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ABSTRACT

We present a new method for the steady state analysis of
autonomous circuits with transmission lines and generic
nonlinear elements. With the temporal discretization of the
equations that describe the circuit, we obtain a nonlinear
algebraic formulation where the unknowns to be determined are
the samples of the variables directly in the steady state, along
with the oscillation period, the main unknown in autonomous
circuits. An efficient scheme to build the Jacobian matrix with
exact partial derivatives with respect to the oscillation period
and with respect to the samples of the unknowns is described.
To illustrate the proposed technique, the time—delayed Chua's
circuit is analized in its periodic zones.

1. INTRODUCTION

Several tecniques have been developed to determine the steady
state response of nonlinear autonomous circuits.

Shooting methods, developed in the time domain, try to
determine the circuit initial conditions that make zero the
transient response. In circuits which incorporate time delay
these conditions must be determined with a length equal to the
maximum time delay in the circuit. In autonomous circuits, the a
priori ignorance of the oscillation period is an added difficulty.

Methods developed in the frequency domain take advantage of
the circuit division into a linear and a nonlinear part to
efficiently solve the linear part. However, the nonlinear part is
generally best evaluated in the time domain, which makes it
necessary to take successive transformations between the two
domains.

In this paper we extend the discrete—time approach proposed in
[1] to nonlinear autonomous circuits with transmission lines.
The method is based on the formulation of the steady state
equations that describe the circuit in the time domain, without
any additional transformation. After discretizing these equations
approximating the derivatives and the time delays by means of a
linear combination of the samples of the discretized variables,
we get an equivalent formulation of the problem in matrix form.
The partial derivatives of the resulting equations with respect to
the samples of the circuit variables to be determined and the
oscillation period, the main unknown in autonomous circuits,
are obtained in an exact analytic form, allowing the efficient
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implementation of globally convergent resolution tecniques
based on modifications of Newton's method.

2. EQUATIONS FORMULATION

Consider an autonomous circuit where all the bias sources,
nonlinear elements and transmission lines have been extracted.
The simplified case, depicted in Fig. 1, with only one bias
source, one nonlinear element and one transmission line is
studied to achieve a greater insight in the formulation of the
equations. The generalization for a circuit with an arbitrary
number of these elements does not involve, conceptually, any
added difficulty.

Since the biport resulting from the extraction of the bias source
and the nonlinear element is linear, we may apply superposition
in the transformed domain, expressing the control variable x of
the nonlinearity in the form

X(s)=H (s, )F(X)+H,(s,¢" WV, (s) )]
and the desired output variable as
Y(s) = Hy(s,e" YF(X)+ H,(5,&" )V, (s5) 2
where  H,(s,e")=-N,(s,e"")/ D(s,e"). With this
notation we rewrite (1) as
D(s,e T )X (s)+ Ny (5, Y F(X)+ Ny (s, "W (s)=0 (3

It is worth emphasizing that Ni(s) and D(s) are bivariate
polynomials [2] of the following kind

n 2 .
P(s,e’T) = '_Z(‘,E{)p”‘ se™ 1G]

being n the order of the lumped linear multiport and 7 the delay
of the transmission line.
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Figure 1. Simplified distributed nonlinear autonomous
circuit with only one bias source, one nonlinear element
and one transmission line.

The polynomial P(s, ') applied to the Laplace transform Uf(s) of
a generic variable u(z) can be expressed in the time domain as

P, ()T 8 § p, LOKD).

- 5
i=0k=0 dti ©)

The discretization of (5) approximating the derivatives and the
time delays by means of a linear combination of the samples of
u(t), and the imposition of a periodic solution of period T, will
alow us to express (3) in matrix form and thus obtain a
nonlinear algebraic system of N equations and N+1 unknowns:
the period T and the N samples of the control variable x equally
spaced A=T/N.

3. EQUATIONS DISCRETIZATION

First we will discretize the operator defined by (5), and then we
will extend the result to the discretization of (3), made up of
terms formally equivalent to (5).

In the g—order Gear method the derivative is approximated at
the instant nA interpolating u(z) by a polynomial of degree g
fitted to the latest g+1 samples. Other discretizations are
possible [3].

Since the k7 seconds delayed function evaluated at the instant
nA, i.e. u(nA-kt), does not generally coincide with one of the
samples, its value is obtained interpolating u(t) by a polynomial
of degree g fitted to the sample subsequent to the instant nA-kt
and the g previous samples.

Thus, defining the vector of the samples of u(1)

T .
u=[u1,u2,---,uN] whith u, = u(nA)

d(u(t
we can compute the vector of the samples of -——( Z( )
¢
T
u= [ﬂl’ﬁz,"',ﬂ,\,] from
d g
i, 452 =2 U, ©
dt |;=pA =

and the vector of the samples of u(t —kT)
T
u, =[u“,uk2,--',ukN] from
g
u,, = u(nA —kt) = zz)d'k, Un_gy Q)

where gy is defined according to A and T as

QG AST< (g, +DA

and ¢, and d) are obtained from the polynomial fitting
procedure described above. For the subsequent calculation of
the Jacobian matrix, the dependence of the coefficients ¢', and
d'w on the period 7 must be stated explicitly. This dependence
turns out to be

.1 _N : i '
C,=Xcr=?cr and dkrzjzodri(ek)J

-q,A
where e, =£—%——

order of the Gear discretization used.

T
=N _]_"_q" , ¢y and dj depend only on the

Applying the discretizations (6) and (7), each operation defined
in (5) can be written as the product of a matrix P(T) by a vector
u. Indeed, we can compute the derivative of u(z) (i=1, k=0 in
(5)) as

du(®)) gN .
(‘;S )_&N o P, (T)u

where we define

P, (T) = cire(c'y ,¢'y ,-+5C', ’014+1""’0N—1)T 2% ®)
and C, independent of T, comes from
C=circ(co,c,,---,cg,OA,H,'-',ON_l)T ©
with the notation.
a, ay 4
circ(a(,,al,u-,aN_l)T = a.l a.(, oG
Ay-1 Gya " Qo

We can also compute u(t) delayed kT seconds as (i=0, k in 6))]

u(t = k) —E 5w, =P, (Du
where

. . . T
P, (T) =circ(0y,--- 0 d'yyrd'y, ,qu+g+1,--~,0N_1)

(10

q -1

and where the coefficients d'y, can be written as a polynomial in
the above defined e,

d'xo dow doy d()g (e, )O
d'y - dyy dy dlg . (ek)‘
d'ké' ds’" dsl o dgs (ek )

or in compact form
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d, (T)=De, (T) (11)
the matrix D being independent of both T and £.

Finally, the discretization of (5) results in the matrix

n 2
P(Tyu=3 3 p, P, (Du 12
i=0k=0
where it is possible to decompose Px(7) in terms of the matrices
defined in (8) and (10) as

P,'k (T)= Pio (T)P(yk (T) = (Pm (T))iPnk (T)- 13)

Multiplying by i matrices P1o(T) and by Po(T) corresponds to
taking the i—th derivative and delaying the function £t seconds.
Since these matrices are circulant, their product is commutative
and the result of this product is another circulant matrix.
Moreover, there are only g+1 nonzero elements in each row.
These properties are significant because they allow us to solve
the resulting system of equations, to be described next, at a little
computational cost.

4. RESULTING SYSTEM OF EQUATIONS

If we apply this idea to each of the products that appear in (3),
we obtain an equivalent formulation in the form

D(D)x+N,(Df(x) +N,(T)v, =0 (14)

where each matrix, once the order of discretization to be used
has been chosen, only depends on T. The matrices Ni(7), Nz2(T)
and D(7) are a linear combination of Pu(7), similar in form to
P(7) defined in (12).

Since in autonomous circuits the period T is unknown, the
system (14) has infinite solutions, which only differ on an
arbitrary time delay. To avoid this problem, one of the samples
of the control variable x is fixed to a value which, a priori, the
solution is expected to take. Thus, from now on we will assume
that the first sample of x is known.

In the case of autonomous circuits the vector v, comes from the
bias sources, i.e. all the samples have the same value. Thus, the
derivative operator on v is zero and the time delay is a neutral
operator. So, N2(T)vs = bvs , where b is a constant.

5. COMPUTATION OF THE JACOBIAN
MATRIX

Efficiently solving (14) requires to use globally convergent
methods based on Newton's method [4]. So we need to know the
dependence of each one of the N equations with respect to the N
unknowns of the system (7, x2, x3, ... xy). To compute the
derivative with respect to the period 7, we will previously
compute the Jacobian matrix of (12). Since the samples of u(t)
do not depend on the period 7

dP(Mw &2  dP ()
o CEEP T g W (15)

Using (13) and the chain rule we express

d(P, (7)) _ d(P,,(T)) d(Py, (T)
ar - ar DR
or in compact form
Py (T) = Py (T)Py, (T) + Py (T)Py, (T) - (16)

The computation of the derivative that appears in the first
product is immediate since

L i
P _ﬂg_?__)_ill 1
i daTr - T i0

For the computation of the derivative which appears in the
second product, we must recall the dependence of Pox(7) on
ex(7) according to (10) and (11). First we define

) H .l " T
P, (T) = Clrc(oo,"',oqk N7 AN *e 5qu+g+2a" +0y)

(18)
where
. o - dd (T))’
dk(T)=[dk07dk1""’dkg]=——jf—_” (19
Now, using (11)
y de (T)) -1
dk (T) = D——;:_T—— = -TTDlek (T) (20)
where
0 0 0 0
g 1 O :
Q=0 2 2 0 @
P T . 0
0 - 0 gg, ¢

Once the matrices P, (T) have been computed, the
computation of NI(T), N ,(T) and D(T) is straightforward

since Ni(7), Na(7) and D(T) of (14) are linear combination of
the matrices Pix(7). Thus, the first column of the Jacobian
matrix is expressed analitically

JC.D=D(T)x+ N, (D) + N, (T)v,. (22)

The rest of the columns of the Jacobian matrix are easily
determined since only the vectors x and f(x) depend on the N-1
unknown samples, and their partial derivatives are immediate.
So, the remaining columns of the Jacobian matrix are expressed
analytically

J(,2NY=D(2N)+N,(,2N)F'(x) 23)
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with

F'(x) =diag(f'(xy),-+, f'(xy)) (24)
where
d
f|(xk) = (j;ix» X=X (25)

k

6. APPLICATION TO THE
TIME-DELAYED CHUA'S CIRCUIT

The described technique has been applied to the determination
of the steady state of the control variable v in the time—delayed
Chua's circuit shown in Fig. 2. The normalized values of the
parameters which appear in the circuit, with four significant
digits, are Zy=0.4243, 1=4.423, R=13 and C=l1. The i-v
characteristic of the nonlinearity is depicted in Fig. 3 with V=1,
V=8, my=-0.7576, m;= —0.4091 and m,=4.546.

The second—order Gear discretization has been used. For this
discretization the values of the coefficients ¢, and d;, are

o 15 1 -15 05
c=|¢ [={-2];D=|0 +2 -1
C, 05 0 -05 03

The initialization of the iterative process has been made with
N=64 samples of a sinusoidal signal of period Ti=15s and
amplitude A=10 V, obtaining the waveform depicted in Fig. 4
of period 7=20.09s and maximum symmetric amplitude
A=8.638 V which corresponds to a limit circle in the phase
plane. The results coincide with those obtained using PSpice.

7. CONCLUSIONS

A new method to determine the steady state response of
nonlinear autonomous circuits with distributed parameters has
been presented. The method is based on the time—domain
discretization of the equations that describe the circuit,
transforming the initial problem, the solution of a nonlinear
difference differential system of equations, into the solution of a
nonlinear algebraic system of equations.

Figure 2. A modification of the Chua'’s circuit that
results in the time—delayed Chua's circuit.

Figure 3. The i—v characteristic of the piecewise linear
resistor of the time—delayed Chua's circuit.
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Figure 4. Two periods of the waveform obtained using
the described algorithm, which corresponds to a limit
circle in the phase plane.

To efficiently solve the obtained system of equations, globally
convergent algorithms based on Newton's method have been
implemented. The exact analytic computation of the required
partial derivatives has been described in detail.

To validate the method, it has been applied to the determination
of the steady state response of the time—delayed Chua's circuit in
one of its periodic windows, a paradigmatic example of the kind
of circuits to which this paper refers. The results coincide with
those obtained using integration techniques, without having to
compute the response until the transient dies out.

In the future, we intend to extend the described method to allow
the inclusion of RLCG transmission lines [S] with frequency
dependent parameters.
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