1512

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 12, DECEMBER 1988

The Double Hook

PHILIPPE BARTISSOL anp LEON O. CHUA, FELLOW, IEEE

Abstract —This paper describes a new strange attractor exhibited by the
same dynamical equations governing Chua’s circuit [1], [9] but with a
totally different parameter set. The main difference between the new
double hook attractor (see the orange contour in Fig. 11(a)) and the double
scroll is that the vector field of the new attractor has three real eigenvalues
at the origin, as opposed to the one real and the two complex eigenvalues
of the double scroll. We focus on the circuit realization of this attractor
and reconcile our experimental observations with theoretical predictions
and computer simulations of its structure.

I. INTRODUCTION

The Double Scroll

HE double scroll attractor [2] has been observed in
Tthe circuit of Fig. 1(a), whose only nonlinear element
is a three-segment piecewise-linear resistor, with v—i char-
acteristic as shown in Fig. 1(b). The dynamics of Chua’s
circuit are described by

Ve,
G di =G (ve,~ ve,)—8(uc,)

dUCz )
Cz—(;;— = G(UCl - UC2)+ ip
di;

dt ve,

(1.1)

where g(-) is the piecewise-linear function in Fig. 1(b),
defined by

1
g(vg) =moup+ 5(""1_ mo)‘”n + B,|

(1.2)

1
+ E(mo_ml)“)/z— B,|.

Fig. 2 shows the double scroll attractor [2] observed by
solving (1.1) with

1/C, =9,

my=-0.5,

1/C,=1, 1/L=17, G=07,

m=-08, B,=1. (1.3)
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Fig. 1. Chua’s circuit. (a) Circuitry. (b) Characteristic of piecewise-
linear resistor.

Fig. 2. Double scroll computer simulation. Runge-Kutta integration
routine was iterated 10 000 times, with initial conditions: uc, (0) =
0.15264, v.,(0) = —0.02281, i;(0) = 0.38127. (a) Projection onto the
(iz, ¢, )-plane. (b) Projection onto the (i, uc,)-plane. (¢) Projection
onto the (vc,» Uc, )-plane.
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Fig. 3. Computer simulation of the Double Hook dimensionless equa-
tions (2.3), associated with the parameter set of (2.6). Runge-Kutta
was iterated 10 000 times, with initial conditions: xo=0.01, 3, =0,
zo="0. (2) Projection onto the (x,y)-plane (or (v,i,,)-plane). (b)
Projection onto the (x, z)-plane (or (v, iz,)-plane). (¢) Projection onto
the (y, z)-plane (or (iz,, iz, )-plane).2

The Double Hook

The double hook attractor is a new strange attractor
displayed by the same system (1.1) but with the following
parameter values:

C,=—00647, C,~03180, L=-0.3005,
mg=—0.5013, m,=~—1.3475,

G =0.539,
B,=1. (1.4)

The name “double hook” is chosen to call attention to the
geometrical structure of the cross section through the
origin (see the orange contour in Fig. 11(a)), which resem-
bles two oppositely pointed “hooks,” joined together on
one side.

Fig. 3 shows the new attractor corresponding to this set
of parameter values with an appropriate time scaling. This
simulation has been obtained by computing the dimension-
less form of (1.1).

Note that the most significant difference between the
two parameter sets (1.3) and (1.4) is that the circuit giving
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Fig. 4. Negative impedance converter. (a) I-NIC (V;=V;, V is un-
changed). (b) V-NIC (I;=1,, I is unchanged). Let us call Z the
impedance of the initial device (Z=¥,/I,) and Z' the impedance of
the final device (Z’'=V, /I,). In both, Z’'= — (R, /R,)Z. (Note that if
Z is a resistor, there is no difference between an I-NIC and a V-NIC,
and if furthermore, R, = R,, then [, = I, with the notations of (2).)

the new attractor requires a negative capacitor and a
negative inductor.

The realization of such negative devices is not easy.

One technique for synthesizing negative capacitance, or
negative inductance, is to use a Negative Impedance Con-
verter (NIC) [3] and a positive-valued capacitance or in-
ductance. One can realize an NIC in two different ways as
shown in Fig. 4(a) and (b). In each case, the impedance
seen across port 1is —(R,/R,)Z.

However, using NIC’s with capacitors or inductors can
cause problems. Besides stability and saturation problems,
which one can solve respectively by inverting the polarity
of the operational amplifiers and scaling the system, one
also has to account for the frequency dependent behavior
of a real NIC when used with a dynamical element, ie., a
capacitor, or an inductor.

II. PHYSICAL REALIZATION AND OBSERVATION
Circuit Realization

In order to avoid the problems associated with the
physical realization of negative dynamical elements, we
preferred to rewrite the equations in order to obtain a
circuit using NIC’s exclusively associated with resistors,
like the one used in obtaining the double scroll, which we
reproduce in Fig. 5(a) for convenience. Let us start with
(1.1) considering only positive parameter values, so that
the equations corresponding to the circuitry of Fig. 1 can
be rewritten as follows, with g(-) of (1.2) unchanged:

dve,
C— = G(vq— UC2)+ 8(Uc1)

dt
de2 ]
G, 2 =G(UC1— sz)+zL
dip
; = UC;' (2.1)
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Fig. 5. Chaotic circuits. (a) Circuit for observing the double scroll attractor. (b) Circuit for observing the double hook
attractor.

Defining the new variables

ip =iy
iy, =Gy,
ve = Gug, (2.2)
and the new parameters
L,=GL
G
Ly=—
26
c=& 23
= (23)
we obtain
dv . ,
@ —ig,— 8'(vc)
diy, _ )
2T =vc— R(i,,—ig) (24)
diy, _ ) )
Lth = R(th— le)+ RIL1

where R =1 and g'(v.) = — vo — g(ve) has the form
] .
g'(ve) =mppe+ E(m{ —mg)loc + B,|

1
+ E(m{,— m{)|ve— B,l. (2.5)

Note that

LA, —_
my=-1-m,

m{=—-1-m,. (2.6)
Therefore, by a rescaling of the system, the parameter set
(1.3) becomes, for the new equations (2.5):

L,=0.162, L,=05%, C=0.120, R=1

my=-007, m{=15, B, =1 (2.7)
Since (2.4) with parameter set (2.7) is strictly equivalent to
(1.1) with parameter set (1.3), the corresponding attractor
is identical to that given in Fig. 3.

Note that the transformed circuit whose dynamics are
described by (2.4) with elements defined by (2.5) and (2.7)
contains only positive-valued dynamical elements. It can
easily be built as shown in the schematic of Fig. 5(b).

This circuit requires only two active devices, one nega-
tive resistor and one piecewise-linear resistor, both of
which can be easily constructed [4], especially because each
is grounded at one terminal.

The left op amp is part of an NIC block, which inverts
the sign of R,. The piecewise-linear resistor is located on
the right of the capacitor. Note that unlike in [4], the op
amp in Fig. 5 is assumed to operate only in the linear
regime. Here, the two diodes are responsible for realizing
the piecewise-linear characteristics in Fig. 6(a).
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Fig. 6. Constitutive relation of the nonlinear resistor. (a) Ideal piece-
wise-linear characteristic. (b) Oscilloscope trace of the actual
nonlinear-characteristic. Horizontal scale: 2 V/div. Vertical scale:
0.2 V/div.

Experimental Observations

After further time scaling and amplitude normalization
to ensure that currents and voltages take on reasonable
values, the final set of circuit parameter values for (2.4) is

L,=162mH, L,=59mH, C=3nF, R=2kQ
my=—-0.035x10"3, m{=0.75x10"3, B,=0.2.
(2.8)

Fig. 6(a) gives the constitutive relation of the ideal piece-
wise-linear resistor and Fig. 6(b) shows the actual charac-
teristics measured in the laboratory. The smooth transition
of the curve near the breakpoint is due to the use of
germanium diodes. As the required breakpoint voltage was
so low, we had to use this type of diode, whose threshold is
equal to 0.2 V, instead of the more ideal silicon diodes
(threshold: 0.6 V). We also had to consider the internal
resistance of the diode, in order to obtain suitable values
for the nonlinear resistor. The values R, and R, in Fig.
5(b) can be easily calculated in order to obtain suitable
values for m{, and mj. However, since mj{ is very low, the
internal resistance of the diodes cannot be neglected. Ex-
perimentally, we used a variable resistor for R, and
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Fig. 7. Projections of the double hook attractor seen with an oscillo-
scope, (a) (uc,iy,)-plane. Horizontal scale: 2 V/div. Vertical scale:

0.4 V/div. by (vc» ig,)-plane. Horizontal scale: 2 V/div.

Vertical scale: 2 V/div. (¢) (ir,,! ,1)-pla.ne. Horizontal scale: 2 V /div.
Vertical scale: 0.4 V/div.

tweaked it until we obtained a suitable characteristic on
the Negative Resistance Curve Tracer [5] (cf. Fig. 6(b)).

Note that the saturation characteristic of the op amp
gives rise to the inevitable eventual passivity in g'(-)
(vertical segments in Fig. 6(b)). Unfortunately, the satura-
tion occurs in a region very close to the attractor, ie.,
ve=8 V, while the maximum usable range for vc in Fig.
6(b) is also about 8 V. In order to prevent the attractor
from crossing into this region of operation, we had to
adjust further the value of the resistor R, in Fig. 5(b).

Fig. 7(a)-(c) shows various projections of the attractor
observed from the circuit realization in Fig. 5(b). We were
able to observe i, by inserting a small series resistance
followed by two buffers and a differential amplifier. We
measured i; by measuring the proportional voltage across
R, (see Fig. 5(b)).

Fig. 8 shows the same attractor viewed from various
perspectives using the 3-D-rotator described in [6]. Each
picture rtepresents the projection of the attractor from
different positions.

Fig. 9(a)-(1) shows the various attractors that can be
physically observed during the bifurcation process by tun-
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Fig. 8. Various projections of the rotated double hook attractor. (These
sometimes surprising pictures give us an idea of the three-dimensional
attractor. They all have the same scale and are projections of the
double hook along various directions.)

ing L,. Observe the period doubling from Fig. 9(a)-9(b)
and then back to a period 1 limit cycle in Fig. 9(c). ie.,
without any further period doublings. This bifurcation
phenomenon is clearly different from that which gives
birth to the double scroll.

III. GEOMETRIC STRUCTURE OF THE ATTRACTOR
Dimensionless Form

Recall the dynamics (2.4) and note that the function
g'(+) of (2.5) satisfies

¢(Boc) = Bg'(r,). (3.1)
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Therefore, by rescaling.

v i
x=— yERi ;=R

B, B, B,

R a=z gl 32
=R Twe P (3:2)

Equation (2.4) is transformed into the following simpler
dimensionless form

dx

:1;=0t(—)’—f(x))

dy

Tpo Xyt (3.3)
dzi

}‘;*ﬁy

where f(x) = Rg'(x),

bx+a-—b, x>1
ie, f(x)={ax, x| <1 (3.4)
\bx+b—a x< -1
and
a=Rm{ and b=Rmj. (3.5)

Again, Fig. 3 shows the attractor corresponding to (3.3)
with the exact parameter set:

T=1/0.162, a=0.590/0.120, B=0.590/0.162,
a=15 and b=-0.07. (3.6)

Note that (3.3) is symmetric with respect to the origin.
To find the equilibrium points, let us solve:

y+f(x)=0
x—y+z=90
y=0 (3.7)

[t follows from (3.7) that the three zeros of f(-) determine
the equilibrium points; namely,

[PT=(k0,~k)
[ 0=(0,0,0) (3.8)
| == (Z k.0, k)

where k= (b—a)/a (with the parameter set of (3.6),
k = 22.4, which, when compared to the breakpoint B, =1,
explains the large size of the attractor).

Due to the nature of the nonlinearity f(-), the space can
be divided into three piecewise-linear subsets, each subset
including one of the above equilibrium points, as follows:

D ={(x,y,z):x>1}

Dy = {(x, y, 2):|x| <1}

| (3.9)
i\ D_={(x,y,2)x<—1)}.

In each region D,, D,, and D_j, the system (3.3) is linear.
In D, and D_,, (3.3) has one real negative eigenvalue:

vp=—0.991 (stable)
and two complex-conjugate eigenvalues:

op+ jwp=0.168% j1.112  (unstable).
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Fig. 9. Closed orbits and chaotic attractors observed near the double hook by tuning L, (projections on the (¢, i, )-plane).
This set of pictures gives an idea of the bifurcation process (our observation terminates after Fig. 9(1) because of saturation
in one of the op amps). (a) L, =28.0 mH. (b) L,=240 mH. (¢) L, = 21.5 mH. (d) L,=20.7 mH. (¢) L;=20.0 mH.
(fg 61.1 —19.9 mH. (g) L, =19.8 mH. (h) L, =19.4 mH. (i) L, =190 mH. () L, =18.7 mH. (k) L, =18.65 mH. () L, =

18.6 mH.
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EV(P)
Fig. 10. Relative position of the various subsets.
Three real eigenvalues are associated with region D,, one F3(0):  the subset generated by E*}(0) and £°3(0)
positive: (Dim =2)
Yn=1279  (unstable) F,5(0):  the subset generated by E**(0) and E**(0)
and two negative: (Dim =2)
Yoo = —3.310 and v, =-—-6.344  (stable). Uy={(x,y,2):x=1}=D,nD, (Dim=2)

Let us examine the structure formed by the principal  U_,={(x,y,z):x=-1}=D_;NnD, (Dim=2).

i i i in th . . .
planes, lines and points, which sustain the attractor Lines and points on the plane U:

Geometric Structure Ly=E“(P")NY,

Define (see Fig. 10): L,=F;nl

E*(P*): the stable eigenspace of region D, (Dim=1) L,=F,NG

E“(P*): the unstable eigenspace of region D; (Dim=?2) Ly=F,00,
E“(0): the unstable eigenspace of region D, associated L;={(x,y,2):x=~1and y +f(x) =0}

with v, (Dim=1) A=L,NL,

E<2(0): the stable eigenspace of region D, associated B=LnL,

C=L,nL,

with v4, (Dim=1) D=L,NL,

s3 . : . .
E**(0):  the stable eigenspace of region D, associated Note that L, clearly separates the plane U, into two

with vy, (Dim=1) regions, one where dx/dt>0 (upgoing trajectory) and
. ul 2 another where dx /dt < 0 (downgoing trajectory).
Fi2(0):  the subset generated by E*'(0) and E**(0) Let us try to describe the trajectories near U,, basing the
(Dim=2) analysis on Fig. 11(a) and (b).
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Fig. 11, Cross scctions at the boundary. (a) Cross section at x =1 and projection of the trajectory onto the sume plane x =1. The points reprosent
spgoing trajectories while the crosses denote downpoing trajectories. The <Z-shape™ contous in arange i the. double hook attractor. The bluc (resp.
green and purple) lines represent the projection of the part of the trajectory located in the upper (resp. middie and Jower) region and £, £y and fa

are shown in yellow. (by Cross section at x =1 (the points represent upgoing trajectories while the crosses denote downgoing teajectories).
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Fig. 12. Various cross sections parallel to the (y, z)-plane. (a) Location of the cross sections. (b) A: cross section at x = 0,
B: cross section at x =5, C: cross section at x =10, D: cross section at x =15, E: cross section at x = 20, F: cross section
at x = 25, G: cross section at x = 30, H: cross section at x = 35, I' cross section at x = 40, J: cross section at x = 45, All of
them have the same scaling and the same number of points (2000)
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Fig. 13. Observed cross sections parallel to the (vc,iz,) plane (corre-
sponding to the (y, z)-plane). These pictures provide the experimental
confirmation of the computer simulation of Fig. 12 (same scale for all
of them). Fig. 13(a) shows the cross section for v =0 (or x=0), whose
appearance suggests two hooks joined at their tips, hence the name
“double hook’” (the distortion comes from the electronic device which
draws the cross sections). The following pictures illustrate the cross
sections and the part of the trajectory located under the crossing plane,
for increasing values for v (or x).

Let ¢ be the flow generated by (3.3) and pick an initial
condition x,€ E¥P¥) in a neighborhood of P*. As in
the double scroll, the flow ¢(x,) starts wandering away
from P* in a counterclockwise spiral and hits U, on L,
(since E¥(P*) is invariant). Let x; be the intersection
point.

If x, = A, then the trajectory goes directly to the origin
(since A € F,,, which is stable).

If x, €[AB), then the trajectory approaches the origin
following F,,, but goes up again before reaching the plane
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x =0 (¢'(x;) has a component on Fy; and a component on
EY{0); where the latter is directed towards D). Going
back to U,, the flow is bounded by F\,, and later by Fy;.
The closer x, is to 4, the deeper ¢(x,;) descends. On Fig.
11 (b) the segment [4B] maps into the points between B
and C.

If x, €[AF], then the trajectory descends again towards
0, but, this time, enters the region D_;.

The segment-like set of points between E and D can
easily be explained as follows. Coming from D_,, the flow
hits U_, from below, forming a segment symmetrical to
[AB] on U, with respect to the origin. As the D, region is
very small in comparison with D, and D_,, the previous
segment is mapped into a segment-like set on U,.

What happens to the set of points between E and D,
however, remains unclear. We assume that a point G
separates [ ED] into two parts. The first one [EG] is made
of points heading for P*, meanwhile {GD] is mapped into
the set of points between D and C (so that the trajectory
reaches D, again), and then into a very small region
around C (probably C itself).

Fig. 12 shows various cross sections of the attractor
calculated numerically at x =5k, k=0 to 9. One can
observe how flat the attractor is, especially at the ends.
The cross section at x = 0 gave the name of “double hook”
to the attractor.

Fig. 13 shows the same cross sections observed in the
circuit realization using the 3-D rotator described in [6].
With these cross sections we were able to observe the
trajectory located under the plane of each cross section.
The correspondence with the digital computations in Fig.
12 is quite remarkable.

1V. CONCLUSION

We have described the circuit realization of the double
hook attractor, a new strange attractor using the double
scroll system of equations. The double hook occurs when
the eigenvalues at the origin are all real. We have pre-
sented experimental evidence to confirm the theoretical
predictions and computer simulations of the structure of
this attractor. The bifurcation sequence appears to differ
considerably from the period-doubling route to chaos ob-
served in the double scroll. Further study in this area may
produce some interesting results. A comprehensive analysis
of the piecewise-linear geometry and the normal form
equations associated with the double hook is given in [7].
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