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ABSTRACT

In this paper we present a new technique to compute
the steady state response of nonlinear autonomous
circuits with RLCG transmission lines. Using
multipoint Padé approximants, instead of the commonly
used expansions around s=0 or s—eo, accurate,
low—order lumped equivalent circuits of the
characteristic  impedance and the exponential
propagation function are obtained in an explicit way.
Then, with the temporal discretization of the equations
that describe the transformed circuit, we obtain a
nonlinear algebraic formulation where the unknowns to
be determined are the samples of the variables directly
in the steady state, along with the oscillation period, the
main unknown in autonomous circuits. An efficient
scheme to build the Jacobian matrix with exact partial
derivatives with respect to the oscillation period and
with respect to the samples of the unknowns is
obtained. Steady state solutions of the Chua’s circuit
with RLCG transmission line are computed for selected
circuit parameters.

1. INTRODUCTION

Several techniques have been developed to
determine the steady state response of nonlinear
autonomous circuits. Shooting methods, developed in
the time domain, try to determine the circuit initial
conditions that make zero the transient response. In
circuits, which incorporate time delay, these conditions
must be determined with a length equal to the maximum
time delay in the circuit. In autonomous circuits, the a
priori ignorance of the oscillation period is an added
difficulty. Methods developed in the frequency domain
take advantage of the circuit division into a linear and a
nonlinear part to efficiently solve the linear part.
However, the nonlinear part is generally best evaluated
in the time domain, which makes it necessary to take
successive transformations between the two domains.

Coming to the main point of this paper, the discrete
time approach (DTA) to analyze lumped nonlinear
autonomous circuits proposed in [1] has been recently
extended to nonlinear autonomous circuits with ideal
transmission lines [2]. The method is based on the
formulation of the steady state equations that describe
the circuit in the time domain, without any additional
transformation. After discretizing these equations,
approximating the derivatives and the time delays by
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means of a linear combination of the samples of the
discretized variables, we get an equivalent formulation
of the problem in matrix form. The partial derivatives
of the resulting equations with respect to the samples of
the circuit variables to be determined and the oscillation
period, the main unknown in autonomous circuits, are
obtained in an exact analytic form, allowing the
efficient implementation of globally convergent
resolution techniques based on modifications of
Newton's method [3]. The purpose of this paper is to
extend this technique to allow the inclusion of RLCG
transmission lines.

Some of the methods proposed to analyze circuits
with Jossy and dispersive transmission lines are based
on the calculation of the impulse response of the
transmission line. Then, convolution techniques are
applied to determine the response until the transient
dies out. These algorithms are inefficient when the
transient decays very slowly compared with the period
of the steady state response, resulting in excessive
computing time.

To overcome this difficulty, Chang [4] proposes an
approximation of the characteristic impedance

R, +sL
Z = [—d "7d 1
o(s) \J G,+sC, h

and the exponential propagation function
F(s)= e—l,’(R,,HL,l Gg+sCp) 2)

using a lumped circuit. With this approach, the resulting
circuit can be analyzed using conventional techniques.
However, Alonso et al. [5] showed that the order of the
lumped equivalent circuit of the exponential
propagation function can be dramatically reduced using
an ideal transmission line to model the major part of the
physical delay. As a result, it is much more efficient to
express the propagation function as

F()=F.()e ", 3)
with F, the irrational function to be approximated using
a lumped circuit and

e = e'-“’ LiCy (4)

the delay of and ideal transmission line. This idea is
also used in [6].

There are different ways to approximate the
functions Z, and F,. The approach proposed in [5]
consist in finding an approximate rational function
using an iterative minimization algorithm. Once the
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rational function has been obtained, conventional
techniques to synthesize the equivalent circuit are used.
The explicit method to approximate Z, and F,. described
in [4] makes use of the Padé approximation at s=0 or
s—< depending on the parameter values R, L, C and G
of the transmission line. However, errors are
unnecessarily high at the opposite frequency s—ee or
s=0, respectively.

To overcome this difficulty, in this paper multipoint
Padé approximants [7] are used, approximating these
functions over the whole frequency axis. Once the
approximations are obtained, they are directly included
in the DTA formulation without having to explicitly
synthesize the corresponding circuit. At the same time,
in [8] it has been showed that the procedure to compute
the multipoint Padé approximants allows us to
efficiently include frequency dependent resistance
parameters, including kVs terms, accounting for
skin—effect losses.

2. APPLICATION TO CHUA’S CIRCUIT
WITH RLCG TRANSMISSION LINE
The described technique has been applied to the

determination of the steady state of the control variable

v in Chua's circuit with transmission line shown in

Fig. 1. The values of the circuit parameters, the same as

in [6], are Z;=0Q, R=0.55%/m, L~=0.2375 pH/m,

G~0.1mS/m C=95pF/m, I=3m, C=1pF and

R=1.83 kQ. The i-v characteristic of the nonlinearity is

depicted in Fig. 2 with me=-0.9 mS, m;=-0.5 mS and

v,=1V. For computation purposes these values have
been normalized with Ry=1 kQ and 7;=60 ns.
The RLCG transmission line of this circuit is
equivalent to the two-port shown in Fig. 3, where
E(s)=F.(s)e"(2V, — E,)>» *)
E,(s)=F.(s)e" (2V,-E,)- 6)

For the selected circuit parameter Z;=0 Q, v;=0 V, the

output port of the RLCG line can be characterized as a

one-port with equivalent impedance

1+ F!(s)e™ ™)

Z(s,e™¥)=2Z,(s -
( )=Z,( )1_ F ()™

+

mi

Fig. 2. The i—v characteristic of the piecewise linear
resistor of Fig. 1.
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With this expression, and substituting the nonlinearity
by a controlled source, the circuit of Fig. 1 is
transformed into the circuit of Fig. 4. Following DTA
method described in [2], the first step consists in
obtaining the equilibrium equations where the control
variables of the nonlinearities are expressed as a
function of the controlled and bias sources of the
circuit. The equilibrium equation of the considered
circuit is

AV (s) + B()HI (V) =0, (8)

with

A(s)=1+(R+Zy)Cs +(L+(R-Z,)Cs)F e,  (9)
B(s)=(R+Z,)+(R-Z)Fe™" . (10)

However, the DTA method can only deal with A and B
being bivariate polynomials of the type

w2
P(s)= Ezp,ks'e_”k? > (11)

i=0 k=0
where n is the order of the lumped linear subcircuit. As
Zy and F, are irrational functions, an approximation
with the following rational functions is essential to
apply the DT A method.

Z.(s) Za,si

Zy()=20= © == 12)
b ibjsj
=0
’icis‘
ORI S, (3)

- F Ny .
11(5) zdjs']
j=0

Choosing n=1 and ng=1 there are four coefficients
and one degree of freedom, so it is possible to fix three
conditions of coincidence between the original and the
approximated rational function. To approximate over
the whole axis frequency the best results are obtained
fitting the coincidence of the values of the original and
the rational function at both ends of the axis frequency
and at a point about which the functions are symmetric,

that is
520, s—eo and s= |Ral4. (14)
L,C,

i=f()

Fig. 4. Substitution of the RLCG line by its equivalent
impedance and the nonlinearity by a controlled source.



Thus, substituting the first order approximation of the
characteristic impedance
Z,(s) a,+as

Z,(s)=
o) Z,(s) by +bs (15)
and the propagation function
F(s)=F.(s)e™ = LACH P RALE TS s (16)
£, (s) d, +d;s

in (9) and (10), and reorganizing the terms, the
equilibrium equation
DSV (s) + E(s)I(V) =0 (17
is obtained, with
D(s)=(Z, +(RZ, + Z,)Cs)F} +

(z, +(RZ, -Z,)Cs)F 2"

q

(18)

E(s)=(RZ, +Z )F} +(RZ,~Z,)F ™. (19)
It should be noted that the approximations (15) and (16)
need a number of dynamic elements equal to 11,9 and ng
respectively. Thus, n, the order of the lumped linear

subcircuit which appeared in (11), takes the value

after the approximation of the RLCG transmission line
(note that using an ideal transmission line we would
obtain n=1). :

Once D and E are polynomials of the type indicated
in (11), the DTA method can be applied with no
limitation. The expression (17) translated to the time
domain is a nonlinear difference differential equation.
This equation is discretized, so that each one of the
operators derivative and delay are approximated as a
linear combination of g+1 samples of the variables
acted upon by the operator, being g the order of the
discretization. The Gear based criterion used to obtain
these approximations is detailed in [2]. Summarizing
the method, it transforms each variable into a periodic
vector of N samples, the operator s into a matrix Py of
dimensions NxN and the operator ¢ into a matrix
Py, of dimensions NxN. So, a nonlinear algebraic
equation is obtained, constructed with only two
different matrices. These matrices are circulant and
sparse, since only exist g+1 nonzero elements in each
row of the matrix, properties that can be exploited to
reduce the computation time.
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Fig. 5. Modulus (above) and phase in degrees (bellow)

of Z, as a function of normalized frequency.
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Fig. 7. Modulus (above) and phase in degrees (bellow)
of F, as a function of normalized frequency.
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Fig. 6. Relative error (%) in the modulus approximation
(above) and absolute error degrees in the phase
approximation (bellow) of Z; with n=1.

Fig. 8. Relative error (%) in the modulus approximation
(above) and absolute error degrees in the phase
approximation (bellow) of £, with ng=1.
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Fig. 9. Two periods of the waveform v, obtained using
the described algorithm.

The Jacobian matrix of the nonlinear system of
equations —which includes de partial derivatives with
respect to the oscillation period— can be analytically
computed, allowing the efficient implementation of
globally convergent resolution techniques based on
modifications of Newton methods.

3. SIMULATION RESULTS

The simulation results are as follows. The functions
Zy and F,, whose modulus and phase are represented in
Fig. 5 and Fig. 7, have been approximated on n4=1 and
ng=1 with the error represented in Fig. 6 and Fig. 8.
The results using higher values of ny4 and np, do not
differ from the ones obtained next. A second-order
Gear discretization has been used to approximate the
derivative and delay operators. The initialization of the
iterative process has been made with N=32 samples of a
sinusoidal signal, obtaining the waveform depicted in
Fig. 9 and its corresponding phase plane depicted in
Fig. 10. The results show excellent agreement with
those obtained using the technique in [6], without
having to compute the response until the transient dies
out, i.e. with a much lower computational cost. This
agreement also shows that the multipoint Padé
approximants offers an equivalent performance with
lower approximant order.

4. CONCLUSIONS

A new method to determine the steady state
response of nonlinear autonomous circuits with RLCG
transmission lines has been presented. To overcome the
difficulty of analyzing lossy and dispersive transmission
lines, multipoint Padé approximants are used in the first
stage. Thus, the original circuit is transformed in a
lumped circuit with ideal transmission lines. In the next
stage, the equations that describe the circuit are
discretized in the time domain, transforming the initial
problem, the solution of a nonlinear difference
differential system of equations, into the solution of a
nonlinear algebraic system of equations.
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Fig. 10. Phase plane, v, —v, of the solution depicted in
Fig. 9.

To efficiently solve the resulting system of
nonlinear equations, globally convergent algorithms
based on Newton's method have been implemented.
The exact analytic computation of the required partial
derivatives can be easily carried out.

To validate the method, it has been applied to the
determination of the steady state response of Chua's
circuit with transmission line in one of its periodic
windows. The results coincide with those obtained
using integration techniques, with the advantage of not
having to compute the response until the transient dies
out.
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