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Global Unfolding of Chua’s Circuit

SUMMARY By adding a linear resistor in series with the
inductor in Chua’s circuit, we obtain a circuit whose state
equation is fopologically conjugate (i.e., equivalent) to a 21-
parameter {family ¢ of continuous odd-symmetric piecewise-
linear equations in %® In particular, except for a subset of
measure zero, every system or vector field belonging to the family
6, can be mapped via an explicit non-singular linear transfor-
mation into this circuit, which is uniquely determined by 7
parameters. Since no circuit with less than 7 parameters has this
property, this augmented circuit is called an unfolding of Chua’s
circuit — it is analogous to that of “unfolding a vector field” in
a small neighborhood of a singular point. Our unfolding,
however, is global since it applies to the entire state space 2°.
The significance of the unfolded Chua’s Circuit is that the
qualitative dynamics of every autonomous 3rd-order chaotic
circuit, system, and differential equation, containing one odd-
symmetric 3-segment piecewise-linear function can be mapped
into this circuit, thereby making their separate analysis unneces-
sary. This immense power of unification reduces the investiga-
tion of the many heretofore unrelated publications on chaotic
circuits and systems to the analysis of only one canonical circuit.
This unified approach is illustrated by many examples selected
from a zoo of more than 30 strange attractors extracted from the
literature. In addition, a gallery of 18 strange attractors in full
color is included to demonstrate the immensely rich and complex
dynamics of this simplest among all chaotic circuits.

key words: Chua’s circuit, Chua’s oscillator, chaos, bifurcation,
nonlinear circuits, nonlinear dynamics

1. Introduction
1.1 Historical Background

The circuit shown in Fig. 1(a) was synthesized to
be the simplest autonomous (i.e., no input signals)
electronic circuit generator of chaotic signals. The
history on the conception of this circuit and its system-
atic synthesis procedure are summarized in Ref.(1),
which is based in part on the author’s opening lecture
given at the Workshop on Nonlinear Theory and its
Applications (NOLTA ’92), held at Waseda Univer-
sity, Tokyo, in January 1992. The chaotic nature of
this circuit was first verified by computer simulation*
by Matsumoto, who named it Chua’s circuit® and
confirmed experimentally by Zhong and Ayrom.® The
author was not involved in these two publications
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because shortly after he had designed the circuit of Fig.
1, he was rushed to a hospital in Tokyo for major
surgery, an illness that took him almost a year to
recuperate.

A comprehensive mathematical analysis of Chua’s
circuit and the first rigorous proof of its chaotic prop-
erty are given in Ref.(4). Because Chua’s circuit was,
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Fig. 1 (a) Chua’s circuit.
(b) v-i characteristic of the nonlinear resistor (drawn
with G,< G,<0).

* The episode leading to this event was vividly described
in Ref.(1). Matsumoto’s role at that point in time was that
of a programmer, implementing the instructions from the
author. However, Matsumoto’s strong leadership in relent-
lessly driving his entire team of students to crank out, by
brute-force computer calculations, the cross section of the
strange attractor had led to the prompt identification of its
double-spiral structure. The subsequent eigenvalue and
eigenspace calculations were made by Matsumoto, follow-
ing the detailed procedures furnished by Komuro.
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and still is, the only known physical system whose
mathematical model is capable of duplicating all
experimentally observed chaotic and bifurcation phe-
nomena, and which has yielded to a rigorous mathe-
matical proof, it has generated worldwide interests not
only among electrical engineers, but also mathemati-
cians and physicists, as evidenced by the extensive
literature on this circuit (see the Chronological Bibli-
ography in Sect. 7). These publications, which covers
extensively the experimental, numerical, and mathe-
matical aspects of this circuit, has made Chua’s circuit
the best understood—in terms of its nonlinear
dynamics—among all known chaotic systems, and has
triggered an avalanche of recent research activities on
the applications of chaos, as documented in a recent
Special Session of the Midwest Symposium on Circuits
and Systems devoted to “Chua’s Circuits,”® and in
two Special Issues of the Journal of Circuits, Sys-
tems, and Computers, entitled, “Chua’s circuit: A
Paradigm for chaos,” and edited by R. N. Madan.®®

1.2 Recent Applications

In spite of their extreme sensitivities to initial
conditions, two identical Chua’s circuits and/or their
subcircuits, can be operated in phase synchronization,
even when operating in a chaotic regime.®»® In addi-
tion, several methods have been developed for control-
ling chaos in Chua’s circuit.19-9 The possibility for
synchronizing and controlling chaos has already been
exploited in the design of secure communication
systems.1®07 Moreover, a new phenomenon called
“Stochastic Resonance” has recently been discovered
in Chua’s circuit,'®(® which can be applied to design
novel amplifiers whose output SNR (signal-to-noise
ratio) is considerably greater than the input SNR, an
impressive feat that can not be achieved by any /linear
amplifier whose output SNR is always less than that of
the input because the internal amplifier noise will
degrade the SNR further.

Although the nonlinear resistor in the circuit of
Fig. 1(a) can be easily built using only a dual op-amp
package and 6 linear resistors,?®»®Y an integrated
circuit version of this nonlinear device, powered by a
single 9-V battery, has been built.*? Therefore, even
the nonlinear resistor in Fig.1(a) can be mass
produced as off-the-shelf components for future large
scale industrial applications.

1.3 Recent Generalizations

Chua’s circuit has recently been generalized in
many directions. One direction simply substitutes the
piecewise-linear function of the nonlinear resistor by a
smooth function, such as a polynomial.®® Another
direction models Chua’s circuit by various 1-D
maps.?929 A third "direction investigates a CNN
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(Cellular Neural Network) array of Chua’s
circuits.®®@"  Still another direction increases the
dimension of the state space but retaining the single
scalar nonlinearity. For example, Ref.(28) uses a finite
number of discrete lossy transmission line sections as
the resonator, Ref. (29) uses a terminated coaxial cable
as the resonator, and Ref.(30) uses a delay line as the
resonator. Yet another direction of generalization
focuses on an in-depth mathematical characterization
of the geometrical structure of the strange
attractors.®®? All of these generalizations are fasci-
nating and could give rise to many novel applications.
For example, Ref.(33) uses a cubic nonlinearity and
the normal form theory for low-level visual sensing,
and Ref.(34) makes use of a delay-line resonator to
synthesize novel tones and music.

2. Strange Attractors from Chua’s Circuit

2.1 Concept of Equivalence of Dynamic Nonlinear
Circuits

Table 1 shows 6 non-periodic attractors so far
found from Chua’s circuit of Fig. 1.T There are several
other 3rd-order circuits®®—“" and systems“D-©3 which
are also known to have strange attractors. All of these
circuits and systems are described by a continuous,
odd-symmetric (with respect to some point of symme-
try) piecewise-linear vector field in %3. While all of
these attractors appear to be different from each other,
it is natural to ask whether a homeomorphic image of
some, if not all, of these attractors might also be found
in Chua’s circuit with an appropriate choice of the 6
circuit parameters {Cy, Cy, L, R, G, G»}. In particular,
if such a homeomorphism holds globally in the entire
state space for all trajectories, the two systems are
identical from a dynamical point of view, and the two
circuits are therefore said to be equivalent. To answer
this question, let (g, 1, #3) denote the eigenvalues
associated with the linear vector field in the region Dy
corresponding to the inner segment through the origin
(with slope G;=G,) in Fig. 1(b). Let (v, v, vs)
denote the eigenvalues associated with the affine vector
field in the regions Dy and D_, corresponding to the
outer segments (with identical slope G;=G,) in Fig. 1
(b). Let (4, s, p5), and (vi, v4, v4) be the eigen-
values of the corresponding linear and affine vector
fields, respectively, of any circuit candidate from Ref.
(35)-(40), or system candidate from Ref. (41)-(43). It
follows from Theorem 3.1 (p. 1078) of Ref.(4) that
this candidate is equivalent, or topologically conjugate
to be precise,*¥ to Chua’s circuit if, and only if, ;=
1, and yi=y;, j=1,2,3. Hence, the following algo-
rithm can be used to find the parameters so that Chua’s

T In Table 1-5, we have scaled the circuit parameters to
a reasonable range for readers who wish to observe the
attractors in a real circuit implementation.
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Table 1 Attractors from Chua’s circuit. In the 3-D phase portraits, the
units on the ¥; and V; axes are volts, and the units on the I axis
is milliamps. E=1V.
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1.1 C; = —149nF, Cy = 1uF, L = —658mi,
Gy = —1.14mS, G, = —0.714mS, R = 1 KQ.

Eigenvalues: p; = 16.4, uy = —1.08 x 10° +
2.33 x 1035, ps = —1.08 x 10% — 2.33 x 1035, vy =
—672, vy = 796+1.93x10%j, v3 = 796—1.93x10%;.
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1.2 Oy = —245nF, Cy = 1uF, L = —500mH,
G, = —1.14292mS, Gy = —0.7142mS, R = 1KQ.
Eigenvalues: p; = 599, up = —1.67x10°+1.74 x
10%7, pg = —1.67x 103 1.74x 10%], v = —1.06 x
103 1y = 6124 1.35 x 103, 15 = 612—1.35 x 10%.
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1.3 C1 = —203nF, Cy = 1puF, L = —274mH,
Gq = —2.49TmS, Gy = —-0.9301mS, R = 1 K.
Eigenvalues: pi; = —6.34x10%, o = —3.31x10,
ps = 1.28x10%, vy = —992, v, = 168+1.11x10%5,
vs = 168 — 1.11 x 10%j.
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Table 1 (Continued.)
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1.4 Cy = 120nF, Cy = 1uF, L =83.9mH, G, =
—0.7048m.S, Gy = —1.146m.S, R = 1K,
Eigenvalues: pu; = —3.86 x 103, gy = 20042.75 x
1034, ps = 200 — 2.75 x 1034, vy = 2.18 x 105,
ve = —982+2.39 x 1035, v3 = —982 —2.39 x 1035.
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1.5 C; = 64.1nF, Cy = 1uF, L = 35mH, G, =
—1.143mS, Gy = —0.7143mS, R = 1K{). Initial
Conditions: v; = 1.8035v, vo = 0.1804v, iz =
—1.8797TmA.
Eigenvalues: p; = 7.95 x 103, pyy = —1.12 x
103+ 4.48 x 1035, ps = —1.12 x 10® — 4.48 x 103,
v = —6.05 x 103, vy = 298 + 4.58 x 103}, v3 =
298 — 4.58 x 10%j.
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1.6 Cy = 64.1nF, Cy = luF, L = 35mH, G, =

—1.143mS, G = —0.7143mS, R = 1KQ. Initial
Conditions: v; = 1.1638v, v, = —0.09723, i3 =
—0.90565mA. '

Eigenvalues: p; = 7.95 x 103, py = —1.12 x

103 +4.48 x 1037, pg = —1.12 x 10% — 4.48 x 1035,
v = —6.05 x 103, vy = 298 + 4.58 x 10%], vy =
298 — 4.58 x 103;.



708

circuit has an attractor which is homeomorphic to that
of a given circuit or system candidate:

Equivalent Chua’s Circuit Algorithm

1. Calculate the eigenvalues (u1, 14, 14), and (1, vs,
v3) associated with the linear and affine vector fields,
respectively, of the circunit or system candidate whose
attractor is being mapped into Chua’s circuit, up to a
homeomorphism (i.e., linear conjugacy).

2. Find a set of circuit parameters {Ci, G, L, R, G,
G} so that the resulting eigenvalues y;, v; for Chua’s
circuit satisfy w;=(4 and v;=v}, j=1, 2, 3.

2.2 Eigenvalue Constraints in Chua’s Circuit

Unfortunately, in general, the circuit parameters
in step 2 of the preceding algorithm do not exist for an
arbitrarily given set of eigenvalues {/4, 14, 14; Vi, Vs,
vi}. To uncover the reason, consider the following
characteristic polynomial associated with the Jacobian
matrix in regions Dy, and Dy, D_,, respectively:

(s—m) (s — 1) (s—ps) =5 — p1s®+ pos—ps (1)
(s—v) (s—v2) (s—vs) =s"—qs* + @s—qs (2)

where

D=t et s Qq=vit+vstuys

D=ttt st 3t Ge=vive+ Vavs+ Vsb1

P3= 43 G=V1V2V3

(3

Since the set {pi, po, ps; @i, @, s} is uniquely deter-
mined by the eigenvalues {z4, w2, 13; V1, Vo, s} via Eq.
(3), we will henceforth refer to it as the “equivalent
eigenvalue parameters.” These parameters are more
convenient to work with in practice not only because
they are just the coefficients of the characteristic
polynominals (1) and (2), thereby simplifying the
subsequent algebra in deriving the circuit parameters,
but also because they are real numbers, whereas the
associated eigenvalues may be complex numbers. Now
it is shown in Ref.(44) that there exists a set of circuit
parameters {Ci, G, L, R, G, G»} in step 2 of the
Equivalent Chua’s Circuit Algorithm only if the
equivalent eigenvalue parameters satisfy the constraint
(see Eq.(21) of Ref.(44)):

h{pr, P2, D3, @1, G, CI3) ZAY (PZ_QZ) (Ps_q:i)
- (Pl*Ql) (ple1*Q3p1) =0 (4)

Equation (4) defines a 5-dimensional surface in #°.
Only those circuit candidates from Ref.(35)-(40), or
system candidates from Ref.(41)-(43), whose equiva-
lent eigenvalue parameters fall on this surface can have
an equivalent Chua’s circuit. It follows from this
analysis that the class of circuits and systems which are
equivalent to Chua’s circuit is relatively small. This
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result has led to a search for the simplest circuit which
is equivalent to all circuits and systems from Ref. (35)
-(43), as well as Chua’s circuit and others. The first
circuit found with this property, except for a set of
measure zero, is given in Ref.(44). Such a circuit is
said to be canonical because it contains only 7 circuit
parameters, which can be shown to be the minimum
number needed for any circuit satisfying step 2 of the
“Equivalent Chua’s Circuit Algorithm”.

3. Unfolding Chua’s Circuit

Although the circuit in Ref. (44), as well as several
other circuits having 7 parameters, which have since
been found to be also canonical in the above sense,
they are not obtained by augmenting a new circuit
element to the circuit of Fig. 1 and hence can not be
reduced to Chua’s circuit by replacing one of the
elements by an opén or a short circuit. Our main result
of this paper is to prove that the circuit shown in Fig.
2, obtained by inserting a linear resistor Ry in series
with the inductor in Chua’s circuit, is also canonical.
The state equation for this augmented circuit is given
by

?;l :?Il[G(Vz—Vl) *f(Vl)]

d 1 .
d\;z :E[G (Vl~ Vz) +ls1
di. 1 .
== et Roi) (5)
where
1
G= R

and
£ ) = Gon+3-(Ga— Go) (|0 + E|—[n— E)

(6)

denotes an odd-symmetric v-i characteristic, such as
those shown in Fig. 2(b) of the nonlinear resistor with
a slope equal to G, in the inner region, and G, in the
outer regions. The voltage E is the breakpoint voltage
which can be assumed to be equal to unity without any
loss of generality in so far as the qualitative dynamics
is concerned. On the other hand, the two slopes Gq
and G, may assume any sign and value.

Equation (5) is called a global unfolding of
Chua’s circuit because of its analogy to the mathemati-

1 The proof of Theorem 3.1 in Ref.(4) is given for the
case where the circuit has a pair of complex-conjugate
eigenvalues in the linear and affine regions. It can be easily
shown that the theorem holds also when all 3 eigenvalues
are real numbers.
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Fig. 2 (a) Unfolded canonical circuit. The nonlinear resistor may be char-
acterized by any piecewise continuous function. For the family ¢
of vector fields studied in this paper, this is assumed to be
piecewise-linear, such as shown in Fig.1(b), where G,< G, <0, or
(b) G,< G,<0,
(c) G.<0, G»>0,
(d) Gpy>G,>0,
(e) G,>0, G,<0, and
() G.>Gp>0.

cal theory of the “unfolding of a singularity” of a
vector field,*® where a minimum number of parameters
is added in order to observe the dynamics near the
singular point in its full genmerality. However, in
contrast to the normal form theory of unfolding, which
is a local theory applicable only to a small neighbor-
hood of a singular point, our unfolded Eq.(5) is
defined over the entire state space %°, and hence it is
called a global unfolding. Indeed, we will prove in
Sect. 4 that the unfolded Chua’s circuit in Fig. 2 is
canonical in the sense that it is imbued with every
possible qualitative dynamics of an extremely large
family ¢ of piecewise-linear differential equations in
£ to be defined precisely in Sect. 4. But, first, we will
show that the unfolded Chua’s circuit in Fig. 2 con-
tains enough circuit parameters for it to realize any

prescribed set of eigenvalues {u, t, i, V1, Vs, Va},
except for a set of measure zero. Let us calculate the
Jacobian matrix M, in region D, and M, in region
D, and D_,, respectively:

(_6tG G
G G
-l < _G& 1
M= g G G ™
1l R
L O L L .

where j=a in region Dy, and j=25 in regions D, and
D_,. The characteristic polynomial of M, is given by:
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G oLl

GG, G+ G,
+[C1C2+ CL
GR, 1]S

GL TGL

RyGG;+ G+ G; ()
CGL

Identifying the coefficients of s2, s', and s° in Eqgs.(1)
and (2) with Eq.(8) where j=a in Dy, and j=5 in Dy
and D_;, we obtain:

G+G, . G Ry

det(s1~]\4j)=s3+[G+Gj G RO] 2

Ro

+

+

C. +TZ+T_ —n 9
gféz + Ggf Ro-+ cG?fLO + CiL =p  (10)
ROGCZ—EE%- Ga _ — s (11)

which hold in the inner region Dy, and
GEGZ’ +%+%= —q (12)
oo G g ol (3
Ry G%I‘ZCZ +Gy _ @ (14)

which hold in the outer regions Dy and D-,.

Equations (9)-(14) constitute a system of 6 in-
dependent equations involving 7 wumnknown circuit
parameters {Ci, C, L, R, Ry, G4, G} and 6 known
(prescribed) equivalent eigenvalue parameters {pi, ps,
Ds, qi, @2, gs}. Hence, we can assign a convenient value
to one of the circuit parameters and solve for the rest.
After some involved algebra, we obtain the following
explicit formulas:

=1

where {p1, ps, ps, @i, @2, g3} are the “equivalent eigen-
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value parameters” defined in Eq.(3), and

Y ery ey
s po (L) (Bt [ L=t )
k4é—k1k3+kz<§f:3f> (16)

It follows from the explicit formulas in Egs.(15), (16)
that the “unfolded” Chua’s circuit in Fig. 2 can realize
any eigenvalues parameters {pi, ps, ps, @1, G2> Gs}, €xcept
for a set of measure zero & R° where some denomina-
tors in Eqs.(15), (16) vanish. In particular, any set of
eigenvalue parameters satisfying the following con-
straints has an associated vector field belonging to & ¢:

n—q=0

_ (DB Ds P2 Qe \( P2 G2 —
P <C]1—p1>+<Q1—P1><41_P1+pl> 0
(3m) 4o

qG— M ky

_ Ps— g\ __

k1k3+kz<pl_ql> 0 (17)

Observe from Egs.(15) and (16) that Ry=0 when k,=
0, which is exactly Eq.(4). In other words, when the
prescribed eigenvalue parameters belong to the origi-
nal Chua’s circuit in Fig. 1, the calculated value of
Ry will be zero, as it should. '

Since the set of eigenvalue parameters & ¢ %° which
can not be realized by the unfolded Chua’s circuit in
Fig. 2 has measure zero, we can make an arbitrarily
small perturbation of any unrealizable eigenvalues
belonging to this set to obtain an unfolded Chua’s
circuit having the “perturbed” eigenvalues

{pu+ Sta, 2+ S, 15+ Spss,
V1+5U1, Vz+ 8)/2, V3+ 6)/3} (18)

Since the solution of any system of ordinary
differential equations“®

x=f(x; p), fF(Hyec! (19)

is a continuous function of its parameter vector p, it
follows that for every circuit or system belonging to the
family ¢, defined in Sect. 4, we can find an unfolded
Chua’s circuit which has exactly the same dynamic
behaviors.

4. Topological Conjugacy

The vector field defined by Eq.(5) is but a special
case of a much larger family of vector fields which we



CHUA : GLOBAL UNFOLDING OF CHUA’S CIRCUITS

define next.
Definition: Family 4

A circuit, system, or vector field defined by a state
equation

x=f(x), x&%° (20)

is said to belong to Family ¢ iff
(a) f(-) is continuous
(b) f(-) is odd-symmetric, i.e.,’

flx)=—f(—x)

(¢) ®°®is partitioned by 2 parallel boundary planes
U, and U-, into an inner region D, containing the
origin, and two outer regions D; and D_;.

Although the boundary planes U, and U_-; can
have any orientation, we will, without loss of general-
ity, assume that a set of coordinate systems has been
chosen so that U; and U_; are defined as follow (x=
(xl, Xz, X3) T)I

U :x=1 (21)
Uy:xi=—1 (22)

Under this assumption, every member of the family &
can be represented by

X=Ax+b, xi=lorx=-—1 (23)
=Aox, —1=x=1 (24)
where ‘
an @z @iz b
A=|an a2 as|, b=|b (25)
G Gz Qs bs

defines an affine vector field in the outer regions D,
and D_;, and

din Q12 as
Ao = Go1 (22 (o (26)
a3 Q32 33

defines a linear vector field in the inner region D.

Equations (23)-(26) define a 21-parameter family
of ordinary differential equations. However, since the
vector field in the family ¢ is continuous, not all of
these 21 parameters can be arbitrarily specified.® In
fact, by imposing the continuity constraint, it is easy to
show that Egs.(23)-(24) can be recast into the follow-
ing equivalent but much more compact explicit
form.“”

£ = Ax (<m0 + 1= [On, 25— 1[}b & F(x)

(27)

where 4 and b are as defined in Eq.(25), w=(1,0,0)",
and <,> denotes the vector dot product. Observe that
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for |x|=1, Eq.(27) reduces to Eq.(23). Similarly,
when |x|<1, Eq.(27) reduces to Eq.(24), upon

identifying
hh 0 0
Ay=A+|b, 0 O (28)
B 0 0

In other words, the continuity of the vector fields in the
family ¢ implies that the last two columns of the
matrices 4 and 4, must be identical, and that their first
columns must differ by the constant vector 4. It fol-
lows from Eq.(27) that the family 4 of vector fields
represents in fact a 12-parameter family of ordinary
differential equations without conmstraints among the
parameters, or a 21-parameter family where 9 of the 21
parameters {a;, a.;, b;; i, j=1,2, 3} are constrained via
Eq.(28).

Since we have given the explicii formulas (Egs.
(15), (16)) for calculating the 7 circuit parameters for
the unfolded Chua’s circuit in Fig.2 to have any
prescribed eigenvalues, except for a set of measure zero,
we can conclude via Theorem 3.1 from Ref.(4) that
every member of the family ¢ of vector fields outside
of the set &y (to be defined shortly) is topologically
conjugate to an unfolded Chua’s circuit. The proof of
Theorem 3.1 in Ref.(4) assumes that both 4, and A4
have a pair of complex-conjugate eigenvalues because
it was intended mainly for the double scroll attractor.
A similar proof can be easily given when the
eigenvalues of A, and/of A are all real numbers. We
will now restate this fundamental theorem precisely
and give a self-contained and simpler proof.

The Global Unfolding Theorem

Let {zu, 12, i3, 11, V2, v3} be the eigenvalues as-
sociated with a vector field F (x) € ¢\ &, where &, is
a set of vector fields whose eigenvalue parameters are
constrained by Eq.(17), and by det K=0, where K is
defined by the following Eq.(29). Then the unfolded
Chua’s circuit with parameters defined by Egs.(15),
(16) is linearly-conjugate, and hence equivalent, to this
vector field.

Proof: Without loss of generality, assume that F (x) is
defined by Eq.(27), with 4 and b defined by Eq.(25).
Define the non-singular transformation

y=Kx (29)
where
I 0 0
K=|a a2 as (30)
K31 Ksz Kss
and

T We can relax this condition further by allowing the
symmetry to be with respect to a point different from the
origin, as in the case of Sparrow’s system.“®
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3
Kaié Zlaljaﬁ, i:1,2, 3 (31)
i=

Since F (x) & &,
det K= a12K33~ a13K32=4=0 (32)

Hence, K™! exists and Eq.(27) transforms into

y= (KAK“)y—l—%{I( (K™, p>+1]

=KK™ ™w, p>—1[}Kb (33)
where
0 1 0
KAK'=|0 0 1|24 (34)
P —p D
is the companion matrix of 4,
1
(K HYTw=|0|2W=w (35)
0
Dh—aq
k| Prerelpmal g

PS—%—q,z(pl_CIl)
tal—ptetalp—a)l

Hence, the transformed vector field simplifies to
¥y =Jy+%{|<w,y>+1|—|<w,y>—1|}1? (37)

henceforth called the companion vector field. Observe
that both 4 and & are wniguely determined by the
prescribed eigenvalues {tu, ts, s, V1, Vo, v} via their
equivalent eigenvalue parameters

{P1, P, D3, 41, @2, G5} (38)

We have therefore shown that the given vector field
F(x) is topologically conjugate to the companion
vector field F (y) defined by Eq.(37).

Now F(x)&= ¢\ &, implies that there exists an
unfolded Chua’s circuit defined by the vector field
f (%) with £=(w, w, &)7 via Eq.(5) that has the
same prescribed set of eigenvalues as those of F(x).
We can recast Eq.(5), with £=1, into the canonical
piecewise-linear form

f:fif+%{|<w, 41— Kw, £5—1)F

A f (%) (39)

w=(1,0,0)T (40)
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B 4( G+ Gb) i 0 ]
G G
i— G 61
4= G G G I
1R
L 0 L L |
" Gb‘ Ga
~ Cl
b= 0 (41)
L 0

There exists a corresponding non-singular linear trans-
formation

J=Kx% (42)

which transforms Eq.(39) into its corresponding com-
panion vector field by Eq.(37), with y replaced by y,
where

1 0 0

= | _(G+ Gb> G

K= < G G 0 (43)
K~31 IZSZ K~33

and

Ky =anan+ @pdn+ dizas

G+ G, )2 G*
(&) +ea (“44)
K= @1, G1s+ @1z 22+ @13 s
_G(G+Gy) G
e GG (45)
= S o o G
Kys= aydiz+ d1a@es+ 413033:m (46)

But since 4 and b in Eq.(41) are determined uniquely
by only the equivalent eigenvalue parameters {p1, . p5,
¢, ¢, s}, it follows that both F(x) and f (x) must
transform into one and the same companion vector
field. Hence, we have y=y. It follows from Egs.(29)
and (42) that

W

x=T|w (47)
I3
where
T2K'K (48)

transforms every circuit, system, or vector field belong-
ing to the family ¢\&, into an unfolded Chua’s
circuit. This completes the proof of our main theorem.

O
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Remarks: :
1. The unfolded Chua’s circuit in the global unfold-
ing theorem is unmigue, modulo a normalization con-
stant Ci, which was assumed to be unity in the first
formula of Eq.(15) for convenience. Using the lan-
guage from linear circuit theory, this normalization
corresponds to setting the “impedance level” of the
linearized small-signal equivalent circuit.

2. Any unrealizable vector field belonging to the set
&o can be perturbed to a qualitatively identical vector
field belonging to the family ¥, and hence once again
realizable by an unfolded Chua’s circuit. In practice,
to avoid numerical ill conditioning, it is more conve-
nient to perturb the equivalent eigenvalue parameters
from {p1, p2, s, @i, @o» gs} into {pi+ 8py, po+ 8pe, pst Ops,
@it 0q1, g2+ 8¢z, gs+ Ogs}, where dp; and §g; are chosen
to be sufficiently small (at least one must be non-zero).
3. The condition given in Eq.(32) is equivalent to the
assumption that there is no plane or line parallel to the
boundary planes which is invariant under the action of
the linear vector field in the middle region.

5. Applications of the Unfolded Canonical Chua’s
Circuit

5.1 Mapping Chaotic Circuits from Family &

We can now easily “map” any chaotic circuit
belonging to the family of vector fields &\ &, into the
unfolded canonical Chua’s circuit shown in Fig. 2 by
applying Step 1 of the Fgquivalent Chua’s Circuit
Algorithm from Sect. 2.1 and calculating the circuit
parameters {Cy, Gy, L, R, Ry, G4, G»} using Eqs.(15),
(16).

The purpose of this section is to illustrate this

procedure by selecting a few chaotic circuits belonging
to 6\ &0 and demonstrate the immense advantage of
this unifying approach via a single circuit of universal
utility.
Example 1: Consider the chaotic circuit given in Fig.
1 of Ref.(38), and its strange attractor in Fig. 3 of Ref.
(38) which we reproduce below in Fig. 3(a). Using
the circuit parameters provided in Ref.(38), we have
calculated the following eigenvalues:

11=0.367929, ;= —0.283965+;1.1306,
#s=—0.283965—j1.1306

vi=—10.9656, v,=0.132777+j0.945683,
v3=0.132777—j0.945683

49)

The corresponding equivalent eigenvalue parameters
calculated from Eq.(3) are given by:
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Fig. 3 (a) Strange attractor reproduced from Fig.3 of Ref. (38).
(b) Equivalent strange attractor generated by the unfold-
ed Chua’s Circuit with parameters given by Eq.(51).

pr=—0.200001, p,=
p=  0.499976

= —10.700046, g,= —2.00013,
g:= — 10.000036

1.149935,

(50)

Substituting the parameters from Eq.(50) into Egs.
(15), (16), we obtain the following parameters for the
equivalent “unfolded” canonical Chua’s circuit:

Ci=1, G,=-0.0328356, L=-2.761110
R=—10.11553, G=—0.098857895,
Ry=9.205471,

G2=0.5988526, G,=11.09890

(51)

The strange attractor associated with Eq.(51) is shown
in Fig. 3(b). While the 2 attractors in Fig. 3 are not
identical to each other, they are in fact equivalent in
view of the global unfolding theorem from the preced-
ing section. In fact, they are related by the transforma-
tion matrix T=K"'K in Eq.(48), where

1 0 0
b
k=| & ° b
2 2 2
LA A S SR NP
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Table 2 Period doubling route to Chaos. The fixed parameters are Ry=
0 Q, R=1kQ, L=625mH, G,=—1.143mS, G,=—0.714mS, C,
=100 nF, E=1YV. In the 3-D phase portraits, the units on the ¥;
and ¥, axes are volts, and the units on the k axis is milliamps.

Waveform of V1 Specttum of V1
2.2 , v 1
2 A 0.1 1
1.8 H
1.6 M 0.01 -%
E 14 0.001 k
E 12 0.0001 1
= 1 =  1le-0s 3
o.8
o6 1e-06 | 4
o.4 le-07 |
o.2 . . le-08 .
2.5 3

o 20 80 100 o 0.5 1 1.5 2
Frequency (10e+4 Hz)

40 60
Time (10e-4 s)

2.1 Control parameter: C'1 = 11.364nF.
Eigenvalues: p; = 2.07 x 104, pup =
—9.68 x 103 +2.98 x 10%j, pusz = —9.68 x
10% — 2.98 x 10%j, v = —3.77 x 104,
vy = 1.27 x 10® + 3.27 x 10%), vz =
1.27 x 10% — 3.27 x 10%5.

Waveform of V1 Specoum of V1

2.5
0.1 q
2 1 0.01 E
= 1.5 0.001 1
£ ‘g, 0.0001 4
= 1 = 1e-0s 1
0.5 ' le-06
le-07 | q
o le-08 s
o 20 40 S0 80 100 o 0.5 1 1.5 2 2.5 3
Time (10e-4 s) Frequency (10e-+4 Hz)
13
3+
2 -
1 -
O
-1+

§ 2.2 Control parameter: C'1 = 11.060nF'.

o Eigenvalues: pu; = 2.15 x 10%, uy =

—9.27 x 103 +2.97 x 10%j, us = —9.27 x

10% — 2.97 x 10%j, vy = —3.88 x 104

vy = 1.40 x 10° 4+ 3.26 x 10%j, vz =
1.40 x 10% — 3.26 x 10%j.

Waveform of V1 Specoum of V1

2.5
o1
2 1
0.01 1
2 1.5 E 0.001 1
= 0.0001
= ‘ ;
1e-05 |
os }
1e-06 |
o : le-07
o 20 40 60 80 100 [e} 0.5 1 1.5 2 2.5 3
Time (10e-4 s) Frequency (10e-+4 Hz)

2.3 Control parameter: C1 = 10.965nF".
Eigenvalues: pp = 2.17 x 104, pyy =
—9.32 x 103+ 2.96 x 10%j, p3 = —9.32 x
10 — 2.96 x 10%j, vy = —3.91 x 10%,
ve = 1.51 x 10% 4+ 3.26 x 10%j, vz =
1.51 x 10® — 3.26 x 10%;.
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Table 2 (Continued.)

Waveform of V1
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Spectrum of V1

2.5
2 01 |
0.01
= s [ E 0.001 :
E’ ’ | H g’ 0.0001
0.5 I le-05
o le-06 |
le-07
o o.5 1 1.5 2 2.5 3
Frequency (10e+4 Hz)
2.4 Control parameter: C1 = 10.915nF.
Eigenvalues: py = 2.18 x 104, uy =
—9.36 x 10% + 2.96 x 10%j, p3 = —9.36 x
10% — 2.96 x 10%), v; = —3.93 x 10%
vy = 1.54 x 10° + 3.26 x 10%), vz =
1.54 x 10% — 3.26 x 10%j.
Waveform of V1 Spectoum of V1
2.5 1
2 0.1
z 1.5 [ —§ 0.01
;’ 0-; ' E) 0.001
o L \ Iy 0.0001
-0.5 le-05 - L
[e] 0.5 1 1.5 2 2.5 3
Frequency (10e+4 Hz)
2.5 Control parameter: C'1 = 10.753nF.
Eigenvalues: p; = 2.22 x 10% uy =
~9.46 x 103+ 2.95 x 10%j, pz = —9.46 x
10% — 2.95 x 10%, v = —3.99 x 10%,
vo = 1.64 x 10% 4 3.26 x 104}, vs =
> 1s5-1 -05¢, 051 1.64 x 103 — 3.26 x 10%4.
Waveform of V1 1 Spectrum of V1
0.1
z '2 o.01
; g’ 0.001
0.0001
le-0O5 "
2.5 3

o 20 40 [le) 80 100

Time (10e-4 s)

o.s 1 1.5 2
Frequency (10e+4 Hz)

2.6 Control parameter: C1 = 10.204nF".
Eigenvalues: py = 2.37 x 104, puy =
~9.84 x 10% + 2.91 x 10%j, pz = —9.84 x
10° — 2.91 x 10%, vy = —4.20 x 104
vo = 1.99 x 10% + 3.26 x 10%), v =
1.99 x 10% — 3.26 x 10%j.
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Table 3 Intermittency route to Chaos. The fixed parameters are C,=1 xF,
C;=—1333nF, R=1kQ, Ry=—100Q, G,=—098mS, G,=
—2.4mS, E=1V. In the 3-D phase portraits, the units on the V;
and V; axes are volts, and the units on the % axis is milliamps. In
3.2, the asymmetric attractor and its twin are both shown in the
phase portrait.

o 1
= H } : ‘ 1} ! l ! ' =] 0.0'01 i -]!
= i ol i Hd Ej 0.0001 | E
= = ilee ]

le-0% o 2 Freguency (I{st) s 10
I3
13
03 / 3.1 Control parameter: L = 16.67mH.
o1 Eigenvalues: u; = 4.19 x 103, yy = 1.16 x
= 102 +1.12x 104, ps = 1.16 x 103 —1.12 x 10%5,
‘ o —om—evre—w= o3 - V1 = —1.04x10%, vy = 2.14x10°46.74 x 10%,

v = 2.14 x 10% — 6.74 x 10°5.

15 Waveform of V1 N Spectum of V1
’ 0.1 1
1 .01 r q
. 0.5 ‘ ! - o.co1 | 1
= | i N il | = o.0001 E
= ©° o Mt “\U‘\“‘ I im B 100 k
Rl 11 i e o el 1
-t | 16-—88 3 1
BPS 10 20 3_;_)irne‘g])ns) ETS) sO 70 1e-02 o 2 Fregue"cy (Kst) s 10
I3 .
2
1.5
0.3 3.2 Control parameter: I = 22.32mH.
- p— .
?’E Eigenvalues: u; = 3.44 x 103, upy = 770 +
= 1.07 x 10%4, ps = 770 — 1.07 x 10%), 1, =
1 g = o o eere——o= o3 —1.04 X 10°, 1, = 1.38 x 10% + 5.96 x 10%],

vs = 1.38 x 103 — 5.96 x 10%;.

Waveform of V1 Spectrum of V1

o.1

0.01

il \
M‘\ il ‘J;\ il

Magniue

0.001

0.0001

le-OS5

a s
Frequency (FKHz)

c o R

=0 0
NORNOURUN

3.3 Control parameter: L = 22.73mH .

T o D —— e S Eigenvalues: = 3.40 X 103, ug = 751 +
1.07 x 10%), pa = 751 — 1.07 x 10%], v =
—~1.04 x 10°, v, = 1.34 x 10% + 5.91 x 10?5,
v = 1.34 x 10® — 5.91 x 10%5.

|
=
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V1 (volts)

Table 3

Waveform of V1

10 20 30 40

Time (ms)

50
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(Continued.)

Spectum of V1

4 s
Frequency (KHz)

3.4 Control parameter: L = 28.80mH.
Eigenvalues: p; = 2.88 x 10%, yy = 548 +
1.03 x 1045, puz = 548 — 1.03 x 10%j, 1y
—1.04 x 10°%, v, = 874 + 5.31 x 10%j, v
874 — 5.31 x 1035.

V1 (volts)

Waveform of V1

Magnitude

Specttum of V1

0.01

0.001

0.0001

le-05
<4 (=] 10
Frequency (KHz)

3.5 Control parameter: L = 31.50mH.
Eigenvalues: p; = 2.70 X 102, pg = 489 +
1.02 x 10%7, ps = 489 — 1.02 x 10%], 1y
—1.04 x 10%, vy = 725 + 5.10 x 1037, v

=0 =0T OvzZ OT U 0.3 -
725 — 5.10 x 10%j.
Waveform of V1 Spectrum of V1
1
0.1
=z i% 0.01
= g 0.001
Y VAV 0.0001
le-05
70 o 2 4 s 10
Frequency (KHz)
3.6 Control parameter: L = 32.00mH .
Eigenvalues: uy; = 2.67 x 103, puy = 480 +
1.02 x 10%), pz = 480 — 1.02 x 10%], vy =
0.3 —~1.04 x 10°%, v, = 700 + 5.06 x 1035, v3 =

=0T UvVZT Ul e

700 — 5.06 x 1035.
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Table 4 Torus breakdown route to Chaos. The fixed parameters are Co=
1 #F, R=—1kQ, Ry=0.651Q, G,=0.856mS, G,=1.1mS, L=
0.667 mH, E=1 V. In the 3-D phase portraits, the units on the ¥;
and V, axes are volts, and the units on the f axis is milliamps.

S Waveform of V1 1 Spectum of V1
4 o1
3 il ik o.01 }
2 ’ | ! | Il " 0.001 [
1 i “ l | ’\ ;’ { 0.0001 ‘ i
o M H..“ lel‘ . 11 e = eos | ‘ | ;
-1 le-06 | l
- . . le-07

o 2 4 (=] 8 10 12 14 o 2 8 10

4 [
Time (ms) Frequency (KHz)

0.5
4.1 Control parameter: C; = 10nF'.
va Eigenvalues: py = 1.53x10% po = —45943.76 x
10%j, p3 = =459 — 3.76 x 10%j, v; = —1.06 x 10*,
vo = 311+ 3.75 x 10%j, v3 = 311 — 3.75 x 10%;.
) Spectrum of V1
Y 1 1 oor | 3
z il ’} 2 oooon | !
= | " e ]
le-07 r
-4 le-08 | 1
“o 2 4 s s o 1z 14 102 2 a s 10
Time (ms) Frequency (KHz)
0.5 4.2 Control parameter: C; = 6.0nF'.
Eigenvalues: p; = 2.61 x 10*, py = —1.03 x
va 10% +3.72 x 105, p3 = —1.03 x 10%> — 3.72 x 10%j,
1 = —1.82 x 10%, vy = 797 + 3.69 x 104§, v3 =
797 — 3.69 x 10%j.
Waveform of V1 1 Spectoum of V1
1 0.1
o H-t- L. BN O 1, (O Y )1 O | P .| RO 1 . 0.01
SR T T T T T T T e 1 A AT |
g 2 | ‘ | \‘ !l & 0.0001 i i
-3 ‘ I 1e-05 | ‘
—4 I le-0O6
“5 2 a s 8 10 12 14 re7 g = 4 & g 10
Time (ms) Frequency (KIHz)
0.5 4.3 Control parameter: C; = 5.1nF.
Eigenvalues: p; = 3.08 x 10%, py = —1.26 x
va 10% +3.71 x 105, pz = —1.26 x 10% — 3.71 x 10%j,

vy = —2.17 x 10%, vy = 1.04 x 103 + 3.67 x 10%j,
vy = 1.04 x 10% — 3.67 x 10%j.
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Table 4 (Continued.)
- Waveform of V1 N Spectuum of V1
1 [ 0.1 | E
PO | PR R PR { O . P | il . if PO Ll I . A8 0.01 | 1
=y ,cl) [ ” ' \” [ N ', “ § ooo01 | E
= Sl ‘ , | § 00001 | 1
= =1 ' 1I = 1e-05 +
-3 le-06
-4 le-07 | 1
-5 1 le-0O8
(o] 2 4 (<] 8 10 12 14 2 4 =3 10
Time (ms) Frequency (KHz)
0.5 4.4 Control parameter: C; = 5.0nF".
Eigenvalues: p; = 3.14 x 10%, puy = ~1.29 x
va 1034+ 3.71 x 10%), pz = —1.29 x 103 — 3.71 x 1044,
vy = —2.21 x 10%, vy = 1.08 x 103 4 3.67 x 105,
vs = 1.08 x 103 — 3.67 x 10%;.
3 Waveform of V1 N Spc,actrum of'VI
2 0.1
— ; O - 00021
= 1 ‘ iTH i | , [ l [ [ {{tWe I §, 0-0001
= L ! ‘ I ‘\ = 1le-05
s H ‘ (I il le-06
-4 - le-07
s . . . . le-08
[e] 2 4 S 8 10 12 14 (e} 2 4 & 10
Time (ms) Frequency (KHz)
0.5 4.5 Control parameter: C; = 3.5bnF.
Eigenvalues: p; = 4.49 x 10%, us = —1.85 x
va 103 4+3.71 x 10%j, ps = —1.85 x 10% — 3.71 x 104,
v1 = —-3.21 x 104, vy = 1.77 x 10% + 3.64 x 1047,
vz = 1.77 x 10°® — 3.64 x 10%5.
s Waveform of V1 1 Spectrum of V1
3 w
2 } F 0.1
3 i 0.001
-4
-5 x 0.0001
o 2 4 <] 10 12 14 (o] 2 4 S 10
Time (ms) Frequency (KHz)
0.5 4.6 Control parameter: Cy} = 2.94nF".
Eigenvalues: pu; = 5.33 x 10%, puy = —2.12 x
va 10%+3.72 x 1047, ps = —2.12 x 103 — 3.72 x 10%j,

vy = —3.83 x 10%, vy = 2.15 x 10% 4+.3.63 x 10%,
v3 = 2.15 x 10% — 3.63 x 10%;.
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(1 0 O
=|—10 0 -1 (52)
| 110 1 10.7
and
M 1 0 0
K=|—11.000042 —0.098858 0 (53)
L 120.703293 1.385072  3.010693

where &, a, and b are parameters from Ref.(38).

To verify that the 2 strange attractors in Fig. 3 are
in fact one and the same attractor expressed in
different coordinate systems, we multiply the coordi-
nates (X1, X2, X3) = (m, ¥, ) of the time series of the
attractor in Fig. 3(b) from the canonical Chua’s circuit
by the matrix T, and obtain the attractor shown in Fig.
3(a), as expected.

Example 2: Period-Doubling Route to Chaos

_Table 2 shows the waveform and spectrum of
» (¢) and its associated attractor obtained from previ-
ous publications on Chua’s circuit. Table 2.1 shows a
pair of periodic orbits which bifurcated from two
stable equlibrium points P*€D, and P € D_,, via
Hopf bifurcation. As we vary a single parameter C
from C;=11.364 nF down to C;=10.204 nF, while
keeping all other parameters fixed, we obtain the
well-known period-doubling route to chaos, as shown
in Tables 2.2 (period 2), 2.3 (period 4), 2.4 (period
8), 2.5 (spiral attractor), and 2.6 (Double Scroll
Attractor). If we substitute the eigenvalues associated
with each attractor in Table 2 into Egs.(15), (16), we
would obtain the corresponding parameters indicated
in this table (scaled by a factor to obtain reasonable
circuit parameters). Notice that Ry=0 in each case, as
expected.
Example 3: Intermittency Route to Chaos

Table 3 shows the waveform and spectrum of
n () and its associated attractor obtained by mapping
corresponding attractors from the earlier canonical
Chua’s circuit in Ref.(44). Using the eigenvalues
calculated from Eq.(3) in Ref.(44) for the attractors
shown in Figs. 3(a), (b), (¢), (d), and (e) of Ref.(44),
we obtain the corresponding attractors using the un-
folded canonical Chua’s circuit, as shown in Table
3.1, 3.2, 3.3, 3.5, and 3.6, Note that while some of these
attractors may not look very similar to their corre-
sponding attractors in Fig. 3 of Ref.(44), they are in fact
related by the transformation matrix I’ defined in Eq.
(48). Table 3.4 provides another attractor not given
in Ref.(44) but which illustrates the evolution of the
intermittency phenomenon in greater detail.

Example 4. Torus Breakdown Route to Chaos

Table 4 shows the waveform and spectrum of
v (¢) and its associated attractor obtained by mapping
corresponding attractors from the forus circuit given in
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Ref.(35).7 Using the eigenvalues calculated from Eq.
(1) of Ref.(35) for the attractors shown in Fig. 5 of
Ref. (35), we found these eigenvalues belong to the set
of unrealizable eigenvalues (as defined by Eq.(17)).
Using the. slightly perturbed eigenvalues shown in
Table 4 (scaled to obtain reasonable parameter val-

ues), we obtain the corresponding attractors shown in
Table 4.1-4.6.

5.2 Mapping Chaotic Systems from Family &

Consider the chaotic feedback 'system given by
Brockett in Ref.(42), and its strange attractor given in
Fig. 9 (page 936), which we reproduce in Fig. 4(a).
Using the system parameters provided in Ref.(42), we
have calculated the following eigenvalues:

m1=0.721965, 1= —0.860982+j1.3236,
3= —0.860982—1.3236
vi=—1.61109, 1,=0.305544+/1.46327,
v3=0.305544 —j1.46327

The corresponding equivalent eigenvalue parameters

-
—

oo
(s eee=]

Fig. 4 (a) Strange attractor reproduced from Fig.9 (p.936) of
Ref. (42). .
(b) Qualitatively similar Equivalent strange attractor
generated by the unfolded Chua’s Circuit with param-
eters given by Eq.(58).

1 This circuit was discovered and studied extensively by
R. Tokunaga. The authors’ order in Ref. (35) was based on
Matsumoto’s tradition.
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Table 5 A gallery of attractors from the unfolded Chua’s circuit. In the 3-D
phase portraits, the units on the ¥; and ¥ axes are volts, and the
units on the k axis is milliamps. E=1V,
s Waveform of V1 1 Specuum of V1
el i 0.1
2 N | 0.01
2 2 ik i ik 5 e
= - ’ i { , I =& o.0001
-2 I t le-O5
:2 r le-06
-5 . 1le-07
o 100 200 300 400 500 600 700 (o] 0.2 0.4 0.6 0.8 1 2 1.4
Time (microseconds) Frequency (MEz)
13
o3 5.1 Cy = —768.6pF, Cy = 1nF, L = —73.5mH,
) R = 1KQ, Ry = 2.18KQ, G, = 0.169mS, Gy =
-0.1
932 ~0.477mS.
Eigenvalues: p; = 7.84 x 10%, py = —3.37 x 105,
“ pz = 1.03 x 10%, vy = 1.52 x 104, vy = —1.53 x
105 +7.61 x 10%], v3 = —1.53 x 10° — 7.61 x 10%;.
18 Waveform of V1 10 Spectum of V1
16
14 1
10 01
3 z %5) 0.01
= 4 ] =  0.001
> [ i
O — - - - = - 0.0001
2 | -
—a s x . le-05 s .
(o] 50 100 150 200 250 300 o 02 04 06 08 1 1.2 1.4 1.6 1.8 2
Time (ms) Frequency (KHz)
13
: 5.2 C; = 87.5nF, Cy = —1puF, L = —708mH,
Z R =1KQ, Ry = 740Q, G, = —1.52bmS, Gy =
E —0.458m.S.
Eigenvalues: p; = 5.56 x 103, yy = 3.61 x 103,
V2 pz = 1.57 x 103, vy = —7.40 x 103, vy = —18.2 4
o 5 V1 10 15 . .
8547, vs = —18.2 — 8547.
Waveform of V1 Spectrum of V1
1s 10
10 1
7 1
= IATRIATRIATAI ® ’
= s H = o0.001
-10 0.0001
-15 L £ le-0S5
(o] 50 100 159 200 250 300 350 400 450 S00 (o] 0.2 0.4 O.6 0.8 1 1.2 1.4

ime (microseconds)

Frequency (MHz)

5.3 Cy = T3bpF, Cy = ~1InF, L = 11.44mH,
R =1KQ, Ry = 3.56KQ, G, = 1.292mS, G} =
—-0.497TmS.

Eigenvalues: p1; = —2.75 x 10%, uy = 7.30 x 10°,
ps = —4.08 x 10°, v; = —2.67 x 10°%, vy = 1.36 x
10° 4 7.38 x 10%], vz = 1.36 x 105 — 7.38 x 105;.
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Table 5 (Continued.)

1s Waveform of V1 o ‘ Spectrum of V1
10 1
i o.1
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§ © " AR AR RN 0.001
- 0.0001
-10 H le-05
o 100 200 300 400 500 600 108 o o2 o4 o6 o8 1 1.2 1.4
Time (microseconds) Frequency (MEIz)
13
54 Cy = 684pF, Cy = —1nF, L = 10.6mH,
R =1KQ, Ry = 343KQ, G, = 1.219mS, Gy =
—0.514mS.
Eigenvalues: p; = —2.86 x 10°, pp = 7.22 x 10°,
ps = —4.27 x 10%, vy = —=2.79 x 10°, v, =
1.22x10°+47.85x10%], v = 1.22x10°—7.85x10%;.
3 Waveform of V1 i N Sp?ctrum of V1
2 7 o1
(13 L T 1111 Y I 0.01
z -1 il! | E 0.001
é :§ ] g 0.0001
a g 1e-05
:2 ] le-06
-7 - . . . 1le-07 2 2 N
o 200 __ 400 600 200 1000 o 0.2 0.4 0.6 0.8 1
Time (microseconds) Frequency (MHz)
3
Ok 5.5 C1 = 81lpF, Cy = —1nF, L = —138mH,
063 R=1KQ, Ro = 12.1K9, G, = —0.177mS, Gy =
063 —0.02mS.
-0.09 Eigenvalues: p; = 5.28 x 10%, gy = 1.00 x 10* +
4.72 x 105j, us = 1.00 x 10% — 4.72 x 105j, v =
—2.08 x 105, vy = 4.35 X 10% +1.73 x 105j, V3 =
4.35 x 10* — 1.73 x 10%;.
) Spectrum of V1
0.1
z ;§= 0.01
; § 0.001
0.0001
le-05 . .
20 40 60 80 100 o 1 2 2 end, actie 7 8
5.6 C1 = —13.33nF, Cy = 1uF, [ = 32mH,
R =1KQ, Ry = —100Q2, G, = —0.98m.S, G =

—2.4mS.

Eigenvalues: p; = 2.67 x 103, s = 480+ 1.02 x
1047, ps = 480 — 1.02 x 10%], 1, = —1.04 x 105,
ve = 700+ 5.06 x 1035, v3 = 700 — 5.06 x 1035.
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Table 5 (Continued.)

N
Waveform of V1 Spectrum of V1
10

[

0.1
0.01

ol sl ccimd sined

0.001
0.0001

ahbonso®o

Magitude

V1 (volts)

le-O5
le-0O6

1

e
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5.7 Cy = T88pF, Cy = —1nF, L = —79.6mH,
R = 1KQ, Ry = 10.6KQ, G, = —0.2241mS,
Gy = —0.02811mS.

Eigenvalues: pu; = 8.75 x 104, uy = 1.10 x
10* +5.50 x 10%4, puz = 1.10 x 10* — 5.50 x 10%;,
vy = —2.64 x 10%, vy = 5.74 x 10* + 1.98 x 10%5,
vs = 5.74 x 10* — 1.98 x 10°%j.

Waveform of V1 1 Specuum of V1
o.1 q
0.01 | 1
= £ o.001 1
= B, 0.0001
= 5 Ole—~05 : 1
1e-06 |
1e-07 |
2o 200 400 S00 800 1000 ‘ 1e08 o2 0.4 0.6 o8 1
Time (microseconds) Frequency (MHz)
3
5.8 Cy = —T02pF, Cy = 1nF, L = 33.96mH, R =
1KQ, Ry = 11.0KQ, Ga = —0.0715mS, Gj =
—0.1817mS.
Eigenvalues: g1 = 1.33 x 105, puy = —6.72 x
10%*+2.00 x 1055, pg = —6.72 x 10* — 2.00 x 105,
vy = —2.03 x 105, vy = 2.25 x 10% + 4.93 x 10%],
vs = 2.25 x 10* — 4.93 x 10%].
“ Waveform of V1 N Specuum of V1
3.5 | 0.1
22 i M \ | ; o%gi
&) il | il ‘ hi I AR ‘ E 0.0001
=0T I ‘ l Lt | ' B 1co0s
= = [ ' f ‘ = je-06 [ I
Og |‘ | H ‘| H' “’ ‘ \\ " l I“‘ ’ le-07 | ‘ Ul i
o5 le- 08
o 1 2 3 a s & 7 8 Tes02 S s 10 15 20 25 30
Time (ms) Frequency (KHz)

5.9 C1 = 0.56nF, Cy = 1luF, L = 0.lmH,
R = 1KQ, Ry = 09, G, = —1.026mS, Gy =
—0.982mS.

Eigenvalues: py; = 5.39 x 10%, puy = —4.21 x
10°+9.28 x 10%j, pu3 = —4.21 x 10°> — 9.28 x 10%j,
v = —3.81 x 10%, vy = 2.48 x 103 4 9.18 x 1047,
vz = 2.48 x 103 — 9.18 x 10%j.
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Table 5 (Continued.)
s Waveform of V1 \ Spectum of V1
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5.10 Cy = T5.1nF, Cy = 1uF, L = 4.7mH,
R = -1KQ, Ry = 441Q, G, = —0.474mS,
Gy = 2.039mS.
Eigenvalues: p; = 2.01x10% py = —197+1.44x
105, ji3 = —197 — 1.44 x 10%], 11 = —1.43 x 10%,
vy = 244 + 1.43 x 10%], v3 = 244 — 1.43 x 10%.
Waveform of V1 L Specwum of V1
0.1 1
0.01 | 1
= 0.001 | 1
£ é 0.0001 | 1
= = 1le-05 | ]
1e-06 |
1e-07 |
. . . . 1e.0% . . . R .
o 20 40 &0 80 100 o 1 2 3 4 s s
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- 511 Cy = 19.21nF, Cy = 1uF, L = 18.42mH,
. R = —-1KQ, Ry = 18480, G, = 1.018mS, Gy =
_gé 005 1 09ms.
L Eigenvalues: p; = 794, s = —865+1.36 x 1045,
vz ps = —865 — 1.36 x 10%j, v, = —1.61 x 103, vy =
2-15 105 o 05 3 287+ 1.40 x 103j, vz = 287 — 1.40 x 103j.
vi 1.5 2
Waveform of V1 Spectrum of V1
10 10
s 1 1
i o1 r 1
= 2 4 oo1f 1
2 2 & ooo1 | q
= 4 = 0.0001 | 1
‘s 1e-05 |
1_c8) 1e-06 |
“12 . . s 1e-07 . : .
o 200 400 800 1000 o 02 o04_ 06 2 1.4

Time (microseconds)

0.8 1
Frequency (MEHz)

5.12 C, = —641pF, Cy = InF, [ = 63.9mH,
R = -1KQ, Ry = —10.1KQ, G, = 0.2438mS5,
Gy = 0.0425mS.

Eigenvalues: p; = 1.09 x 10%, us = —6.54 x
10%46.14 x 10°], us = —6.54 x 10* — 6.14 x 10°4,
vy = —4.05 x 10°, v = 3.45 x 10* + 1.75 x 10°%j,
vy = 3.45 x 10% — 1.75 x 10,
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Waveform of V1 1o Spectrum of V1
i
0.1
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z 5.13 Cl = —0.92pF, cz = lpF, L = 10327’71]‘[,
: R =-1KQ, Ry = =75.6KQ, G, = 0.09411mS,
: Gy = 0.1899uS.
: Eigenvalues: p; = 6.39 x 10%, up = 8.14 x 10% +
3.2 x 10%], us = 8.14 x 105 — 3.2 x 10%5, vy =
—9.46 x 107, vy = 7.56 x 105 4+3.23 x 107§, vg =
7.56 x 10% — 3.23 x 1075.
s Waveform of V1 1 Specaum of V1
g ’I 0.1
= 2 il Rt l
2 1 Ry Pl | Lol B oo
= s Y T 2 oo
2 | | Il
-3 J= 0.0001
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5.14 C; = 269.6nF, C; = 1uF, L = 41.5mH,
R=1KQ, Ry = —-35.7Q, G, = =2.764mS, Gy =
0.1805m.S.
Eigenvalues: u; = 6.86 x 10%, py = —2264+4.65x
1035, pus = —226 — 4.65 x 1035, v, = —4.84 x 10°,
vy = 160 + 4.65 x 1034, vz = 160 — 4.65 x 1035,
Spectrum of V1
s 1
4 o.1 |
3 ‘ o.01 |
% > | -—g 0.001 W
. it 3= My T T
o T U AT 1111 i le-06 ‘ i
-1 le-07
26 10 20 30 4 so 60 70 1B, 1 2 3 a s 6
Time (ms) Frequency (KHz)

5.5 C, = 31.720F, Cy = 1uF, L = 15.6mH,
R = —1KQ, Ry = 10.49, G, = 0.9926m5, G, =
1.023mS.

Eigenvalues: pu; = 1.10 x 10%, py = —226 +
5.70 x 10%, pg = —226 — 5.70 x 1037, vy = —T781,
vy = 195+ 5.65 x 103, vs = 195 — 5.65 x 10%.
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Table 5
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(Continued.)
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5.16 Cy, = 9.98nF, Cy = —1pF, L = 10.12mH,
R = 1KQ, Ry = 10.12Q, G, = —0.99002m.S,

0.01 Gy = —0.9893mS.
0.005 Eigenvalues: 1 = —1.6 x 103, us = 308+1.13 x
v2 1035, ps = 308 — 1.13 x 10%j, vy = 1.54 x 10°,
vy = —1.31 x 10® 4+ 1.65 x 10%j, v3 = —1.31 x
10% — 1.65 x 103%5.
10 Waveform of V1 10 Spectrum of V1
8
& 1
4
= 2 ) 0.1
; 72 E’ 0.01
Rt
-6 0.001
-8
~10 0.0001
o s 10 15 20 25 30 35 40 o 2 4 3 10
Time (ms) Frequency (KHz)
I3
5.17 Cy = —13.33nF, Cy = 1uF, L = 31.5mH,
R = 1KQ, Ry = —100Q, Gq = —2.4mS, Gy =
—0.98mS.
Eigenvalues: u; = —1.04x 105, py = 725+5.06 x
10%, ps = 725 — 5.06 x 103, v; = 2.70 x 103,
vo = 489 4 1.02 x 1035, v3 = 489 — 1.02 x 1035.
“ Waveform of V1 ] 10 Specmum of ‘lll
> o1 | !
2 b 0.01 }
=z 1 b £ o001 § E
E o g “E 0.0001 f 1
= i é’ 1e-05 | k
1e-06 | 1
2 T 1e-07 |
-3 7 1le-08 |
4 le-09
O 50 100 150 200 250 300 350 400 450 500 o os 1 15 =2 =25 3 35 4
Time (microseconds) Frequency (MHz)
5.18 C; = —621.5pF, Cy = 1nF, L = 14.2mH,
R = 1KQ, Ry = 4.22KQ, G, = —0.1392m.S,
Gy = —0.2175mS.
Eigenvalues: p; = 1.61 x 10% uz = —3.68 x

10% 4 4.36 x 10%j, ps = —3.68 x 10% — 4.36 x 10,
v = —4.46 x 104, vy = 3.25 x 10% + 5.86 x 10°5,
vs = 3.25 x 10% — 5.86 x 10°;.
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calculated from Eq.(3) are given by:
h=— 1’

=125 p=18
; P (55)
QI: -1

¢=125 ¢g=-3.6
Observe that py=¢q and hence Brockett’s system also
belongs to the set &,. To obtain a qualitatively similar

strange attractor using the unfolded canonical Chua’s
circuit from Fig.2, we add a small perturbation dp;=

0.05 and 6q1=—0.05 to obtain
pi=—095 p=125 pi=138
1 P2 » } (56)
gi=—105 ¢=125 @¢g=-—36

These equivalent eigenvalue parameters corresponds to
the following set of perturbed eigenvalues

1 =0.728163, 15=—0.8390814 ;1.3296,
3= —0.839081—1.3296
1=—1.6337, 13=0.2918491+1. 45548
v5=0.2918491 —j1.45548

Substituting Eq.(57) into Egs.(15), (16), we obtain
the following parameters for the equivalent “unfolded”
canonical Chua’s circuit:

(57)

G=1, (=5225216, L=0.0003479091
R=-0.01904761, G=—52.500025, (58)
Ry=0.0003498814, G,=53.44908,

G,=153.54908

The strange attractor associated with the parameters in
Eq.(58) is shown in Fig. 4(b). Again, to map Fig. 4
(b) into Fig. 4(a), we calculate the transformanon
matrix T=K 'K in Eq.(48), where

1 0 0
K=|0 1 0 (59)
L0 0 1
and
1 0 0
K=|—1.049053 —52.500027 0
L 53.849583 2.326251 —1.004744

(60)

Multiplying the coordinates (X, Xz, X3) = (w, », &) of
the time series of the attractor in Fig. 4(b) from the
canonical Chua’s circui by the matrix T, we obtain an
attractor which is qualitatively similar to that of Fig.
4(a), as expected.

5.3 A Zoo of Strange Attractors from Family ¢

More than 30 non-periodic attractors from the
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family ¢ of vector fields have been observed from
many 3rd-order electronic circuits and systems, and
from computer simulations. Table 5 shows a sample
of some of these attractors which have been mapped
into the unfolded canonical Chua’s circuit of Fig. 2.
Many of these attractors are mapped from those
presented in Ref.(44). For example, Table 5.1, 5.2,
5.3,5.4,55,5.7, 5.10, 5.12, and 5.13 correspond to the
attractors given in Figs. 19, 18, 20, 8,9, 12, 14, and 7 in
Ref.(44) respectively. A gallery of 18 multi-color
strange attractors from this table and table 1 (project-
ed into the w-w plane) is shown in Table 6.

6. Concluding Remarks

All waveforms and attractors in this paper are
calculated numerically using the user-friendly software
package INSITE.“® Since the circuit parameters for all
attractors in Table 1-5 are given, and scaled to within
the range of practical component values, experimental
observations of these attractors can be made by build-
ing the unfolded Chua’s Circuit with the correspond-
ing circuit parameters. Those parameters which are
negative can be realized with the help of a negative
impedance converter (NIC) having a large enough
linear dynamic range. The ve-ir characteristic of the
nonlinear resistor (Chua’s Diode®??) can be realized
by various nonlinear circuit synthesis techniques, such
as those given in Refs.(49)-(52).

The circuit presented in Fig. 2 of this paper, as
well as that given in Fig. 4 of Ref.(44) are both canon-
ical and equivalent to each other. It is interesting to
observe that these two circuits can be interpreted as a
global unfolding of the 2 chaotic circuit candidates
(Figs. 4(g) and (h) of Ref.(1), p.252) which have
been derived by a systematic nonlinear circuit synthesis
procedure, as described in Ref.(1). Both unfoldings
are obtained by adding a linear resistor in series with
the inductor. In fact, many other canonical circuits can
also be derived by connecting a linear resistor, by a
plier or soldering-iron entry with other elements in
these 2 circuits. Since all of these canonical circuits are
equivalent to each other, only one circuit need to be
studied in depth, at least from a theoretical point of
view. Since many papers have already been published
on Chua’s circuit (Fig. 1), the unfolded Chua’s circuit
in Fig.2 will be the circuit of choice in our future
research on nonlinear dynamics of this circuit. Such a
research program is important because any future
result or breakthrough applies to the entire family ¢
of 21-parameter family of vector fields, including all of
the chaotic circuits from Refs. (35)-(40), and chaotic
systems from Refs.(41)-(43). In fact, it is natural for
us to allow the scalar nonlinear function in Fig. 2 to be
any piecewise continuous function (e.g., polynomial,
signum function, etc.) which need not be piecewise-
linear or symmetric. We conjecture that most auton-



IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 5 MAY 1993

Table 6 Gallery of selected strange attractors from Unfolded Chua’s Circuit.
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Table 6 (Continued.)
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omous 3rd-order chaotic circuits and systems with
polynomial, signum, and hysteretic nonlinearities can
be accurately modeled by the above generalization. It
is the universality and unifying potentials of the un-
folded canonical Chua’s circuit that has made it a
fundamental and general tool for understanding and
applying chaotic dynamics for future applications in
science and technology.
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