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Chua’s Circuit: Ten Years Later

SUMMARY More than 200 papers, two special issues
(Journal of Circuits, Systems, and Computers, March, June,
1993, and IEEE Trans. on Circuits and Systems, vol. 40, no. 10,
October 1993), an International workshop on “Chua’s Circuit:
chaotic phenomena and applications” at NOLTA’93, and a book
(Edited by R.N.Madan, World Scientific, 1993) on Chua’s
circuit have been published since its inception a decade ago.
This review paper attempts to present an overview of these timely
publications, almost all within the last 6 months, and to identify
four milestones of this very active research area. An important
milestone is the recent fabrication of a monolithic Chua’s circuit.
The robustness of this IC chip demonstrates that an array of
Chua’s circuits can also be fabricated into a monolithic chip,
thereby opening the floodgate to many unconventional applica-
tions in information technology, synergetics, and even music.
The second milestone is the recent global unfolding of Chua’s
circuit, obtained by adding a linear resistor in series with the
inductor to obtain a canonical Chua’s circuit—now generally
referred to as Chua’s oscillator. This circuit is most significant
because it is structurally the simplest (it contain only 6 circuit
elements) but dynamically the most complex among all non-
linear circuits and systems described by a 21-parameter family of
continuous odd-symmetric piecewise-linear vector fields. The
third milestone is the recent discovery of several important new
phenomena in Chua’s Circuits, e.g., stochastic resonance, chaos-
chaos type intermittency, 1/f noise spectrum, etc. These new
phenomena could have far-reaching theoretical and practical
significance. The fourth milestone is the theoretical and experi-
mental demonstration that Chua’s circuit can be easily controlled
from a chaotic regime to a prescribed periodic or constant orbit,
or it can be synchronized with 2 or more identical Chua’s
circuits, operating in an oscillatory, or a chaotic regime. These
recent breakthroughs have ushered in a new era where chaos is
deliberately created and exploited for unconventional applica-
tions, e.g., secure communication.

key words: Chua’s circuit, Chua’s oscillator

1. Brief History of Evolution

Prior to 1983, no autonomous electronic circuit was
known to be chaotic, in spite of numerous attempts by
researchers to uncover such examples. In particular,
Matsumoto and his students had struggled for years to
build an electronic circuit analog of the Lorenz Equa-
tion. The history of how Matsumoto’s disappointing
failure had spurred the author to design a chaotic
circuit from first principles was described vividly in
[1]. Here, we only outline the chronological events,
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which began in the fall of 1983, where this chaotic
circuit was designed by the author, using a systematic
nonlinear circuit synthesis technique. After describing
his design to Matsumoto and instructing him on how
to choose the circuit parameters for a possible chaotic
regime, the author’s involvement in this circuit was
abruptly interrupted for over a year due to illness.

Having no prior experimental background, Ma-
tsumoto uses computer simulation to verify that the
author’s circuit, which he had named Chua’s Circuit
[2], is indeed chaotic. Meanwhile, Matsumoto and his
students had followed the author’s suggestion to mod-
ify Rosenthal’s circuit [3] in order to obtain an active
2-terminal  nonlinear resistor with the desired
piecewise-linear characteristic.* It took two years
before his student Tokumasu finally succeeded in 1986
to adapt Rosenthal’s circuit to obtain the desired
nonlinearity [4].**

Meanwhile, using ‘an op-amp circuit synthesis
technique proposed by the author, Zhong and Ayrom
[5] had succeeded to build a two-opamp Chua’s circuit
where chaos was first observed experimentally during
the winter of 1984. Their experimental confirmation of
chaos was published in January 1985, one month after
Matsumoto’s publication in December 1984 of his
computer observation of chaos in Chua’s Circuit [2].

The most robust and economical method to hook
up an experimental Chua’s circuit is given in [6], [7].
In this setup, the nonlinear resistor, called Chua’s
diode by Kennedy [7], is realized by a single IC
package (containing two op amps) and 6 linear resis-
tors. The entire setup can be easily hooked up in 30
minutes for less than $10. Because of its low cost and
robustness, Chua’s circuit has become the circuit of
choice in applications where an inexpensive and robust
source of chaotic signals is required.

For mass applications, it would be desirable to

* From his hospital bed in Tokyo, the author had com-
municated to Matsumoto on the possibility of using
Rosenthal’s circuit as the basis for designing the desired
nonlinearity.

*# Although neither acknowledged nor referenced in [4],
the core of the resulting 2-transistor circuit is essentially
Rosenthal’s circuit. This author therefore wishes to take
this opportunity to acknowledge Rosenthal’s contribution
to this 2-transistor Chua’s circuit.
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(a) 8-pin DIP package.

S

(b) The photomicrograph of the chip.

Fig. 1 Monolithic CMOS Chua’s Circuit described in [10].
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have the Chua’s diode integrated into an IC chip. This
has been achieved using a 2-zam CMOS process, with
39 CMOS transistors occupying a chip area of 0.5 mm?
[8]. More recently, the entire Chua’s circuit has been
successfully integrated into a monolithic chip via two
different designs [9], [10]. The Chua’s Circuit IC Chip
in [10] is housed in a standard 8-pin DIP package, as
shown in Fig. 1(a). It is fabricated using the standard
2-micron CMOS technology, whose photomicrograph
is shown in Fig. 1(b), and occupies a silicon area of
2.5mmX2.8 mm. This chip is powered by a single
9-volt battery and dissipates 0.001 Watts of power.
This latest evolution represents a milestone in the
ever-widening studies and exploitation of Chua’s cir-
cuits because it demonstrates that an entire array of
closely matched Chua’s circuits can be fabricated in
monolithic form. Indeed, we have estimated that using
a 0.5 micron technology, a locally-connected array of
10,000 identical Chua’s. Circuits can be fabricated in a
single chip.

2. Generalizations of Chua’s Diode

The original piecewise-linear characteristic of Chua’s
diode has been generalized by many researchers to
assume various different forms. For example, the
original piecewise-linear function has been replaced by
a discontinuous function in [11], a C* “sigmoid func-
tion” in [12] and a cubic polynomial f (x) = ¢x + ¢ x*
in [13], [14] and [15]. The main motivation for choos-
ing a “smooth” rather than “piecewise-linear” function
for Chua’s diode is to obtain a smooth state equation
so that analytical tools from nonlinear dynamics can
be brought to bear. Indeed, it is obvious from the
original principles used to design this circuit, as de-
scribed in [1], that the smoothness of the v-i character-
istic is quite irrelevant to obtaining a strange attractor.
A piecewise-linear characteristic was chosen in [1]
only to facilitate a rigorous analysis. ‘

In some applications, the symmetry in the Chua’s
diode v-i characteristic is deliberately broken in order
to allow nonlinear wave propagations in a chain of
Chua’s circuits [16], or in a Chua’s circuit terminated
by a transmission line [17]. The symmetry can be
broken either by shifting the origin, or changing the
shape, of the characteristic.

In yet another application, the number of seg-
ments of the original piecewise-linear characteristic of
Chua’s diode has been increased in order to synthesize
strange attractors with multiple scrolls [18].

3. Generalizations to Higher Dimensions

In order to investigate chaotic dynamics and new
phenomena in higher-dimensional spaces, Chua’s cir-
cuit has been generalized by replacing the resonant
tank circuit by an RLC ladder circuit in [19], by a
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coaxial cable in [20], and by a lossless transmission
line terminated in a short circuit in [17]. The dynamics
in the latter case is described by 2 linear partial
differential equations with a nonlinear boundary con-
dition. However, in the limiting case where the
capacitance C; across Chua’s diode tends to zero, the
partial differential equations reduces to a l-dimen-
sional map with a time delay, which makes it analyti-
cally tractable. A further generalization of Chua’s
circuit to a Banach Space has been given in [21].

Another direction of generalization consists of a
chain [16], [22], or an array [23], [24] of Chua’s
circuits. This generalization leads to a system of
nonlinear ordinary differential equations which has
the same form on the right hand side as that of a system
of nonlinear reaction-diffusion partial differential
equations. Consequently, several currently very active
research areas in nonlinear lattice dynamics, including
“spiral waves”, “Turing patterns”, and “spatio-
temporal chaos”, can all be efficiently studied by an
array of Chua’s circuits. Moreover, the signals extract-
ed from such an array have many potential applica-
tions.

4. Generalizations to Chua’s Circuit Family

The theory’ developed in [25] for investigating the
dynamics of Chua’s circuit is actually applicable to
any family & of continuous, odd-symmetric piecewise-
linear vector fields in R*, partitioned by two parallel
planes U; and U_; (of arbitrary orientation) into an
inner region Dy and two outer regions D; and D_,,
respectively. Any member of ¢ is described byt

X =Ax+b, x1=1
=Aox, —1=x0=1 1)
=Ax—b, x=-—1
where
an G o b
A=|an an as|, b=|b (2)
Az Qs s by

defines an affine vector field in the outer regions Dy
and D_,, and

f As a compromise for departing from Matsumoto’s
previous tradition of placing his name first in all publica-
tions involving Chua’s circuit, the authors in this paper
have been reordered alphabetically. Indeed, most of the
results in this paper was developed by Komuro.

1T We would like to take this opportunity to correct the
following equations in [26].
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defines a flinear vector field in the inner region D.

Using the nonlinear state equation synthesis tech-
nique developed in [27], [28], any member of this
21-parameter family of vector fields can be synthesized
by a circuit using one Chua’s diode and linear resistive
elements, including controlled sources. The basic
structure of this circuit family is summarized in Fig. 14,
page 1031, of Wu’s paper [29]. In Wu’s Fig. 14, the
Chua’s diode is fixed to be a passive element, made of
two ideal back-to-back Zener diodes connected in
parallel across a linear passive resistor. In this case, the
linear resistive 4-port N must contain at least one
negative resistor or controlled source. By using stan-
dard circuit transformation techniques, one-can choose
N to be passive and transfer the activity requirement
into Chua’s diode. Indeed, once the 21 parameters
defining A4, A;, and b are given, much simpler circuits
equivalent to that of Fig. 14 can be synthesized. In the
simplest case, only 4 circuit elements are needed; name-
ly, 2 capacitors, 1 inductor, and a Chua’s diode with an
appropriate v-i characteristic. One such circuit,!
synthesized, built, and analyzed by Tokunaga [30], has
a strange attractor which is spawned by the breakdown
of a torus. A detailed analysis of this member of
Chua’s circuit family shows that the complicated bifur-
cation phenomena follows the scenarios predicted by
the Afraimovich-Shil’nikov torus breakdown theorem
[31].

Many other members of Chua’s circuit family have
been synthesized and built [32]-[35]. Except for the
circuit reported in [35], the dynamics of the above cited
circuits, including the original Chua’s circuit, are not
sufficiently general in the sense that certain phenome-
non observed from one such member of Chua’s circuit
family can not be observed from another member,
regardless of the choice of circuit parameters. From
the nonlinear circuit foundation point of view, it is
highly desirable to synthesize the simplest circuit topol-
ogy which is capable of reproducing the qualitative
phenomena exhibited by every member of Chua’s
circuit family. The circuit structure provided by Fig.
14 of Wu [29] has this property but it is not the
simplest in the sense that there exist circuits with fewer
number of circuit elements that are also endowed with
this property. In fact, the circuit reported in [35] is one
(among several others) such circuit and is therefore
said to be canonical because no circuit having fewer
number of elements has this property.

Among several equivalent canonical Chua’s cir-
cuits, Dr. Madan, guest editor of two recent special
issues on Chua’s circuit [36], [37] has chosen the
globally unfolded Chua’s circuit [26]—obtained by
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adding a linear resistor R, in series with the inductor
—as the standard bearer of the name canonical, and
had named it Chua’s Oscillator to distinguish it from
the original Chua’s circuit. Dr. Madan chose this
augmented circuit as canonical not only because
Chua’s oscillator reduces to Chua’s Circuit upon set-
ting the linear resistor R, to zero, but also because all
recent publications on canonical Chua’s circuit are
already based on the Chua’s oscillator [24], [26], [38]
-[45]. From the theoretical point-of-view, the
significance of Chua’s oscillator is fully analyzed in
[26], [44]. Here, we simply paraphrase the main result
succintly as follows:

Significance of Chua’s Oscillator

Chua’s oscillator is structurely the simplest and
dynamically the most complex member of the Chua’s
circuit family.

It is the simplest circuit because no circuit with
fewer number of circuit elements is as general. It is the
most complex because no circuit belonging to the
Chua’s circuit family can exhibit more complex
dynamics.

The significance of the Chua’s oscillator tran-
scends beyond nonlinear circuit theory. Indeed, there
are many publications involving systemns which are not
circuits but which are also described by Egs. (1)-(3),
e.g., [46]-[50].

No longer is it necessary for beginners in non-
linear dynamics to study all of these seemingly un-
related papers, along with their diverse notations and
jargons. Instead, since nothing new can be learned that
is not already included as special cases of the dynamics
endowed upon Chua’s oscillator, future researchers on
chaos need only obtain an in-depth understanding of
the nonlinear dynamics and bifurcation phenomena of
this single circuit. In short, Chua’s oscillator has
unified the nonlinear dynamics of the entire 21-
parameter family of piecewise-linear vector fields into
a single system defined by (1)-(3). Moreover, the
dynamics of many non-piecewise-linear systems can
also be understood and explained by the dynamics of
Chua’s oscillator, as illustrated in [51]-[53].

5. Some Recent Phenomena Observed from Chua’s
Circuit

In addition to the various standard routes to chaos
(e.g., period doubling, torus breakdown) that are now
well known for Chua’s circuit, several interesting new
phenomena have been discovered recently which we
now briefly summarized.

T The content of this paper is due almost exclusively to
Tokunaga.
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5.1 Stochastic Resonance

It is well known that when two spiral Chua’s attractors
(similar in structure to the Rossler attractor) collide in
a crisis bifurcation, they merge into a single attractor;
namely, the double-scroll Chua’s attractor. Within a
narrow “band” along this bifurcation boundary in the
a-f parameter space, a chaos-chaos type of inter-
mittency phenomena is observed. If a small sinusoidal
signal with the appropriate frequency close to some
“natural frequency” of the circuit is applied, a
significantly amplified version of this signal is ob-
served. The power gain seems to come at the expense
of the energy previously distributed over the entire
chaotic power spectrum. Moreover, under certain
conditions, the signal-to-noise ratio of the amplified
output signal is observed to be greater than the signal-
to-noise ratio of the input signal—a novel phenome-
non which can not be achieved with a linear amplifier.
This phenomenon is called stochastic resonance [54],
and is currently a very active research area being
pursued by many scientists, specially physicists and
biologists.

5.2 Signal Amplification via Chaos

Apart from the stochastic resonance phenomenon
described above, another mechanism for achieving
voltage gain (up to 50dB has been demonstrated
experimentally) from Chua’s circuit has been discover-
ed recently [55]. The mechanism of this voltage gain is
different from that of stochastic resonance because the
effect is observed even when Chua’s circuit is operating
in a spiral Chua’s attractor regime far from the bifurca-
tion boundary where stochastic resonance takes place.

5.3 1/f Noise Phenomenon

In addition to the chaos-chaos type intermittency one
observes a 1/f power spectrum near the bifurcation
boundary between the spiral Chua’s attractor regime
and the double-scroll Chua’s attractor regime [36].
Extensive numerical simulations of Chua’s circuit have
shown that the associated power spectrum is character-
ized by a 1/f divergence in the low-frequency region.
This phenomenon can be used as a 1/f noise genera-
tor, and can lead to a better understanding of the
ubiquitous yet still poorly understood 1/f phenome-
non.

5.4 Antimonotonicity Phenomenon

Yorke and his co-workers have predicted that
antimonotonicity—i.e., inevitable reversal of period—
doubling cascades, is a fundamental phenomenon for a
large class of nonlinear systems [56]. Recent experi-
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ments on Chua’s circuit have provided the first experi-
mental confirmation of this phenomenon [57].

5.5 Period-Adding Phenomenon

Most readers of chaos are familiar with the period-
doubling phenomenon, where the oscillation period
doubles at a geometric rate in accordance with the
Feigenbaum number. Another phenomenon rarely
observed in autonomous system is that of period
adding, where the oscillation period increases by con-
secutive integers, while interspersed between chaotic
regimes. Such a phenomenon has been observed in
Chua’s oscillator [58] and is in fact the basis for
designing a bassoon-like musical instrument [45]. The
same phenomenon has been observed and rigorously
proved by Sharkovsky et al. for the Chua’s circuit
characterized by a 1-D map with a time delay [17].

5.6 Autowave Phenomenon

A 1-dimensional chain, or a 2-dimensional array, of
identical Chua’s circuits with resistive couplings has
been shown to support stable autowave solutions for a
wide range of coupling resistances [16], [22], [23], [59].
Below a certain diffusion coeflicient, however, the
autowave suddenly ceases to propagate. This propaga-
tion failure mechanism is similar to that observed in
diseased nerve fibers, such as multiple sclerosis. Such
a phenomenon has baffled biologist for many years
because no such phenomenon has been observed from
simulations of the various associated nonlinear partial
differential equation models. Indeed, it has only
recently been proved mathematically that no such
propagation phenomenon can occur in any l-dimen-
sional active medium modeled by a partial differential
equation. Consequently, our observation of this phe-
nomenon from a chain of Chua’s circuits implies that
a “discrete” chain of Chua’s circuits (described by
ordinary differential equations) is richer in dynamics,
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Fig.2 Example of a spiral wave generated from a 100X 100
array of identical Chua’s oscillator.
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than its limiting continuum version, and that it can
predict certain phenomenon which its limiting partial
differential equation model can not [23].

5.7 Spiral Wave Phenomenon

Spiral waves are special cases of autowaves that are
widely observed in active chemical media—e.g., the
classic Belousov-Zhabotinski reaction. Such media are
modeled by nonlinear reaction—diffusion partial
differential equations. It has been shown recently that
an array of Chua’s oscillators can also support a stable
spiral wave solution [24], an example of which is
shown in Fig. 2. This is the first spiral wave phenome-
non that has been observed in Electrical Engineering,
and could lead to novel applications.

5.8 Universality and Self-Similarity

The observation that the -5 plane bifurcation pat-
terns contain self-similar features resembling that of
“swallow tails” has been pointed out in [25] and [60].
A recent in-depth analysis of this phenomenon using
renormalization group analysis [61] has resulted in a
definitive characterization of the geometry of this self-
similarity phenomenon. In particular, the complex fine
structure in the topography of regions of different
dynamical behavior near the onset of chaos has been
investigated in a 2-parameter 1-D map which describes
approximately the dynamics of Chua’s circuit. Besides
the typical piecewise-smooth Feigenbaum critical
lines, the boundary of chaos contains an infinite set of
codimension-two critical points, which may be coded
by itineraries on a binary tree. In regions nearby
critical points having periodic codes, the infinite
topography of the parameter plane reveals a property
of self-similarity. Moreover, the well-known “Feigen-
baum number” for l-parameter 1-D maps has been
generalized to two universal numbers for 2-parameter
1-D maps [61].

6. Recent Analytical Investigations of Chua’s Cir-
cuit

Many deep mathematical analysis, and their generali-
zations, of Chua’s circuit have been published during
the past two years. We now summarized some of these
analytical results:

6.1 The Double-Hook Attractor

For certain regions in the @-3 parameter plane, all
eigenvalues associated with the equilibrium point O of
Chua’s equation are real numbers. The strange
attractor associated with this chaotic regime is called a
double-hook attractor in [62]. An in-depth analytical
study of this regime has been made by Silva [62]-[64].
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6.2 One-Dimensional Chua’s Map

The original Chua’s 1-D map presented in [25] has
been extensively investigated numerically [65], [66]

-and analytically [12], [17], [67], [68]. Using the gener-

alized framework developed by Brown [12], Misiur-
ewicz has investigated maps of the real line into itself
obtained from the modified Chua’s equation [67]. For
a large range of parameters, Misiurewicz found the
existence of invariant intervals as well as invariant
sub-intervals on which the associated Chua’s circuit is
unimodal and resembles the well-known logistic map.
Moreover, this map is found to have a negative Schwar-
zian derivative, implying the existence of at most one
attracting periodic orbit. Moreover, Misiurewicz has
proved that there is a set of parameters of positive
measure for which chaos occurs.

6.3 Universality in Cycles of Chaotic Intervals

The order of the bifurcation sequence in piecewise-
linear maps is different from that of smooth maps. In
the case of the piecewise-linear map associated with the
Chua’s circuit with time-delay [17], Maistrenko et al.
have found that when a period-r point cycle loses its
stability, a “rigid” period-doubling bifurcation occurs
which leads to the emergence of not point cycles but
interval cycles of double period having chaotic trajec-
tories [69]. This is followed by an inverse period-
doubling bifurcation, i.e., interval cycles of period 2n
are merged pairwise, giving birth to a period—# inter-
val cycle. Finally, in the next bifurcation all intervals
of interval cycles will merge into the full interval cycle
I=[0, 1]. In this case, there are no subintervals of [
which recur periodically under the map of f. Among
many elegant mathematical properties concerning
interval cycles, Maistrenko et al. has derived two
universal constants analytically, and in explicit form
[69]. This result is most surprising since the well-
known Feigenbaum universal constant can be calcu-
lated only numerically.

6.4 Global Stability and Instability of Chua’s Oscil-
lator

Recently, Leonov et al. has investigated Chua’s oscil-
lators as a feedback control system and derived a
frequency-domain criterion for global stability and
instability [70]. This analytical study has led to a new
version of the generalized Kalman’s conjecture.

6.5 The Double-Horseshoe Theorem
Using a new geometric model of Chua’s circuit, Belykh

and Chua have presented an analytical study of a new
type of strange attractors generated by an odd-
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symmetric three-dimensional orbit at the origin. This
type of attractor is intimately related to the double-
scroll Chua’s attractor. They have proved rigorously
that the chaotic nature of this attractor is different from
that of a Lorenz-type attractor, or a quasi-attractor. In
particular, this attractor has the geometry of a double
horseshoe. For certain nonempty intervals of parame-
ters, this strange attractor has no stable orbits. Unlike
other known attractors, the double horseshoe attractor
contains not only a Cantor set structure of hyperbolic
points typical of horseshoe maps, but unstable points
(i.e., stable in reverse time) as well. This inplies that
the points from the stable manifolds of the hyperbolic
points must necessarily attract the unstable points.

6.6 Synchronization, Trigger Wave, and Spatial
Chaos

Several criteria for synchronizing two mutually-
coupled Chua’s circuits operating under chaotic
regimes are derived in [71]. For a chain of Chua’s
oscillators, analytical results couched in terms of a
moving coordinate system have been derived which
guarantee the existence of heteroclinic orbits [72]. This
analytical study is highly significant because it proves,
among other things, the presence of a trigger wave
along the chain. The proof of the existence of hetero-
clinic orbits represents a major breakthrough since it is
generally extremely difficult if not impossible to derive
such analytical results. In addition to trigger waves,
this investigation also proves the existence of Spatial
Chaos along a finite chain of Chua’s oscillators.

6.7 Fine Structure of the Double-scroll Chua’s
Attractors

Using the theory of confinors [73]-[75], Lozi and
Ushiki have developed an amnalytical approach, in
sharp contrast to numerical integration methods, for
examining the fine features of various Chua’s
attractors. The keystone of the original definition of
confinors is that very often, changes in the shape of
experimentally observed signals are more significant in
characterizing the phase portrait, than any topological
change between chaotic attractors. The theory of
confinor takes into account the “shape” of the signals,
and is capable of modeling both transient and
asymptotic regimes. Applying this unique approach to
Chua’s equation, Lozi and Ushiki have discovered the
co-existence of 3 distinct double-scroll Chua’s
attractors in close proximity of each other for the same
value of parameters [75]. Without a precise knowledge
of initial conditions, which only the confinor theory
can, supply, it would be virtually impossible to pick
these 3 attractors apart. This explains why in spite of
the rather extensive numerical and experimental works
of many researchers on Chua’s circuit over the last 10
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years, no one has ever observed the simultaneous
existence of 3 chaotic attractors.

In addition to this discovery, Lozi and Ushiki
have also provided the most precise characterizations
of the structure of the double-scroll Chua’s attractors
via an exact 2-dimensional Poincare map. Moreover,
they have discovered some very unusual bifurcation
phenomena which are distinct from the usual period-
doubling cascades [74]. Since these results are all
highly original and robust, they can be used as a guide
for characterizing strange attractors of other chaotic
systems, thereby demonstrating yet another application
of Chua’s Circuit as a universal paradigm for chaos.

7. Some Recent Applications of Chaos from Chua’s
Circuit ‘

During the last 20 years, many researchers have begun
to control and exploit chaos from various dynamical
systems for novel applications. In this final section, we
summarize some recent results in this area which have
been applied to Chua’s circuit.

7.1 Controlling Chaos in Chua’s Circuit

To control chaos in Chua’s circuit means to influence
its normal chaotic regime and transform it into some
“desired” dynamic operation, such as a fixed point, a
periodic orbit, or a particular strange attractor. Many
different techniques have been developed successfully
to control chaos in Chua’s circuit [14], [76]-[85].
Some of the control techniques involve varying the
circuit parameters, stabilizing some unstable orbits
embedded in a strange attractor, absorbing the chaotic
dynamics by a controlling circuit, etc. Since different
controlling techniques have their advantages and draw-
backs, the best approach will depend on specific appli-
cations.

7.2 Secure Communication via Chua’s circuit

One of the most intriguing applications of chaos is to
“hide” the small information—bearing signal within a
much larger chaotic signal. Such a signal cannot be
recovered unless the receiver is tuned to the exact
circuit parameters—the decoding key—of the transmit-
ter (Chua’s circuit). Several secure communication
systems based on Chua’s circuit have been proposed
[86]-[90]. So far, the approaches proposed in [89],
[90] appear to be the most secure and accurate.

7.3 Trajectory Recognition via Array of Chua’s
Circuits

Recently, Altman uses the center manifold and normal
form theory to relate the local behavior of Chua’s
circuit to some input trajectory to be recognized [91].
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This mathematical problem arises in the recognition of
hand gestures in the design of artificial intelligence,
where the hand position as a function of time is used
to drive Chua’s circuit to an attracting surface. Since
Chua’s circuit is known to undergo a series of bifurca-
tions from fixed points, to limit cycles, to a cascade of
period-doubling oscillations leading to chaotic oscilla-
tions in the vicinity of the center manifold surface, the
rapid entrainment of the chaotic system to an external
signal having a trajectory near the center manifold
surface provides the basic mechanism for trajectory
recognition. The recognition of many trajectories can
be achieved by using a 2-dimensional array of Chua’s
circuits. In this case, the variation of responses to the
common input trajectory creates a spatial pattern
which can be used to recognize the input trajectory.
The above approach to trajectory recognition is both
novel and fascinating.

7.4 Handwritten Character
Chua’s Oscillator

Recognition Using

A neural network architecture and learning algorithm
for associative memory storage of analog patterns,
continuous sequences, and chaotic attractors via a
network of Chua’s oscillators has recently been
designed by Baird and Hirsch [92]. Their design is
used in the application to the problem of real-time
handwritten digit recognition. They have demonstrat-
ed that several of the attractors from Chua’s oscillator
have out-performed the previously studied Lorenz
attractor system in terms of both accuracy and speed of
convergence.

7.5 Applications of Chua’s Circuit to Music

Perhaps the most fascinating application to date of
Chua’s circuit and its generalizations is in music.
Recently, Mayer-Kress et al. [45] have discovered that
in the a@-B-y parameter space of Chua’s Oscillator,
there is a manifold which gives rise to novel musical
sounds. For example, a point on this manifold gives
rise to a consecutive sequence of bassoon-like musical
tones. This research project is presently conducted by
a multidisciplinary team at the university of Illinois,
Urbana, and consists of Professors G. Mayer-Kress and
A. Hubler from the Physics department, Robin Bargar,
project leader of sonification research and develop-
ment at the National Center for supercomputing
Applications, and Insook Choi, a doctoral candidate
in musical arts. Their music-making method may
herald an attractive alternative to the time-consuming
pre-mixing of the audio frequencies, an essential step
for electronic synthesizers of musical sounds. By
varying the circuit element values from Chua’s Oscil-
lator, frequencies and overtones characteristic of musi-
cal instruments can be easily generated without the
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necessity of separately programming each frequency.
Already these researchers have generated unhar-
monious sound and created music in overtones never
heard before because no instrument exists that can
make them. 1In fact by exploiting these unusual
musical tones, choi has composed some truly avant-
garde music via Chua’s oscillator for a recent concert
at Expo’93 in Seoul and Taejeoun, Korea in October
1993.

Independent of the research group from the uni-
versity of lllinois, Professor Xavier Rodet from the
Institute de Recherche et de coordination Acoustique/
Musique (IRCAM) in Paris, and the University of
Paris has used a time-delay version of Chua’s circuit,
not only to generate musical sounds, but also as a
unified model of an interesting class of musical instru-
ments, including those (e.g., clarinet) consisting of a
massless reed coupled to a passive linear system. The
surprisingly rich and novel family of periodic and
chaotic musical sounds generated by Rodet has already
enriched the sound synthesis repertoire of tools for
researchers in computer music [93], [94].

8. Concluding Remarks

Although first conceived only 10 years ago, more than
200 papers, two special issues (Journal of Circuits,
Systems, and Computers, vol. 3, no. 1 and no. 2, 1993),
an international Workshop on Chua’s Circuit: chaotic
phenomena and applications at NOLTA’93, and a
book (Edited by R. N. Madan, World Scientific, 1088
pages, 1993) have becn published on all aspects of
bifurcation and chaos of Chua’s Circuit and its recent
global unfolding, the Chua’s oscillator. Yet, our
understanding of this simplest among all chaotic cir-
cuits is still far from complete. Indeed, what has been
published on Chua’s circuit represents only the tip of
an iceberg [95], [96], specially when viewed from the
broader perspective of an array of driven Chua’s oscil-
lators, as well as other higher-dimensional generaliza-
tions of Chua’s circuit. This yet uncharted territory
will no doubt be systematically explored and exploited
for novel applications in the next decade, and beyond.
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