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ABSTRACT

This paper describes a computer program for the time-domain a-
nalysis of one-dimensional arrays of Chua’s oscillators. The im-
plemented algorithm exploits the local connectivity, typical of cel-
lular nonlinear networks, and the piecewise linear behavior of the
v-1 characteristic of the nonlinear elements to obtain an analyti-
cal expression of the solution. Examples demonstrate the accuracy
and the efficiency, in terms of cpu-time, of the proposed approach
with respect to standard simulation tools as SPICE.

1. INTRODUCTION

Cellular Nonlinear Networks (CNNs) [1, 2] are regular arrays of
identical cells, each of which generally contains only one nonlin-
ear memoryless element modeled by a piecewise linear (PWL) re-
sistor. They present several applications in the fields of image pro-
cessing and pattern recognition. Furthermore, they are useful for
modeling nonlinear wave phenomena in physics and biology [2].

At present, the only rigorous theoretical results on CNN dy-
namics concern with either the stability of restricted classes of net-
works or the dynamic behavior of networks composed of a small
number of cells [1]. In a few cases, some approximate techniques,
based on spatio-temporal spectral approaches, have been devel-
oped to accurately predict several dynamic phenomena (3, 4, S, 6]:
these techniques exploit the fact that the interconnections between
the cells of a CNN are local and described by space invariant tem-
plates.

As a consequence, most of the CNN applications and dynamic
properties have been revealed through extensive numerical simula-
tions. The most basic type of circuit simulation is the computation
of all the relevant electric variables as functions of time, starting
from given initial conditions. In order to get a global picture of this
time evolution with reasonable confidence, the whole state space
has to be covered with a fine grid of initial conditions. In other
words, a huge amount of time domain solutions have to be cal-
culated for the same circuit. Furthermore, one often is interested
in the qualitative aspects of the solutions as the parameters of the
circuit are varied, which increases the volume of simulations even
more.

These considerations show clearly that the qualitative analysis
of circuits calls for efficient simulation tools. To this end, one can
exploit the above mentioned local connectivity for time-domain
simulations too. In fact, restricting ourselves to the class of PWL
CNNg, it gives rise to band Jacobian matrices, from which the
eigenvalues and the eigenvectors in each region of linearity can be
easily and accurately determined. This allows us to simulate large
arrays of CNNs by extending the technique already developed in
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[7]. 1t consists of the following two fundamental steps:

(a) in each region of linearity, the solution is formulated in terms of
natural modes and calculated analytically, as an explicit function
of time, and evaluated for a sequence of time values; each evalua-
tion has basically the same precision and thus the numerical errors
do not accumulate as they may in numerical integration methods.
(b) the transition time instants between any pair of adjacent linear
regions crossed by the solution are determined; this is the most
numerically critical task. In fact, when the circuit exhibits chaotic
behavior, the inaccuracies of the crossing points are amplified just
as the errors made at each step of a numerical integration algo-
rithm are. However, there are much less boundary crossing than
time steps in numerical integration. Furthermore, the accuracy of
the crossing time points can reach, in principle, the precision of
the computer arithmetic.

Based on the above ideas we have developed a program, called
CNNA (Cellular Nonlinear Network Analysis), for the simulation
of one-dimensional (1D) CNNs with PWL elements. At the mo-
ment, the popular Chua’s oscillator is used as cell [8], but other
kind of cells will be added in the future. It is based on the al-
gorithm presented in [9] and reviewed in the next Section. The
circuit, shown in Fig. 1, is described by assigning the number of
cells, the element values of the Chua’s oscillator, the values of
the coupling and terminating conductances, and the values of ini-
tial conditions. The PWL resistor characteristic is specified by its
breakpoints. When the transient analysis is terminated, a graphic
output allows the researcher to examine each of the node voltages
controlling the PWL resistors.

Due to the above considerations, CNNA is expected to use
less CPU time and to give more accurate results than those obtain-
able by general purpose circuit simulation tools, as SPICE, based
on numerical integration of nonlinear differential equations. In the
last Section, an example is presented to show possibilities and lim-
itations of CNNA as compared to standard circuit simulators.

2. REVIEW OF THE ALGORITHM

We consider 1D arrays with (/X — 1) identical series branches and
K identical shunt branches as shown in Fig. 1. Each series branch
is a simple linear resistor of conductance G5, whereas each shunt
branch is the Chua’s oscillator shown in Fig. 2 [8] and represents a
cell of the array. The Chua’s oscillator consists of the parallel con-
nection of a third-order dynamic linear one-port (with admittance
Y (s)) and a PWL two-terminal resistor (Fig. 2). The characteristic
of the PWL resistor considered in this paper is shown in Fig. 3 [8]
and is represented by

tvk(t)) = Griryvs(t) + In) ®
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Figure 1: 1D array of Chua’s oscillators

where h(k) denotes the segment of #(-) on which the k-th cell
operates, and G),(x) and Iz are the parameters of the Norton
model related to this segment. Finally, the 1D array is terminated
by two linear resistors of conductances G, and G k.
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Figure 2: Chua’s oscillator
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Figure 3: Characteristic of the PWL resistor of Fig. 2

The time-domain behavior of the whole circuit of Fig. 1 is
described by 3K state variables. However, the circuit is best stud-
ied by resorting to the voltages v1(t), va(t). ..., vc(t) across the
PWL resistors. In fact, for such variables and in each of the nX
possible linear regions of the circuit (ns being the number of seg-
ments of the characteristic of Fig. 3) the following set of K linear
3rd-order differential equations holds [9]

P(D)[v(t)] = AQ(D)[w(t)] — g1 )

In the above equations, v(t) = [v1(t) v2(t) ... vr(t)]T,
I= Un(1y Inez) --- Ih(K)]T, D represents the time derivative
operator, P and (2 are the numerator and denominator polynomials
of Y'(s), respectively, which are specified by the following coeffi-
cients

po =G

p1 = C1 + GRC, + C1GRyL

p2 = CiGL+ CiCR., + GLC,

ps = C1C2L 3)
q =GRy +1

q1 =CoRy, + GL

¢ =CL

and A is the tridiagonal symmetric matrix defined by

[A}11 = —(Gs + Gryy + G1)

[A]lxr = —(Gs + Grxy + Grx)

[Aler = —(2Gs + Gr)), k=2,3,..., K —1
[Al(k—1yr = [Alk(r+1) = Ga

“

The closed-form solution of (2) in every linear region can be
written as

K
v(t) = Z“’k(cklek“t + Crae™2" + Ciae™ ") + v (5)

k=1

In the above equation, vo is the (virtual or actual) equilibrium
point of the linear region (i.e the solution of the algebraic equa-
tion obtained from (2) by setting D = 0), Agm, m = 1,2,3, are
the solution of the X third-order algebraic equations

P(Akm) = MQkm) =0, k=1,2,..., K )

where Ax is the k-th eigenvalue of matrix A, and wy is the corre-
sponding eigenvector. Solution (5) holds because the Ak, are dis-
tinct [9]. In summary, the piecewise solution algorithm amounts
to the computation of the 3K natural frequencies Agm (K = 1,2,
..., K;m = 1,2,3) via the evaluation of the eigenvalues of the
tridiagonal K’ x K symmetric matrix A and the solution of the
K 3rd-order algebraic equations (6). Coefficients Cim, (k =
1,2,...,K; m = 1,2, 3), instead, are obtained by applying the
continuity properties of v(t) every time the circuits enters a new
linear region [9].
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As an example, we consider a chain of & = 20 Chua’s circuits
with G = Gx = 0. Each cell is described by the normalized
parameter values G = 1, C» = 1, C; = 0.125, L = 0.0667.
Moreover we assume that the nonlinear characteristic of Chua’s
diode is of the type shown in Fig. 3 and given by:

(vy=v+ 13—4(|v +2.5| — |v — 2.5|)
3 @

- llv+1~lv—-1])

It is easily shown that, with this choice of parameters, in absence
of coupling (i.e. G. = 0), each cell may exhibit only two limit
cycles: they mainly lies in the upper and in the lower part of the
characteristic (7) and will be denoted with +1 and —1 respectively.
Therefore for G, = 0 the entire network presents 2% attractors,
that will be denoted by a sequence of £1.

As reported in [10, 11], by increasing the coupling conduc-
tance G, the following phenomena occur: first, all the attrac-
tors represented by a string of the type ... +1,—1,+1... and
...—1,41,—1,... disappear; then the whole system becomes
chaotic. Such phenomena have been observed through the pro-
gram CNNA.

In order to evaluate accuracy and speed of CNNA we have
compared it with SPICE. As a case study we have considered two
coupling conductances: G = 0.00625 (which give rise to a peri-
odic attractor) and G, = 0.025 (which generates a chaotic attrac-
tor). In both cases, for v«(0), 7 (0) and ¥ (0) (see Fig. 2) we have
chosen the following initial conditions:

ve(0) = 1.1V, %(0) = L.1 A, 9,(0) =0.1V
for k=1,4,5,7,811,14,15, 18,19, 20

vk(0) = —1.1V, ix(0) = —1.1 A, 54(0) = —0.1 V
for k=2,3,6,9,10,12,13,16,17

The comparison between CNNA and SPICE outputs is sum-
marized in Table 1 (for G, = 0.00625) and 2 (for G, = 0.025),
where the voltage across the capacitor C; of the 15-th cell (v15(t))
is reported for different time instants. The first column of both
the Tables reports the time instants in which the voltage vq5(t)
is evaluated; the second column reports the SPICE results with
automatic time-step size; the other columns refer to SPICE with
different time-step sizes; finally the last column reports the CNNA
results. The last row contains the cpu-time (in seconds) needed
for the simulation. The waveforms v15(t) for Gs = 0.00625 and
for G, = 0.025 computed by CNNA are shown in Figs. 4 and 5,
respectively.

The following considerations hold about the simulation values
reported in Table 1 and Table 2:

(a) for the periodic attractor case (Table 1), the accuracy of SPICE
becomes comparable to that of CNNA for a time-step equal to
0.0003 s, that requires a cpu-time of 8702.21 s. (i.e approxi-
mately 60 times the cpu-time required by CNNA).

(b) for the chaotic attractor case (Table 2), the accuracy of SPICE
(after 100 s) is never comparable to that of CNNA even for very
small time-steps. However it is worth noticing that by decreas-
ing the SPICE time-step the convergence to the CNNA results
improves: this confirms that CNNA results are very accurate
also for the simulation of chaotic waveforms.

Table 1: Comparison between values of vis(t) (expressed in V)
computed by SPICE and by CNNA for G, = 0.00625 (periodic
attractor). The last row shows the cpu-time in seconds

t SPICE CNNA

s auto 0.01s 0.001s | 0.0003s

0 1.1 1.1 1.1 1.1 1.1

10 1.30063 | 1.54049 | 1.54117 | 1.54118 | 1.541181
20 1.71239 | 1.46454 | 1.46779 | 1.46782 | 1.467820
30 1.33912 | 593554 | 591177 | 591157 | .5911553
40 1.74813 | 1.76414 | 1.75936 | 1.75932 | 1.759316
50 630826 | 1.49496 | 1.50346 | 1.50353 | 1.503537
60 1.96359 | 556479 | .552603 | .552570 | .5525663
70 607552 | 1.74500 | 1.73642 | 1.73634 | 1.736328
80 1.96551 | 1.45413 | 1.46789 | 1.46802 | 1.468037
90 721497 | 587609 | .580656 | .580589 | .5805820
100 | 1.86736 | 1.82621 | 1.81579 | 1.81569 | 1.815683
Cpu | 10 226 2078 8702 145

Table 2: Comparison between values of vis(¢) (expressed in V)
computed by SPICE and by CNNA for G, = 0.025 (chaotic at-
tractor). The last row shows the cpu-time in seconds

t SPICE CNNA

s auto 0.01s 0.001s | 0.0003s

0 1.1 1.1 1.1 1.1

10 1.11975 | 1.58039 | 1.58067 | 1.58067 | 1.580669
20 1.10622 | 1.24046 | 1.24333 | 1.24335 1.243353
30 1.52389 | .499709 | .498043 | 498027 | .4980259
40 940608 | 1.46026 | 1.44971 | 1.44966 | 1.449657
50 960284 | 1.33948 | 1.31740 | 1.34702 | 1.347336
60 1.63789 | .670158 | .589809 | .619336 | .6197242
70 538656 | .868835 | .939869 | .964861 | .9649737
80 1.36089 | 1.44907 | 1.45168 | 1.44442 | 1.444262
90 1.27642 | 1.28212 | 1.63072 | 1.59282 | 1.592374
100 | .886548 | .827604 | 1.08769 | 1.29559 | 1.298076
Cpu | 11 218 1939 6706 164

4. CONCLUSIONS

We have developed a program, named CNNA, for the analysis of
celiular nonlinear networks composed by identical cells, each con-
taining only one PWL resistor . It is more accurate than general-
purpose simulation tools based on numerical integration, because
the solution is computed exactly in each linear region, according
to the algorithm developed in [7]. Moreover, by exploiting the lo-
cal connectivity of the structure, which results in a band Jacobian
matrix, it allows the analysis of large networks that cannot be dealt
with by [7]. Finally, it uses the identity of the cells to accelerate
the calculation of eigenvalues.

Extensive comparisons have proved that CNNA is more accu-
rate and fast than SPICE, for the simulation of both periodic and
chaotic attractors. Presently, CNNA concentrates on the particular
case of 1D arrays of Chua’s oscillators. However, it can be easily
extended to other kind of PWL cells and to include non reciprocal
coupling. Such extensions are under development along with the
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Figure 4: Time waveform of the voltage across the capacitor Cy of the 15-th cell, for G« = 0.00625.
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Figure 5: Time waveform of the voltage across the capacitor Cy of the 15-th cell, for G = 0.0250.

study of bifurcation processes.
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