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Abstract. Ordering or controlling chaos has in recent years attracted
special attention from a number of research groups in the areas of
nonlinear dynamics and control. The present authors have developed
a unified linear feedback control methodology for this purpose, which
works well for many general chaotic systems. It has been shown that
under certain conditions a chaotic trajectory can be guided to one
of the unstable Iimit cycles of the dynamic system, provided that
an appropriate feedback control is applied. This control technique is
refined and applied to the well-known Chua’s circuit in this paper,
giving simplier implementation with even better results. A simple
sufficient condition for the design of such a linear feedback controller
is given, and the numerical simulation as well as the physical im-
plementation of the designed feedback control configuration are both
illustrated.

1 Introduction

Chua’s circuit is a well-known electronic system, which displays very
rich and typical bifurcation and chaotic phenomena such as double
scroll, dual double scroll, double hook, etc. The circuit itself is quite
simple: it consists of only one inductor (L), two capacitors (C1,Ca),

one linear resistor (G) and one piecewise-linear resistor (g) [1-8]. Its
dynamics can be described by

Cl":c] = G('Uc2 - vc‘) - g(vcl)
C'Z"'fc, = G(vg, =g, )i (1)
Lz, = Vg,

where v, and v, are the voltages across C| and Cy, respectively, ¢z,
the current through the inductor L, and the v-i characteristic of the
nonlinear resistor is

glve) = gl ime,m1)

movg, + %(ml - mo)(jvg, + 1 = lve, — 1))

with mg < 0 and m; < 0 being some appropriately chosen constants
[2].

Since the inception of Chua’s circuit in early 1980’s, much attention
has been devoted to the investigations of the dynamical, analytical,
experimental, or implemental aspects of the circuit and its associate
canonical circuit family [1-8]. To our knowledge, however, very little
is known as how to introduce order into the chaotic responses of the
circuit, except perhaps for a paper by the present authors [23].

Tt has been known [2] that Chua’s circuit has an unstable saddle-
type limit cycle existing outside the double scroll attractor: its Poincaré
map is stable in one direction but unstable in another direction. This
limit cycle cannot be observed from the oscilloscope measuring the
circuit, nor be obtained by ordinary numerical integration techniques.
This unstable limit cycle has nevertheless been verified from different
points of view [2]. We hereafter will discuss a technique of designing
a simple linear feedback control law which allows such an unstable
circuit response to emerge from its chaotic state (double scroll) of the
trajectory, and to approach and finally reach the inherently unstable
limit cycle of the circuit.

Different algorithms for controlling chaotic systems have been de-
veloped in recent years [9-22]. Most of the methods proposed so far can
be divided into two major classes. One is controlling chaos by vary-
ing or perturbing some key parameters of the system in certain skillful
way. However, perturbing the system’s parameters actually changes
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the main characteristic of the original dynamic system, and the con-
trol of such key parameters usually depends on many issues such as
the specific system under investigation and the experience of the de-
signer. Besides, very often the system under consideration is required
to operate at a particular set of parameters and therefore any varia-
tion of parameters is not allowed. The other major type of methods
employs conventional control engineering techniques. These methods
do not necessarily resort to feedback, but the approach taken by the
present authors [20-24] provides a stabilizing technique using feedback
control, which turns out to be very efficient and has indeed a unified
theme in the sense that we are not only able to describe a general
method which can be applied to different chaotic systems but also able
to drive a chaotic trajectory to both unstable equilibrium points and
unstable (even multi-periodic) limit cycles. One of the advantages of
this approach is that no system parameter needs to be adjusted di-
rectly, and controller is added to the original system “from outside”
whose effect will vanish immediately whenever it is being disconnected
from the system. This general feedback control strategy has been suc-
cessfully applied to many typical nonlinear chaotic systems such as the
discrete-time Hénon [22] and Lozi [21] systems and the continuous-time
Duffing [20] system. While all the feedback controllers used in [20-23]
are linear, the design of nonlinear feedback controller is also feasible as
shown in [24].

The control technique developed in [23] is refined and applied to the
well-known Chua's circuit in this paper, giving simpler implementation
with even better results. A simple sufficient condition for the design of
such a linear feedback controller is given, and the numerical simulation
as well as the physical implementation of the designed feedback control
configuration are both illustrated.

2 Control of Chua’s Circuit

2.1 Dynamics of Chua’s Circuit

To facilitate our presentation, the circuit equation, Eq. (1), of the
Chua’s circuit is first reformulated into the following dynamically equiv-
alent state equation [2}:

i = pl-z+y~f(z)
y = z—-y+z 2)
z = —qu

where p = % >0and g = L—%‘; > 0 are two main bifurcation param-
eters of the circuit, and corresponding to g(vg, ) in Eq. (1), f(z) is
represented by

f(=)

I

g(z; mg, m)
myz + §(m} — mp)(Je + 1] =}z = 1]),

i

or by a 3-segment piecewise-linear function

myT + my —my z>1
flz)=1{ miz |z] €1
mf)z—m’]+mf) z< -1

where mj = B¢ < 0 and m} = 3 <0.

For consistency, we use parameter values p = 9, ¢g= 14%, my =
-3, and m) = —%, as did in [2] and in many other papers studying
Chua’s circuit. We observe a double scroll (strange attractor) and

the aforementioned unstable saddle-type periodic orbit, which are both
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shown in Fig. 1, where the initial point (—0.1,—0.1, —0.1) was used for
the strange attractor.

Figure 1. A double scroll attractor and a saddle-type
periodic orbit of Chua’s circuit.

2.2 Design of Linear Feedback Controllers

Denoting by (Z(t), §#(t), 2(t)) one of the unstable limit cycles of the cir-
cuit represented by Eq. (2), our goal is to control the system trajectory
such that for any given € > 0, there exists some T, > ¢y for which

[e(t) - z(t)| <&, |y(t) - ()| < e,
|l2(t) = 2(t)| <& forall t>T..

We have the following main result on this controllability of the circuit:

and

Theorem 1 Let (Z,§,Z) be the unstable limit cycle of Chua’s circuit
described by Eq. (2). Then, the chaotic trajectory (z,y, z) of the circuit
can be driven to reach this limit cycle by a linear feedback control of the
form

u] z—-1I 0o 0 0 z-Z
up | =-K|y-7|=-|0 Koo 0[] y—7% 3
u3 z2—Z 0 0 0 z2—Z
provided that
< < - .
0<m{,+l'K22’ mi+1

The closed-loop feedback control configuration of the system is
shown in Fig. 2.

Chua's Circuit
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Figure 2. Feedback Control Configuration for Chua’s Circuit

We would like to emphasize that Theorem 1 only provides a suffi-
cient condition, where the condition on Ka9 is not always necessary as
shown by the exarple given in the next section. We also remark that
for the sake of simplicity we have set all the elements but K2 to zero
in the above feedback gain matrix K, while more nonzero elements in
K usually means more degrees of freedom in the design and the fine-
tuning of the controller. The control input of the form (3) is among the
simplest linear feedback controllers that one can use in Chua’s circuit.

We now give a proof of the theorem.

Proof. Note that the controlled Chua's circuit can be written as

i = pl[-z+y~ f(z)]
¥y = z~y+z—Knly-7§) 4)
: = -qy.

and that the limit cycle (%,§,2) = (Z(t), #(t), Z(t)) is itself a solution
of the circuit, i.e.,

Qe
]

p-2+75- f(2)]
E-g+z
-q¥.

(8)

N 2
nu

Subtracting (5) from (4), with the notation X = z—%, Y =y-3, Z =
z—% and f(z,%) = f(z) — f(), we obtain

X = p[-X+Y - f(z,2)]
Y = X~-Y+Z-KnY (6)
Z = —qY
where
my(z — ) z>1,z>1
myz — M\ T + m) — my z21,-1<z<1
mg(z — Z) + 2(m} ~ mj) z21,8< -1
. miz — myE —m) +my -1<z<1,z2>1
f(z,3) = ¢ mi(z-3) i -1<2,5<1
miz - mgF + mj —mj ~1<z<1,2< -1
my(z — E) - 2(m] — my) z<-1,22>1
myz — miT — mi +mj z<-1,-1<%<1
my(z — ) z<-1,7< -1

with m} < mp <O0.
We define the Lyapunov function for Eq. (6) by

V(X,Y,2) & g-x? + %‘ly? + §z2.

It is clear that V(0,0,0) = 0 and that V(X,Y,Z) > 0 when at least
one of X,Y, and Z is not zero. Furthermore, since p, ¢ > 0, we have

V = ¢XX+pgYY +pZ~Z
= ¢X[-pX +pY - pf(z,2)]
+pgY (X - Y + Z — KppY) + pZ(—qY)
—pg[X2 4+ Y? + KoY - 2XY + X f(z, %))
~pg{ X2+ Y2+ Kpp[¥Y? - XY
+r X - X+ goX f(z,2)]}
~pg{ X2 + Y2+ Knn(Y — £ X)?
+X f(=z,2) - X%}
= —pg{Y?+ Kan(Y ~ g X)?
+HXF(=,2)+ (1 - )X}
<0

for all X, Y and Z, if

Ky > 0
Xf@,3)+(1- )X > 0 @
or
KX f(z,2) + (Kn —1)X2 2 0. (8)

for all £ and Z. )
We now look at each every one of the possible cases in detail,

namely: _

Casesland 9. z,2>1lorz, 25 -1 f= myX. Obviously, inequality
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(8) is satisfied if
KoomgX? + (Kpz — 1)X? = (Kaomf + Koo - 1)X2 > 0,
or Kag > ﬁ.

Case 2. 7> 1, -1 < Z < 1: Note that f = m} X + (m) — m{)(z — 1)
and X 20, z—12>0, my—m] >0, and we have (8) if

Ky X[mi X + (mh — my)(z — 1)] + (K22 — 1) X2
= (Kpm{+ Kz - 1)X% + Ky X (mf — m})(z - 1)
> 0,

or Kzzm'l + K29 — 1 > 0 and K93 > 0. That is, Ky < —-1;;1;7 and
Ky 2 0.
All the other cases listed below can be discussed in a similar manner,
which we omit for brevity:
Cased. z21,T<-lor X >2:
f=muX + 2(m} — mp).
L}&‘i. -1<z<1,z21lor-2<X <0
f = mi X + (mh —m})(1 - 2).
Case5. -1<2<1, ~1<2<lor-2<X <2
f=miX.
Qaie(i. -1<z<,3<-1lor X2>0:
f=miX + (m| — g} (2 +1).
Case7. z<-1,z221:
f=myX + 2(mg — m)).
Case8. < -1, -1<z<lor XL OF
f=mhX + (mh— mi)(& —1).
Combining all the conditions just derived results in

)

1
< K9y £ —
0<m6+1_ 2=

1
mi+1
which guarantees inequality (7).

Hence, if the condition stated in the theorem is satisfied, then the
equilibrium point (0, 0,0) of the controlled circuit (Eq. (6)) is globally
asymptotically stable, so that

|X{—0, |Y|—=0and |Z]20 as t—oo.

That is, starting feedback control at any time, we have
11-1327 jz(t) — z(t)| =0, ll_lgxo ly(t) - §(¥)| =0, and

Jim J2(t) — 2(t)| = 0.

3 Numerical Results

It has just been mathematically proved that the chaotic trajectory of
Chua’s circuit can be controlled to its unstable saddle-type limit cycle,
where the designed feedback control can be initiated at any time. To
see the performance of the linear feedback controller designed in the
last section in the control of Chua’s circuit and to demonstrate the
control process, we show how to drive the chaotic trajectory of Fig. 1
to the saddle-type periodic orbit of the same figure.

For simplicity, we only use a second-order approximant of the un-
stable limit cycle (since an exact analytic expression for the limit cycle
does not exist). Let (Z, 7, Z) be such an unstable limit cycle of Chua’s
circuit, and approximate it with the following second-order formulas

a cos  cos(wt) — bsin asin(wt)
+ccos a cos(2wt) — dsin a sin(2wt)

i(t) =

§(t) = e[asinacos(wt) — bcosasin(wt)]
+ flcsin a cos(2wt) — d cos ar sin(2wt)]
) = qut)

wherea =26, b=12,c=d=02¢e=06, f =03, a = f, and
w = 1.77. Applying the control law (Eq. (3)) to the system, we have

= pl-e+y—f(=)] = pl-z+y~f(a)]
Y = z-y+ztuy = z-y+z-Knly-7
2 = -q = -qy

The chaotic trajectories of the circuit, before and after this control
law is applied, are shown in Fig. 3. Note that we have chosen the
feedback gain Kj2 = 2.0 in this simulation. It can be seen from these
figures that the designed linear feedback control law is very effective in
directing the trajectory away from the double scroll attractor and then
driving it to approach (and finally) reach the target periodic orbit.

4 Conclusions

In this paper, we have discussed a conventional feedback control ap-
proach for ordering or controlling Chua’s circuit. The linear feedback

controller used is perhaps the simplest possible in the design. The feed-
back control scheme and the associate sufficient condition have been
mathematically justified in Section 2. The effectiveness of the control
is demonstrated by the computer simulation results shown in Section

3

We would like to point out that among the most appealing features
of the proposed additive feedback control strategy is its efficiency and
unified manner. Also worth mentioning is that this technique does not
require varying or adjusting any system parameter, which actually will
alter the original system, so that the control effect can be eliminated
immediately whenever the controller is being disconnected. Depend-
ing on particular applications, the additive feedback controller can be
applied to, or disconnected from, the chaotic system at any time.

Finally, for those more electronically inclined readers, we would
like to remark that introducing —Ka2(y — %) to Eq. (2) corresponds
to adding —K22G(v., — 7g,) to Eq. (1). And this, in turn, implies
that an additional linear resistor, R’ = 317 = EIQT* and an appropriate
periodic-signal generator, v,y = ¢, are being added to the original
physical system, as illustrated in Fig. 4. These two additional compo-
nents are both easy to realize in the circuitry.
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Figure 3.2. A Chua’s circuit solution trajectory (before and when

a feedback control is being applied) in the x-y-z space

2607

2l

Iy

'
W
S W
h

y

Figure 3.1. A Chua’s circuit solution trajectory (before and when
a feedback control is being applied) projected onto y-x,
X-z, y-z planes
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Figure 4. Circuit realization of feedback control of Chua's circuit



