniques. Spectral
techniques consider the state of the network as a multiply func-
tion of time and of one or more discrete spatial coordinates. From
this point of view the entire dynamical system can be described
as a nonlinear spatio-temporal differential operator applied to the
state of the network, with the addition of a set of boundary condi-
tions (that describe the interactions among the cells located at the
network boundary). The key step of spectral techniques is the rep-
resentation of the state through a set of functions, that incorporate
the boundary conditions and give rise to a considerable simplifica-
tion of the spatio-temporal differential operator. If the state repre-
sentation is an approximation (like for the harmonic balance tech-
nique, with a finite number of harmonics) then spectral techniques
allows to predict accurately most of the dynamic phenomena oc-
curring in nonlinear arrays [2]-[6]. If the state representation is
exact, then the original set of differential equations is trasformed
into an equivalent set of algebraic and/or differential equations,
that in some cases might give more insight into the dynamic be-
havior of the network. In particular in [7] and [8] the state has been
decomposed through the eigenfunctions of a suitable linearization
of the spatio-temporal differential operator; through this decom-
position several mechanisms of pattern formation have been easily
explained.
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In this paper we restrict our attention to one-dimensional ar-
rays of Chua’s circuits [9], that, with respect to other networks,
exhibit a richer dynamic behavior. As a first step we represent the
state through the eigenfunctions (modes) of the spatial part of the
spatio-temporal nonlinear operator. Then we prove that this leads
to a set of nonlinear differential equations, that describes exactly
the network and is completely equivalent to the original one (i.e., it
is neither a linear approximation, nor an approximation with a fi-
nite number of harmonics). Finally we show that the spatial eigen-
functions represent a frame that allows to explain in a simpler way
the dynamics of the network.

2. ONE DIMENSIONAL ARRAY OF CHUA’S CIRCUITS

We consider a dynamic array composed by a finite number (V) of
Chua’s circuits and described by the set of normalized equations
reported in [9]:

I = a[yk - — n(:x:k)] +dizp—1 + doxp41 — 2dzs
Yb = Tk — Y&+ 2k
& = —Byn

The parameters o and 3 are defined in [10] whereas d; and d»
represent the normalized coupling coefficients; n(zy) denotes the
well known nonlinear memoryless resistance of the Chua’s diode
(see [10]). We assume that the boundary conditions are zo(t) =
TN41 (t) =0.

By eliminating in (2) yx(t) and 2 (t) the following equation,
expressed in term of sole variable z (%), bolds

L(D)[zx(t)] + & nles(t)] — dize-a(t) —

ds Zp41 (t) + 2dz,,(t) = 0 (1)
where D represents the first-order differential operator and
D®* 4+ D*1+a)+ DB +ap
L(D) = 2
() D>+D+p @

By denoting with (™ the spatial operator defined as (™ (z(t)) =
Tr+m (), equation (1) can be rewritten in the following more com-
pact form:

Qzx(t)] =0 )

where Q is a spatio-temporal nonlinear differential operator de-
fined as:

Q()=L(D)() +an()—di {7 () —da ¢*() +2d CO('()4)
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For the sake of the simplicity we only study the case of reciprocal
coupling (i.e., dy = d2 = d). We denote with Q, the spatial part
of the operator Q (i.e., @, = d (2¢° — ¢! = ¢?)), that is lin-
ear. Since we have assumed zero boundary conditions, it is easily
derived that the operator Q, admits of the following complete set
Fi, of eigenfunctions (i.e., spatial modes that satisfy the boundary
conditions):

f,,:{sin (&”Ikl) 15m5N} 5)

In fact, each one of the above eigenfunctions vanishes for k = 0
and k = N + 1 and moreover:

d(2¢° = ¢t = ¢Y sin (1:,"1’“1) = Amsin (;}‘Ikl)

_ .2 mnm
Am =d sin (N+1)

(6)

where A, is the eigenvalue corresponding to the eigenfunction
. mnk

sin (m—l) .

The eigenfunctions Fi are also orthogonal, according to the fol-

lowing scalar product:
2 o myk mark
. 1 . 2
——— ) ‘sin ( ) sin ( ) =0mymy (7
N+1 ; N+1 N+1

where § denotes the Kronecker delta operator. Since the set of
eigenfunctions Fy, is complete, then the state z4(t) can be repre-
sented in the following form:

il - mmnk
zk(t) = mz=:le(t) sm( +1) ®
where the X, (¢) are suitable coefficients, that take into account
the time dependence of z(t).
We will show that, by substituting expression (8) for z(t) in
(3), a set of nonlinear differential equations involving the terms
Xm(t) equivalent to (3) can be obtained. In fact it is possible to
prove that also the output of the memoryless nonlinear function
n(zk(t)) can be exactly represented through the set of eigenfunc-
tions Fj. We have:

N
n(zi(t) = 3 Na(t)sin ( }’\’}_’;’“1) )

m=1

where the terms N, (t) depend only on the coefficients X, (¢) of
the state representation (8) and are defined as

I

Non(t) = Nn[X1(8), Xa(8), - Xn (8)]

—]\%—1- Lén (g)ﬁ(t) sin (%)) sin (—Nfﬁi—kl)] (10}

By substituting expressions (8) and (10) in (3) and by use of
(6) we obtain

N
L(D) [Z Xom(t)sin (Nii‘ki)} +

m=1

@ 3" nlXs(0) s X ()]s ( oL ) +
o] N+1

N
in? [ T L2
dmz=lsm (N+1) Xm(t) sm( +1) = 0 (1

The above equation has the fundamental property that the space
dependence is entirely concentrated in the eigenfunctions; there-
fore by taking the scalar product of both the sides of (11) with

each one of the eigenfunctions sin (’1(,‘:_’;) the following decom-

position into NV nonlinear differential equations holds:

L(D)Xm (1) + @ N[ X1 (2), ..., XN (2)] +

dsin? (%) Xm(t) =0 1<m<N (12

The set of equations above presents the following properties:

o It is completely equivalent to the original set of equations,
expressed through the spatio-temporal nonlinear operator
Q in (3) and (4). This means that by computing X, (t) via
the solution of set (12), it is possibile to determine exactly
the state z(t) by using (8).

o It allows to study the time evolution of the spatial eigen-
functions (modes), i.e., of the coefficients X, (t). This is
important for investigating all those phenomena (like pat-
tern and wave formation) that can be better described in
terms of spatial modes (see [7, 8]). The main advantage of
our approach with respect to [7, 8] is that our formulation
is valid in the whole state-space and not only in a suitable
linear region as in [7, 8].

The set of equations (12) can be studied through different ap-
proximate methods, like for example harmonic balance, that allow
to predict accurately the dynamics of each spatial mode. On the
other hand the evolution of the spatial eigenfunctions can also be
determined by the time simulation of (12) through numerical meth-
ods.

As an example we examine a chain of 12 Chua’s circuits, de-
scribed by the parameters « = 8, 8 = 15 and d = 0.17; we
suppose that the nonlinearity of Chua’s diode can be approximated
through the cubic function [11]

n(ze) = —-3—2;, + %xi (13)

It is shown in [6] and [9] that, for small values of d (like for
example d = 0.17), after a transient the network exhibits clusters
of at least two cells oscillating around +1. The form of the clusters
depends on the initial conditions. We have considered two cases: a
first case, called symmetric, where the initial conditions are chosen
in such a way that cells 1 — 4 and cells 9 — 12 oscillate around +1,
whereas cells 5 — 8 oscillate around —1; a second case, called
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Figure 1: Time-waveforms of the coefficients X (t) of the odd
spatial eigenfunctions 1-3-5 in the symmetric case. They are or-
dered from the top to the bottom.

asymmetric, in which the initial conditions are chosen in such a
way that cells 1 — 3 and cells 9 — 12 oscillate around +1, whereas
cells 4 — 8 oscillate around —1.

In both cases the cluster formation can be described in a effec-
tive way by computing the time evolution of the spatial modes. For
what concerns the symmetric case it is easily verified that the even
modes vanishes; the odd modes are reported in Figs. 1-2, after a
transient long enough (i.e., from 90 to 100 normalized time units).
It is seen from Fig. 1 that the average value of the waveform repre-
senting the third mode (i.e., m = 3) is much greater than those of
the other modes. This is in agreement with the fact that a sequence
of clusters of the type (1,1,1,1,—-1,—1,—1,~1,1,1, 1,1) has
been formed.

The waveforms representing the spatial modes in the asym-
metric case are reported in Figs. 3-6: it is seen that all the modes
are different from zero and that the amplitude of the third mode de-
creases. This is in agreement with the fact that a sequence of clus-
ters of the type (1,1,1,-1,—1,~1,—~1,—-1,1,1,1,1) has been
formed.

The analysis of spatial modes through equation (12) allows to
explain most of the mechanisms of cluster formation and also the
spatio-temporal chaotic phenomena that occur for higher values of

d ([6]).

3. CONCLUSION

We have proposed a method for the analysis of the spatial modes
of a 1D arrays of Chua’s circuits in the whole state space. We have
verified that the analysis allows to explain some spatio-temporal
dynamic phenomena occurring in the network. Moreover we point
out that the technique can be extended to more complex 1D arrays
and to 2D arrays of nonlinear cells.
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Figure 2: Time-waveforms of the coefficients X, (t) of the odd
spatial eigenfunctions 7-9-11 in the symmetric case. They are or-
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Figure 3: Time-waveforms of the coefficients X (¢) of the spatial Figure 5: Time-waveforms of the coefficients X, (t) of the spatial
eigenfunctions 1-3 in the asymmetric case. They are ordered from eigenfunctions 7-9 in the asymmetric case. They are ordered from
the top to the bottom. the top to the bottom.
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Figure 4: Time-waveforms of the coefficients X, (t) of the spatial Figure 6: Time-waveforms of the coefficients X, () of the spatial
eigenfunctions 4-6 in the asymmetric case. They are ordered from cigenfunctions 10-12 in the asymmetric case. They are ordered
the top to the bottom. from the top to the bottom.
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