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ABSTRACT

In this work, the effects of diversity in large arrays of
chaotic systems are studied. It is here shown how very
regular spatio-temporal patterns are achieved by
perturbing a system parameter with a suitable spatial
disturbance. Moreover, it is shown that synchronisation
and order is better achieved if the variation of the
parameter is generated by a chaotic system rather than by
a random generator based on a stochastic process with
uniform distribution. Our conjecture is then validated by
several simulation experiences on long chains of both
mechanical (pendula) and electrical (Chua’s circuits)
systems.

1. INTRODUCTION

Natural systems are often constituted by several nonlinear
units connected in complex topologies, in which the
information flux is exchanged by local connections. It can
be easily observed how natural complex systems are
intrinsically adaptive and co-operative. In particular,
synchronisation emerges as one of the main issues
concerning adaptation and co-operation: objects tend to
acquire a common operation regime, seeking to achieve
order and harmony in their behaviour, clearly showing
their natural tendency to self-organisation.

It is well known that diversity plays a fundamental role in
evolution and adaptation in nature. Perhaps, it is this idea
that inspired scientists to investigate how to exploit
diversity to improve the capability of systems to achieve
spatial and temporal regularity. The collective behaviour
of an N-dimensional array of identical nonlinear systems
has recently become a very interesting matter of
investigation, especially concerning Cellular Neural
Networks [1,2], and spatio-temporal phenomena [3,4],
with applications on several fields, like information
processing [5], and biological excitable media [6].
Because of the high dimensionality of such systems, a
few analytical studies on synchronisation have been
carried out [7]. Nevertheless, many experimental studies
are currently in progress, and also a classification of the
several phenomena occurring in these systems has been
performed [8].

Organisation emerges in the simplest way, showing
coherent attractors, in which two generic variables denote
an identical trend in time. When coherent attractors
correspond to groups of neighbouring units, the
phenomenon of clustering takes place. When organisation
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does not take place, the most interesting phenomenon is
the spatio-temporal chaos, in which chaotic trends appear
both in time and in space.

The effects of diversity in long chains of oscillators have
been recently investigated [3]: an array of 128 identical
pendula, denoting spatio-temporal chaos, shows regular
spatio-temporal patterns when pendula lengths are
perturbed by a uniform, random noise.

In this work, it is shown that diversity generated by
chaotic perturbations can improve the capabilities of self-
synchronisation of long chains of array of nonlinear
systems. Self-organisation is achieved in chaotic system
arrays, from an initial state of disorder, providing a
chaotic space-variant perturbation to one of the
parameters of the system. This assumption has often
given better results, in terms of global synchronisation of
the array, than the application of a random noise.
Moreover, chaos is often removed from the oscillators
behaviour. It is worth noting that the capability of
removing chaos from a system is the first step towards the
possibility of extracting information from chaos, which is
a very important issue to build communication systems
based on chaotic carriers.

Two examples in which the single element of the array is
a well known nonlinear system (pendulum, Chua’s
circuit) are here reported in order to validate the proposed
approach.

2. COLLECTIVE BEHAVIOUR OF AN ARRAY OF
PENDULA

In this section we assume that the generic element of the
array is a simple forced pendulum, a second order
nonlinear system whose dynamic equation is easily
derivable from Newton’s law:

ds, dd, 1
i a @
Equation (1) describes the behaviour of an isolated
damped oscillator forced by a bias and a sinusoidal input.
If we link together N pendula through elastic springs
acting on the rotational axis with constant k in a cascade
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structure, and assume that 0y=0; and On=0n_;, the
generic equation describing this system is:
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or, in terms of state equations:
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where x=6, and y,=d 6,/dt.

Fixing =1 for each pendulum, and assuming m=1,
y=0.75, ©'=0.7155, 7=0.4, 0=0.25, k=0.5,

g=1, the behaviour of the array is chaotic, as depicted in
fig. 1(a), in which angular velocities are coded versus
time by a grey scale for each pendulum. Grey scale codes
pendula velocities ranging from black (lowest) to light
grey (highest). As it can be seen, as time increases, more
and more disordered spatio-temporal patterns emerge,
denoting a chaotic behaviour, which is confirmed by a
positive Lyapunov exponent (0.207290). The prevalence
of the dark grey in the grey scale map is due to the d.c.
term in the forcing torque.

It has been shown [3] that introducing a random,
symmetrical disorder in the length of each pendulum
(L,e[0.9, 1.1]), periodic spatiotemporal patterns can be
observed (fig. 1(b)). In this work our analysis deals with
the effects induced by the introduction of chaotic
disorder. Let us consider the following well known
nonlinear system (Chua’s system):

x=0a(y- f(x)
y=x-y+z C))
¢ =-Py

where f(x)=myx+0.5(m, — ml)ﬂx + 1‘ - ‘x - 1|]

For suitable values of the parameters o and P the
behaviour of the system is chaotic [9], and state variables
assume unpredictable values. Taking N samples of x(z)
and normalizing their amplitudes to obtain a signal
varying into the interval [-0.1, 0.1], it is possible to build
a vector of lengths [, having 10% of ‘“‘chaotic” noise
around the constant value /=1. The parameters of system
(4) have been fixed to o= -4.08685, B= -2, my=-1.142857,
m;=-0.7142857. The results of simulations show (see fig.
1(c)) that the chaotic variation of this parameter leads the
array towards a collective organisation. Pendula in the
central region of the array are shyncronised both in space
and time, oscillating with the same frequency of the
forcing torque, while in the external bands a regular
spatial wave is propagated. Therefore, chaotic attractors
of the system have been transformed in periodic ones by
simply perturbing the system with chaos, but the most
important result is that chaos has been removed. This fact
is supported by the decreasing trend of the mean value of
the leading Lyapunov exponent which reaches the value
of 0.016866 for a disorder ranging in the 10% of pendula
length. Another parameter that has been taken into
account to evaluate the rate of self-organisation of the
array is the average Shannon entropy: a high value of this

parameter means that the signal is strongly correlated

with itself. Table I resumes the significant parameters

obtained from experiments, definitely validating our
results.
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Fig.1: Pendula array experiment. (a) Chaotic behaviour of identical
pendula; (b) application of 10% random noise; (c) application of
10% chaotic disorder; (d) single pendula velocities from 80" to 85"
pendulum related to experiment (c), (e) portion of the Chua’s
attractor used to generate chaotic variation on pendula lengths.



Avg Leading

Shannon

Disorder Lyapunov
Entropy

Exponent
0% 0.2073 5.4869
10% Random 0.0211 8.1840
10% Chaotic 0.0168 9.2388

Table I: Significant experimental parameters versus kinds of
disorder introduced for pendula array (2).

3. COLLECTIVE BEHAVIOUR OF AN ARRAY OF
CHUA'’S CIRCUITS

Many studies about chains of Chua’s circuits have been
carried out in the last years, concerning several aspects,
like investigation on chaotic behaviour [12, 13},
propagation of impulsive information [10], and formation
of spiral waves in a 2D circuit matrix [14]. All the works
performed agree on the fact that, for arrays constituted by
identical circuits, global behaviour is strongly affected by
changes in the connection coefficient, denoting in a
spatio-temporal context all the phenomena that can be
observed in the single circuit: equilibrium states, limit
cycles, and, obviously, spatio-temporal chaos. In this
section, we repeat the same experience performed with
pendula array: a Chua’s circuit is used as a basic cell to
build a linear array in which adjacent units are coupled
through linear resistors, and both a random and a chaotic
variation on a circuit parameter are introduced. As it can
be observed, very regular spatio-temporal patterns emerge
only when the imposed perturbation is chaotic,
confirming the conjecture that chaos can help systems to
achieve order and synchronisation. The following
equations describe the behaviour of the k-th unit, in the
well known dimensionless form [9]:

Xk :a(yk _h(xk)+D[xk —yk+1])
Ve =X =Y 2.+ Dly, —x,] &)
2, = =By,

According to [11], the nonlinearity of Chua’s circuit can
be approximated by the cubic:

3
h(x)= xR ©)
G

Fixing o=6, B=8, m=0.8, k=0.04, G=0.7, the single,
uncoupled unit shows a chaotic behaviour. Coupling the
circuits with a coefficient D=0.05, the collective
behaviour of the array denotes a chaotic trend, as it is
shown in figure 2(a), in which the value of the first state
variable is coded versus time by the usual grey scale map
(cf. section 2).

V-481

The first step to achieve the synchronisation of the array
is choosing the parameter to perturb, by making a formal
comparison between (3) and (5). A suitable double
transform, discrete in space and continuous in time, has
been applied in order to reduce the two arrays to scalar
Lur’e systems [12]. The first Markov’s parameters of
both the linear parts of the two systems have then been
computed, and a formal correspondence between [ in

pendula array and o in Chua’s circuits array has been
found. Thus, it has been conjectured that a suitable
chaotic noise introduced in the o parameter would have
produced the same synchronising effects as in the case of
pendula.

In order to investigate how the collective behaviour of the
array is affected by chaotic changes in a circuit
parameter, the o parameter in array (5) has been changed
according to a chaotic temporal series provided by system
(4), in which the parameters have been fixed to
o=35, B=75. The output of the control circuit is
normalised in order to obtain a maximum change of
+20% with respect to the nominal value. In figure 2(b-e),
colour maps of state variable x, together with the portion
of chaotic attractor used to generate the variation of o, are
shown. Some synchronised state variable are also
reported. The regular spatio-temporal patterns denote two
main behaviours that can be clearly distinguished in two
different areas of the colour map. As in pendula array,
spatio-temporal chaos is removed.
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Fig.2: Chua’s circuits array experiment. (a) Chaotic behaviour of
identical chua’s circuits; (b) application of 20% random noise; (c)
application of 20% chaotic disorder; (d) single state variables from
44™ to 48" circuit related to experiment (c), (e) portion of the
Chua’s attractor used to generate chaotic variation on o parameter.

5. CONCLUSIONS

In this work, a novel approach to the control of highly
dimensional spatio-temporal systems has been depicted.
The considered systems are long arrays of both
mechanical (pendula) and electrical (Chua’s circuits)
chaotic oscillators. It has been shown how diversity can
help in achieving self-organisation in large arrays of
oscillators, by introducing a slight spatial perturbation in
their parameters. Several simulation experiments and
numerical characteristic parameter (Lyapunov exponents,
Shannon entropy) evaluations have been carried out,
confirming the main result that synchronisation is
dramatically improved when diversity is generated by a
deterministic chaotic system, indicating that chaos itself
could be a fundamental paradigm for controlling complex
chaotic dynamics.
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