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Generalizations of the Chua Equations

Ray Brown

Abstract— We present two generalizations of the equations
governing Chua’s circuit. In the type-I generalization of Chua’s
equations we use a 2-D autonomous flow as a component in a
3-D autonomous flow in such a way that the resulting equations
will have double-scroll attractors similar to those observed ex-
perimentally in Chua’s circuit. The value of this generalization is
that 1) it provides a building block approach to the construction
of chaotic circuits from simpler 2-D components that are not
chaotic by themselves. In so doing, it provides an insight into how
chaotic systems can be built up from simple nonchaotic parts. 2) It
illustrates a precise relationship between 3-D flows and 1-D maps.
In the type-II generalized Chua equations we show that attractors
similar to the Lorenz and Réssler attractors can be produced in a
building block approach using only piecewise linear vector fields.
As aresult we have a method of producing the Lorenz and Réssler
dynamics in a circuit without the use of multipliers. These results
suggest that the generalized Chua equations are in some sense
fundamental in that the dynamics of the three most important
autonomous 3-D differential equations producing chaos are seen
as variations of a single class of equations whose nonlinearities
are generalizations of the Chua diode.

I. INTRODUCTION

N THIS PAPER, we explore two generalizations of Chua’s
equations. These two generalizations are significant in that
they show the following:
1) How chaotic flows in three dimensions can be con-
structed from simple nonchaotic parts
2) how 3-D flows can be analytically related to 1-I) maps
3) how a very wide range of chaotic dynamical systems
including systems similar to Réssler and Lorenz’s can
be constructed from piecewise linear flows.
This is significant for many reasons. Prior to these results,
the number of chaotic dynamical systems available to guide
research into the mechanisms of chaos were very few. Second,
in order to construct new systems with given properties,
there was no available methodology that started with simple
components and, in a systematic way, used these components
to build new chaotic systems. Third, there was no analytical
connection between 3-D flows and 1-D maps that offered the
prospect of linking the relatively extensive machinery of 1-D
map theory to 3-D flows. The results of this paper provide an
advance in all three of these research areas.
The dimensionless form of Chua’s equations are given by

& =oly—z— f(z))
j=c—y—2
z=-Py ey
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where

br +a—0b, forz>1.0
f(z) = ¢ az, for |z] < 1.0 2)
br —a+b, forzx<1.0

is a three-segment piecewise linear function and « and 3 are
dimensionless parameters.

We note from the history of Chua’s circuit [3] that the func-
tion f(x) represents a nonlinear resistor, and hence can be any
scalar function of one variable. The choice of the piecewise
linear function (2) is only for convenience in synthesizing the
physical circuit. It is also obvious from [3] that f(z) can
be modified in many ways without changing the qualitative
dynamics. In Section II we will choose the discontinuous
“signum” function sgn(z) for f(xz).

Section II of this paper discusses the type-l generalized
Chua equation.

In Section III we define the type-II generalized Chua equa-
tions.

II. TYPE-I EQUATIONS

In this section we derive the type-1 generalized Chua equa-
tions, the single scroll, and relate them to 1-D maps. We
show how to derive a double scroll from a large class of 2-D
autonomous flows.

A. Simplification of Chua’s Equation

The dimensionless Chua equations can be recast into the
form:

&(t) - o 00] [z f(=z)
g(t) | = ]11.0 —-1.0 1.0 y | -al 00 3)
(1) 00 -8 00]|\z 0.0

A more compact expression for f(z) is given by bz+0.5(a—
b)(|z+1.0]—|z—1.0]). Using this expression, (3) simplifies to:

Ao, B, b)(z— k), forz>1
z = ¢ Ala, 3, a)z, for |z| <1 @)
A(a, B, b)(z + k), forx< -1
where
—aflc+1) «a 00
Aa, 8, ¢) = 1.0 -1.0 1.0 5)
0.0 -8 0.0
where
k
k=10
—k
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and ¢ = b or a depending on the value of z, and k¥ =
(b—a)/(b+1). Thus the vector field determined by the matrix
A varies depending on which of three regions the vector z is
in.

We seek to simplify (4) to a set of equations having only
two linear regions instead of three and such that the matrix A
is the same for both regions. In doing this we want to preserve
the qualitative dynamics found in the Chua circuit.

In particular we want to introduce a function in place of
f(z) for which the region where ¢ = a is such that |z| < ¢,
where ¢ is a number we can control. If we can do this and then
decrease ¢ to zero, while holding on to the global dynamics
found in the Chua circuit, we will have a simpler equation
with which to work. In doing this it can happen that the system
can go unbounded for reasons that will be clear later. So if we
decrease the middle region, we must also decrease the real part
of the expanding eigenvalues (which are complex conjugate)
in order to retain a region where there are bounded solutions
of the ODE. We can carry out this strategy if we replace the
piecewise-linear function

h(z) = 0.5(]z + 1.0] — |z —1.0]) (6)
that makes up part of f(z) by the C*° function

9{z)

(This function is known as a sigmoid function due to its
“S”-shaped graph and it is prevalent in the theory of neural
networks.)

Doing this we have the following equation:

_exp(yzr) = 1.0

~ exp(yz) + 1.0 @

z(t) ab+1) o 00] [z - kg(z)
gty | =| 1.0 -10 10 y . ®
2(%) 0.0 -8 0.0] \z+ kg(z)

By replacing the piecewise-linear function, (2), with a
sigmoid function, (7), and slightly increasing 3 we can obtain
an equation that will produce chaotic dynamics very similar
to those in the Chua equations, i.e., produce a double scroll.

After this replacement is made we study what happens as v
is increased. We begin by setting v = 10.0, which compresses
the middle region, and to offset this we increase 3 from
14.2857 to 15.0 in order to lower the rate of expansion. Having
made our replacement successfully we increase y to 100.0 (3
will need no further adjustments). This equation has bounded
solutions which are analytic, and for which the middle region,
i.e., the region for which |g(z)| < 1, is very small, and, in fact,
its size is inversely proportional to ~y. It is a simple matter now
to let ¥ — oo to obtain the following simplification of Chua’s
original equation (3):

z(t) ab+1) a 00| fz— ksgn(z)
gt | =] 10 -10 1.0 y .9
2(t) 0.0 -8 0.0] \z+ ksgn(z)

Equation (9) is a pointwise limit, rather than the uniform
limit of (8), but that is not a limitation on its use since (9)
satisfies all of our requirements, most important of which is
that it has a double-scroll attractor just as in Chua’s original
equations. Even though when v = oo the system has a
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discontinuity at x = 0.0, this discontinuity does not introduce
chaos where it did not already exist: if we fix a specific time
T in the future, there exists a + defining a C°° equation
having a solution arbitrarily close to the solutions of (9) for all
time less than T'. As a result of these numerical observations,
we have every right to believe that (9) is a system which is
representative of the chaotic dynamics of Chua equation.

All constants in (9) are the same as those in the original
Chua equations, (3), with the exception that 3 = 15.0 rather
than 14.2857. In particular, a = -8/7,b = —5/7,a =
9.0, —a(b+ 1) = —18/7, and k = 1.5. For comparison, we
recast Chua’s original equations (1) in the same form as (9)
so that their differences be easily discerned:

z(t) —ab+1) a 0.0] [z - khi(z)
g | =] 10~ -10 10 y (10)
2(t) 0.0 -3 00| \z+ kh(z)

where h(z) is given by (6).

The effect of suppressing the middle region makes the vector
field discontinuous, but as we point out later, this does not
change the complexity in the simplified version of the Chua
equations from that in the original Chua equations.

The analytical advantage of working with (9) is that the
matrix in (9) is constant while the function sgn(u) takes on
only two values. In contrast, in (10), while the matrix A
has been made constant, the function h(u) is continuous and
preserves the middle region.

For the matrix A in (9) we are able to introduce coordinate
transformations that separate, or “decouple” from a circuit
theoretic point of view, its invariant subspaces. These sub-
spaces determine the stable and unstable manifolds for the
linear vector field near the critical points k and —k. These
two points were also critical points for the Chua equations.
The dynamics of (10) and (9) are the same at these points.

We know from linear algebra that we may write the matrix
A in (9) as JDJ !, where

1.0 -1.287 1.0
J=10143 -1.513 -0.148
—-2.37 -2.14 -0.569
and
0.0 -9.876 0.0
D= |10 0334 0.0
0.0 0.0 —3.9055

Doing this and changing coordinates, (9) is transformed to

Z(t) 0.0 -9.876 0.0 z — asgn(u)

y(t) | = |1.0 0.334 0.0 y — bsgn({uw)

(1) 00 00 —3.9055| \ z— csgn(u)
where @ = 0.4455,b = —0.05445,¢c = 0.984, and v =

z —1.287y + z. It should be noted that if we transform (10) by
the same coordinates as we used to transform (9), the matrix
A would be diagonalized, but the function h(w) would not
be improved, and therefore, the troublesome middle region
would not be eliminated.
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B. The Single Scroll

We now use the fact that the vector field defined by (10) and
(11) is an odd symmetric vector field and is invariant under the
flip map £ — —x. This allows us to view the double scroll in
(11) as a single scroll. In particular, whenever sgn(u) changes
sign we apply the flip map and use the linear ODE:

0.0 —-9.876

z(t) 0.0 z—a
g(t) | = [1.0 0334 0.0 y—b (12)
3(t) 00 00 —3.9055| \z—c

to continue the orbit. Note that the value of a,b, and ¢ are
the same as in (11).

If as in the terminology of [2] we identify the last differential
equation as an expanding linear twist, we see that we have
Jfactored (11) into the form F'I" where the map T is determined
by selecting an initial condition zg, integrating the above linear
ODE until the solution starting at this initial condition reaches
the boundary determined by the function sgn(u) and using this
final condition as the value of T'(x(). We continue the solution
by applying the flip map F to this final condition and using
this flipped value as the initial condition for the above ODE.
The effect of doing this is exactly the same as the process
used in the twist-and-flip maps of [2]. In this way we are
able to plot the entire double scroll of (11) on one side of the
plane determined by the function v = x — 1.287y + 2z = 0.0
around only one of the fixed points, just as happens in using
the twist-and-flip map.

Doing this amounts, mathematically speaking, to folding the
3-D space in half along the plane » — 1.287y + z = 0.0 and
identifying the points  and —z. That is, we consider the two
points x and —z as the same point.

Since we have separated out the stable manifold direction
in the transformed equations, we can examine the effect
of increasing the contracting eigenvalue by considering the
following equation instead of (11):

z(t) 0.0 -9.876 0.0} [z — asgn(u)
g(t) | = 110 0334 00| y—bsgn(u) |. (13)
z(t) 0.0 0.0 —v | \z — csgn(u)

In this equation the entry 3.9055 in (11) has been replaced by
~. (We are reusing the symbol « in a manner that is unrelated
to the ~ in (7).)

The effect of increasing v is to flatten the scroll onto a
pair of parallel planes. If we combine this with the folding
operation, we get the single scroll obtained from using (13)
with 4 > 0 combined with the flip as was done with (12).
Fig. 1 shows the double scroll obtained from (13) with the
eigenvalue v = 100.

The point of this analysis is to conclude that the source of
chaos in (11) and (13) can be understood by analyzing a 2-D
single scroll which we obtain by considering the limit of (13)
as the contracting eigenvalue, v — 0. As this happens we
see that z — 0.984 and we get a limiting 2-D single scroll on
which all complex dynamics occur. The linear part of the 2-D

single scroll is given by
Z(t)) _ 0.0 —9.876 | [z — 0.4455 (14)
g(t) )~ |1.0  0.334 y+0.054 /)°

SGN  double
eigenvalue= —100.0.

Fig. 1. Transformed scroll, 3 = 15.0, and

The nonlinear part is supplied by the condition that we apply
the flip map when sgn(z — 1.287y + 0.984) < 0.0.
Equation (14) is solved by
z(t) = exp(at/2)[(zo — a)cos(wt) + Cy sin(wt)] + a
y(t) = exp(at/2)[(yo — b)cos(wt) + Cs sin(wt)] + b (15)

where

—(0.50(xg — a) + B(yo — b)) /w
—((wo — a) + 0.5(yo — b)) /w

and o = 0.334,3 = 0.876,w = /8 — (0.5a)?, and a, b are
as in (11).

Cy
Cs

C. 1-D Maps

The single scroll maps the line y = (z — 0.984)/1.287 to
its image under the flip map. For initial conditions of the form
0.3 <z <0.85 and y = (z — 0.984)/1.287, a segment of
this line is mapped into itself. There are two fixed points on
this line segment: (0.54, —0.347) and (0.6875, —0.2293). We
have now associated (9) with a 1-D map of a segment of the
line y = (z — 0.984)/1.287 onto itself.

We review how this 1-D map works. We begin with an
initial condition on the line y = (z — 0.984)/1.287 with the
value of the z coordinate in the closed interval [0.3, 0.85]. We
use (15) to produce a trajectory which expands outward until
it meets the line ¥ = (z+0.984)/1.287. We then apply the flip
map, which takes this point on the line y = (x+0.984)/1.287
back to the line y = (z —0.984)/1.287 where the 2 value will
lie in the closed interval [0.3, 0.85]. This flipped point will
then be used as the initial conditions for (15) to generate a new
trajectory. Hence we see that this line segment is mapped onto
itself. From this we conclude that the source of the complexity,
or chaos, in (9), (11), and (13) can be traced to a 1-D map.

We may convert (13) into a smooth equation by replacing
the “sgn” function by the sigmoid function, (7), thus obtaining
a C vector field whose chaotic properties are closely tied to
a given 1-D map as long as + is large. The possibility that
(13) could be reduced to a simple 1-D map was suggested by
Prof. Morris Hirsch.

D. Misiurewicz’s Single Scroll

The foregoing analysis and the work of Misiurewicz in [5]
provides the motivation for introducing the definition of the
type-I generalized Chua equations to designate an important
class of 3-D autonomous ordinary differential equations very
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similar in their dynamics to the Chua equations. The key
similarity is that this class of ODE’s have attractors that look
very similar to the double scroll. However, in contrast to the
original Chua equations, the nonlinearity in these equations is
composed of two linear components, instead of three.

We will define type-I generalized Chua equations in two
steps. The first step is to include the following class of
double scroll producing equations (motivated by [5]) within
the definition of type-I generalized Chua equations:

z(t) s =10 0.0] [z —asgn(u)
y(t) | = |10 s 0.0/|| y—bsgn(u) (16)
2(t) 00 00 -« z — sgn(u)

where 4 = 2z — z, and a, b are any real constants, and s is
a positive constant.

This form of the type-I generalized Chua equations based

on the analysis of [5] reveals the role of the 2-D flow that
defines the local unstable manifold located at the fixed point
a, b, 1). This 2-D flow is given by the equation

(G8)-[5 16

which defines a source which spirals outward from the critical
point (a, b). If, as in [5], we use (17) as the 2-D single
scroll in the previous section and in place of the line y =
(z — 0.984)/1.287 we use the line £ = —1 as the line at
which we apply the flip map, then we obtain a mapping of the
line x = —1 onto itself and the entire analysis of Misiurewicz
is available for analyzing these equations.

The work of Misiurewicz suggests the need for a somewhat
more formal definition of single scrolls. We note that [5]
implicitly provides the rigorous mathematical definition for the
single scroll, but this definition would require some translation
for the nonspecialist and so we do not repeat it here.

Let the following differential equation define a vector field

on R%:
(o) =+()

and assume that for any initial condition (zo, yo) in R? this
equation has a unique solution defined for all time —o0 <t <
oo. Also suppose that for each initial condition of the form
(—1.0, yo) there is a time ¢ at which the solution having this
initial condition crosses the vertical line z = 1.

Working Definition: 2-D Single Scroll—The 2-D single
scroll is defined by the curve formed by starting with an initial
condition of the form (—1, yo) and following the solution of
(18) above until it meets the line z = 1 and then applying the
flip map, and continuing in this manner indefinitely.

When we refer to a 2-D single scroll we mean that we
are talking about an ODE with the above characteristics with
which we generate an orbit using this ODE and the flip map
as described in the above definition.

The single scroll construction can be carried out with any
2-D flow which always crosses the line z = 1 given an
initial condition on the line z = —1. Such flows are easy to
construct and we illustrate this by using two familiar equations
to construct two examples of new double scrolls.

an

(18)
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Fig. 2. Double scroll for the type-I generalized Chua equations using the
Duffing oscillator as the 2-D vector field for the 2-D single scroll.

Example 1: For the first example we use the following
variation on Duffing’s equation:

F-si+2°=0

where s > 0 rather than s < 0, which usually defines Duffing’s
equation. The result of choosing s positive is to make the
critical point of the equation a source rather than a sink.

We rewrite Duffing’s equation in a matrix form with the
critical point translated to the point (a, b):

@)\ [ 00 -10]({z-a
) ) " [@-a)? s [\y-b)
The type-1 generalized Chua equation from which we may

obtain a double scroll based on this variation on Duffing’s
equation is given by

19)

z(t) 0 -10 0.0] /z— asgn(u)
y@) | =|U s 0.0 y—bsgn(u) (20)
2(t) 00 00 -—v z — sgn(u)

where U = (z — asgn(u))?, and where a,b, s, and u are the
same as for (16).

Fig. 2 is the double scroll produced by (20). In this figure,
a = —0.5,b = 05,5 = 0.17, and v = 100.0. The initial
conditions are (—1.0, 0.1, 1.0).

Example 2: 'What we have done with this variation on
Duffing’s equation we may do with the Van der Pol equation.
The translated Van der Pol equation in matrix form is given by

z(t)\ _ (0.0 -1.0 z—a
g(t) )~ (1.0 s(12—(z—a)®) |[\y-b)"
The type-I generalized Chua equation from which we may

obtain a double scroll based on the Van der Pol equation is
given by

21

z(t) 0 -10 00] /z—asgn(u)
gt) | = (10 U 00| [y—bsgn(u) 22)
A(t) 00 00 —v

z — sgn(u)

where U = 5(1.2 — (z — asgn(u))?), and where a, b, s, and
u are the same as for (16).

Based on these examples and the work of Misiurewicz we
formally define the type-I generalized Chua equations.
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Definition (Type-I Generalized Chua Equations): An equa-
tion of the form

(1) a1 a2 0.0] [z —asgn(u)
y(t) | = |a21 az2 0.0 || y— bsgn(u) @D
2(t) 0.0 00 -—v z — sgn(u)

where a, b, and s are any real numbers, v = z — z, and each
a;; is a function of (x, y) such that the vector field

(zj(t)) _ [an(l‘, y) an(a, y) < —a

() azi(z, y) az(r,y) [\y—>b

defines a single scroll in R, will be called a type-I generalized
Chua equation.

III. TypE-II EQUATIONS

In the previous section we have seen one method for
extending the Chua equations based on using 2-D flows as
building blocks of double scrolls. In this section we use the
analysis of Section II to form a generalization in an entirely
different direction.

The role of the sigmoid function and the sgn function
in leading to a type-I generalized Chua equation which can
be analyzed in terms of a 1-D map suggests that there is
another direction of generalization for which, unlike the type-I
generalized Chua equations, the only nonlinearities are those
of sigmoid, piecewise linear, and sgn functions.

Definition (Type-II Generalized Chua Equations): Let the so-
lutions of the following vector ODE be unique in a bounded
region of R™:

T = A(z)(x — F(z)) (ID

where A(z) is an n X n matrix function of z, and F is a
mapping of R" to itself.

A type-1I generalized Chua equation is an ODE of the dbove
form in which the components of the matrix A and the vector
function F' are composed of finite linear combinations of
sigmoid functions, piecewise linear functions, or sgn functions.

In addition to the usefulness of this equation for analysis,
there are numerical advantages for modeling and simulation
in that we are able to generate simple maps that are easy
to evaluate on a computer and which have a wide range
of dynamics. In fact, from the following examples we may
conclude that we are able to construct a type-II generalized
Chua equation having almost any dynamics we desire.

The key to the following constructions is found in how
we view the various parts of the type-II generalized Chua
equation, (II). In duplicating the dynamics of a given vector
field, the matrix A can be chosen to be the linearization of
the given vector field at the nonzero fixed points. Hence if o
is a nonzero fixed point, then the matrix is chosen to be the
function of this point, A(zp), which is the linear part of the
vector field at the fixed point zo. Similarly, F' is chosen to be
a function of the fixed points, F'(z¢). For example, if there are
just three fixed points, say zy, 0.0, and —x0, a single sigmoid
or signum function will likely be sufficient to construct F.

When there are three fixed points, the fixed point at 0.0
need not play a direct role in the creation of chaos as shown
by the analysis in Section II. What is important is the presence

of at least two fixed points. Since, at this time, there is
only the beginnings of a theory for type-II generalized Chua
equations, we will use two examples to illustrate a general
method for the construction of a dynamical system. Our two
examples will be the Réssler dynamical system and the Lorenz
dynamical system. What we will do in the next subsection is to
construct type-II generalized Chua equations having dynamics
very similar to these two systems.

A. The Réssler Dynamics

The Rossler dynamics can be obtained from a type-II
generalized Chua equation as follows:
First, we write down the Rossler equations:

(t) 00 -1.0 -10| (=
g(t) | = [1.0 0398 00 ||y
A(t) 0.0 00 -40]\z

0.0

+ 0.0

20+ 22

Next, we determine the fixed points. There are two:

Ty = 2+ 1.7899 Yo = —.E0/0398 z20 = —Yo-

For reasons of convenience that will be clear shortly we write
I as

J}QIQﬂ:)\.

Conveniently, the coordinates of the two fixed points of the
Rossler equation can be expressed by a single parameter,
sgn(A), the sign of A.

Using the X notation the linear part of the vector field at
these fixed points is given by

0.0 ~1.0  -1.0
A= 1.0 0.398 0.0
(24 1)/0.398 0.0 2.0+

The function F(z) serves to define the fixed points of
the type-H generalized Chua equation. As noted earlier it is
determined by the fixed points of the Rossler equations. Hence
F is given by

(2.0 £ A)
—(2.0 £ 1)/0.398
(2.0 + 1)/0.398

F(z) =

depending on A.

One way of writing this in a way that removes the symbol
+ is to use a sigmoid or sgn function. We choose the sigmoid
function defined in (7). Doing this we rewrite F’ as

(2.0 + Ag(u))
—(2.0 + Ag(u))/0.398
(2.0 + Ag(u))/0.398

F(z) =
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where g(u) is as in (7) and © must now be chosen as a function
of (z, y, z) so that the vector field will equal the linear part of
the Rossler equation near each nonzero fixed point. In fact the
equation we construct will be linear in two regions determined
by the two fixed points of the Rossler equations. Unfortunately,
the function u must be chosen as u = z—y?, and we recognize
that how we arrived at this choice is not straightforward.
The analysis of [5] offers the best insights. But due to the
elementary level of our present theory we cannot say more at
this time. In the next example, the choice of « is more simple
to determine. At a later time we anticipate that there will be
a complete theory that determines u. The function u may be
thought of as a transition function since it defines a surface
in three spaces which separates the two fixed points, and for
which the equation we are constructing is a different linear

equation within each region. In the region where = > 2, the

vector field is determined by the fixed point where z = 2+ A.
When z < 42, the vector field is determined by z = 2 — .
As with (16), this surface provides the 2-D surface on which
a Poincaré map may be defined. In each of these regions, the
matrix A is also determined by these same conditions. One
way to write A in a formula without the use of symbol =+
is as follows:

0.0 ~1.0 ~1.0
A= 1.0 0.398 0.0
(2+ Ag(u))/0.398 0.0  —2.0+ Ag(u)

Combining F' and A according to (II) gives the desired
type-II generalized Chua equation.

A key factor in this construction is to note that the linear
part of the vector field varies with the fixed point, and hence
we forced the matrix A to vary accordingly by use of the
function g(u), which as before is defined in (7). In doing this
we made the matrix A function like the twist matrix used in
the twist-and-flip map definition [2].

B. The Lorenz Dynamics

We now produce the Lorenz-like dynamics from a type-II
generalized Chua equation. The Lorenz equations are

z(t) -10.0 10.0¢ 0.0 T 0.0
y(t) | = | 28.0 -1.0 0.0 y |+ | —zz
(1) 0.0 0.0 -2.67| \z Ty

The three fixed points are approximately

Ty = Yo = i8.48, zZg = 27.0
and (0, 0, 0).

The linear part of the vector field for a fixed point is given
by

-10.0 100 0.0
A= 1.0 -1.0 T
—Zo —Zo —2.67
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Fig. 3. Attractor for Lorenz-like dynamics in a type-II generalized Chua
equation.
and we choose F as
Tog(z)
F(z) = |zog(z)
27.0

We now generate the nonlinear matrix A from the linear
part of the vector field:

—-10.0 10.0 0.0
A= 1.0 —-1.0  zog(x)
~zog(z) —zog(z) —2.7

where, as in the Rossler map, g(x) is given by (7), and
~ = 3.0. Fig. 3 is the attractor for this map.

In this case, we were able to take u = z since the transition
from one linear region to the other takes place when z = 0,
that is the surface of transition is the y — z plane, and provides
the natural surface for defining the Poincaré map. It is routine
to replace the sigmoid with the sgn function and obtain a
completely piecewise linear Lorenz equation. In this equation,
the piecewise linear one, it should be possible to find the
1-D map that describes its dynamics numerically, and very
possibly analytically. Its similarity to the 1-D map obtained
from the axiomatic Lorenz equations will be of interest to
determine.
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