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Quaternionic Multilayer Perceptrons for Chaotic Time

Series Prediction

Paolo ARENAT, Riccardo CAPONETTO',

SUMMARY In the paper a new type of Multilayer Percep-
tron, developed in Quaternion Algebra, is adopted to realize
short-time prediction of chaotic time series. The new introduced
neural structure, based on MLP and developed in the hypercom-
plex quaternion algebra (HMLP) allows accurate results with a
decreased network complexity with respect to the real MLP. The
short term prediction of various chaotic circuits and systems has
been performed, with particular emphasys to the Chua’s circuit,
the Saito’s circuit with hyperchaotic behaviour and the Lorenz
system. The accuracy of the prediction is evaluated through a
correlation index between the actual and predicted terms of the
time series. A comparison of the performance obtained with both
the real MLP and the hypercomplex one is also reported.

key words: neural networks, quaternion algebra, time series pre-
diction, chaotic systems

1. Introduction

In the last years neural networks, and in particular
Multi-Layer-Perceptrons (MLP) [1], have been used to
perform non linear function approximation as well as
to predict non-linear time series[2]. In particular, as
regards chaotic time series, only short-term prediction
can be obtained and a great accuracy is required when
the prediction time increases. In fact, due to the chaotic
nature of the system generating the time series, the pre-
diction accuracy quickly degrades with the time steps.
In this field, neural networks allow better results with
respect to other strategies[2], due to their ability to ex-
tract the non linear maps generating the data. In time
series prediction problems, MLPs are trained to perform
a 7 step ahead estimation of the current time-series term.
The I/0 relation of the network is therefore:

= f(z(?) (n

where Z(t) is the state at time ¢. Two different strate-
gies can be used for the training. In the first strategy
(direct method) 7 is fixed and the network is trained

Z(t+71)
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to predict the target Z(¢ + 7) when the input sample is
the measured value Z(t). The second strategy (iterative
method) consists in training the network to perform one
step ahead prediction using the past predicted samples
as inputs (7 — 1) times. At the time (¢ + 7) the mea-
sured value Z(t 4 7) is considered as input. It has been
shown [2] that the latter method allows more accurate
predictions and will be thereofore used in this paper.
However, when the number of 1/O variables grows, a
drawback takes place, due to the increasing number of
connections in the MLP, i.e. of free parameters in the
learning algorithm. This fact degrades the network per-
formance, enhancing the possibily of being trapped in
local minima and requiring a great number of 1/O sam-
ples during learning.

To alleviate this problem a new neural struc-
ture, developed in the hypercomplex quaternion algebra
(HMLP)[3], [4], is proposed in this paper. As it will
be discussed in the following, such a structure allows
to obtain the same approximation capabilities as the
real MLP with a lower number of free parameters, thus
improving the convergence of the learning algorithm.
In the next section the HMLP is defined, describing both
the feed-forward phase and the learning algorithm. The
approximation capabilities of such a structure are also
discussed. In Sect. 3 HMLPs are applied to realize the
short term prediction of the Chua’s circuit, the Saito’s
circuit and the Lorenz system. The results obtained
are compared with those ones derived with the classi-
cal MLP and the obtained improvements are outlined.
The fundamental definitions on quaternion algebra are
reported in the appendix.

2. The Quaternion MLP

Quaternion algebra (H) has been invented by W.R.
Hamilton in 1843 in order to extend in the 3-D space
the properties of complex numbers. A quaternion can in
fact be defined as a complex number with three imag-
inary parts, [3], [6]-[8]. In this section a new MLP
structure, defined in Quaternion Algebra, is introduced
and its approximation capabilities are stated. A suit-
able learning algorithm for such a structure is also re-
ported. Comparisons between quaternionic MLPs and
real MLPs in a large number of applications [9]-[12]
show that the former structures allow problems to be
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Fig. 1  Basic structure of the HMLP.

solved with the same approximation capabilities as real
MLPs, but with a significant reduction (about 40%) in
the number of free parameters in the learning algorithm.
The simpler HMLP topologies allow therefore a faster
learning phase and a lower probability to get stuck in
local minima, due to the reduced number of real pa-
rameters involved in the error minimization perforrned
by the Back-Propagation algorithm.

Let us define an HMLP (Hypercomplex Multilayer
Perceptron) as a Multilayer Perceptron in which input
and output values, weights and biases are quaternions,
and the activation functions in the hidden layer neurons
are quaternion-valued sigmoidal functions. In the fol-
lowing, HMLPs with only one hidden layer will be con-
sidered, since it has been proven [ 12] that this structure
is a universal interpolator in H. However, the learning
algorithm has been also developed for a multi-hidden
layer structure[9]. In Fig.1 an HMLP with only one
hidden layer is shown in order to clarify the notation
used in the following.

Let no, nh, ni, be the number of output, hidden
and input units respectively, and
Wﬁg = wOmn + lwlm,on + Jw2mn + kamn :
the weight connecting the n-th hidden unit to the m-th
output one;
wiH = will + 1w1£, + jwii, + kanp :
the weight connecting the p-th input unit to the n-th
hidden one;

O = oll +i0% + j0I + k6L,

the n-th hldden un1t blas

@9 =05, +i09,, + b3, + kb5,

the m-th output unit b1as

m=1...,no h=1,...,nh p=1,...,ni. The
superscript A will denote the quantities referring to the
hidden layer, while the superscript O will denote the
quantities referring to the output layer.

The feed-forward phase is obtained with the fol-
lowing relations (quaternionic operators are defined in
the Appendix):

hidden unit activation value:

ZWIH(X)I +@H (2)
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I, being the p — th quaternionic input;
hidden unit output value:
XE = o(SH) (3)
output unit activation value:
nh
8O => whteX +e; (4)
n=1
m-th output unit value:
X9 =Y, =0o(89) (5)

As regards the choice of the activation function, the
following function has been selected:

o(q) = o(q) + o(q1)i+ o(g2)j + o(gs)k (6)
where:
S 0...3
(Q'L) 1+6Xp( qu') 1=U...

is the usual sigmoidal real valued activation function.
The activation function derivative is therefore &(-) =

() +o()i+a(-)j+ c(-)k where 6(-) = o(-)[1 — o(-)].
The error function is defined as:
S @

m=1

t,, being the quaternionic desired value for the m — th
HMLP output unit.

Following the classical steps needed to derive the
Back-Propagation algorithm([1], the rules for weights
(biases) updating are derived as a function of the op-
posite gradient value of the error function with respect
to the weights (biases) themselves, by suitably using the
chain rule. The learning algorithm obtained [9], [12] is
reported in the following. For the weights connecting
the output to the hidden layer the updating formula is:

AWHO = ¢(~VEwzo)

= el(tm — Ym) ©5(S0)] @ X"
= 60 @ XH* ®
where © denotes the component-by-component product

and € € RT is the learning rate. For the weights con-
necting the hidden layer to the input one it results:

AWIH

W = e(~VEwin) = by ® T3 ©)

where:
Z w0 @69 0 &(SH) (10)

As regards the biases, the updating is made as follows:

ABC = 6 (11)
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AGF = 61 (12)

Let us remark that the problems approached with an
HMLP with p input units and m outputs can be also
approached with a real MLP with 4p inputs and 4m
outputs. Considering the fact that a quatenion valued
sigmoidal function is equivalent to four real valued sig-
moids, and that a quaternion is equivalent to four real
numbers, the two equivalent real MLP and HMLP can
be compared as regards the number of real parameters
employed in the structure (space complexity). A com-
parison is performed with the same number of sigmoids;
it means n sigmoids for the NMLP and 4 n sigmoids for
the real MLP. The number k1 p and kg arrp of param-
eters employed is given respectively as follows:

kHMLp=4(p‘n+n-m) (13)
kymop = (4p) . (471) -+ (4n) . (4m) =4- kHMLP(l4)

As it can be observed, the number of real parame-
ters in the HMLP is much lower than in the real MLP.
This fact greatly simplifies the convergence of the learn-
ing algorithm. The great number of experiments per-
formed has shown that in order to solve a given prob-
lem with the same approximation accuracy, a real MLP
and an HMLP rarely employ exactly the same number
of real sigmoids, but however the latter structure allows
to save a quantity of real parameters between the 40%
and the 60%: the larger the nerwork, the greater the
parameters saving.

A generalization of the density theorem derived for
the real MLP[5] has been proven[12] for continuous
functions f : X — H, where X is a compact subset of
H™. As for the real MLP[5] such a result states that
HMLPs with the activation function of the type (6) are
universal interpolators of continuous quaternion valued
functions [4], [12].

The statement of the theorem is the following:
Theorem 2.1: Let X C H™ be a compact subset and
let ¢ : X — H be a continuous function. Then
Ve > 0 there exist some coefficents ay,...a, € R,
some vectors yi,..., ¥y € H" and some quaternions
6:,...,0n € H such that:

N
sup [g(%) — Y oo (§7 % +0y]) <
Xex =1

In other words, the real vector space:
N
S={>" o3l x+6,)}
i=1

with N a natural number, o; € R, y; € H", 0; € H}
is dense in C°(X, H), the space of continuous functions
X — H with the norm

| g ll= sup |g(x)|
XeX
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From the formulation of the density theorem it emerges
that the weights from the hidden layer to the output one
may be real parameters, instead of quaternions, in or-
der to achieve the chosen approximation degree. The
relation describing the feed-forward phase as well as
the learning phase can therefore be accordingly simpli-
fied. Due to the identity H = R* the HMLP can be
used to approximate continuous real valued functions
of the type f : ®'" — R4, maintaining the advantages
introduced with the HMLP in saving a number of real
parameters in the structure.

3. Prediction of Chaotic Time Series

The neural structure proposed has been applied to per-
form the short-term prediction of the time series gen-
erated from some canonical chaotic systems. In partic-
ular the Chua’s circuit[14], [18] a Saito’s circuit[19]
and the Lorenz system[17] have been considered. To
evaluate the prediction capability of the network, the
following “correlation index”p,(7), currently employed
to test the neural network performance in time series
prediction [16], is considered in order to compare the
predicted time series and the actual one, for a set of
pattern not used during the learning phase:

M
ps(r) = = 5 (15)
where D is given as follows:
M M
Y (0s(t) = Osm)?y | D (O4(t) — Ol
t=1 t=1

being 7 the prediction step, M the number of testing
samples, O,(t) the s-th component of the output at time
L+ 7, Osp(t) the mean value of O,(t) on the whole
set of testing samples, and O/ (¢) and O, (¢) the corre-
sponding values of the actual time series. Values of the
correlation index close to 1 for a particular prediction
step 7, mean that the 7-step ahead zero-mean predicted
time series is close to the measured one on the whole
set of samples available for the testing phase.

The described correlation index will be evaluated
for a set of neural topologies, both real and hypercom-
plex, and for different values of 7, in order to select the
network showing the best performance.

3.1 The Chua’s Circuit

Chua’s circuit is known as the simplest autonomous cir-
cuit showing a large set of chaotic behaviours|14]. Its
state equations are reported in the following:

& = aly — h(z)) (16a)
j=z—y+2 (16b)
i=By—nz (16c)
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Fig. 2 Comparison between the correlation trends of the first
state variables computed with the real MLP (‘— -’) 3-12-3 and
the HMLP (‘—’) 1-3-1 when 7 is increased

where:
h(z) =miz +05(mo—mi)(|z+1]|—|z—1])

The attractor known as ‘double-scroll’ [14] is obtained
with the parameters

(a7 ﬂ) Y, Mo, ml) = (97 142867 07 _1/73 2/7)

The corresponding time series has been obtained sim-
ulating the system with AT = 0.02 sec and initial con-
dition (0.1,0.1,0.1). A set of 250 terms of the sim-
ulated time series have been used to train the neu-
ral structures. As regards the HMLP, only one input
and one output neurons are needed, whose values are
the quaternions q(t) = 0 + iz(t) + jy(t) + kz(¢) and
q(t+1) =0+iz(t+1) +jy(t + 1) + kz(t + 1) respec-
tively. It means that in this case Vector Quaternions
(i.e. quaternions with the real part equal to zero) are
handled; the 1/0 space dimension is in fact three. The
corresponding real MLP has 3 input and 3 output neu-
rons. Several topologies have been trained for a fixed
number of learning cycles to compare their performance.
The best results, in terms of correlation values for 250
I/0 samples not used during the training, have been ob-
tained with 12 hidden units for the real MLP and with
3 hidden units for the HMLP. In Fig.2 a comparison
between the correlation values of the first state variable
as a function of the prediction time steps for both the
MLP and the HMLP is reported. As it can be observed,
the HMLP leads to better correlation values with respect
to the real MLP. Moreover the 1-3-1 HMLP has 40 real
parameters (including the biases) while the 3-12-3 MLP
requires 87 parameters. The improvement introduced by
the HMLP is evident. Therefore, although the approx-
imation capabilities of the real MLP and the HMLP
have been demonstrated to be the same, in several cases,
like this one, the results obtained with the HMLP are
quite better with respect to the other structure. Such a
fact could be due to the lower number of real parameters
involved into the optimization algorithm which leads to
a simpler and faster learning phase.
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Fig. 3 Comparison between the correlation trends of the first
state variables computed with the real MLP (‘— —’) 4-8-4 and the
HMLP (*-’) 1-2-1 when 7 is increased.

3.2 The Saito’s Circuit

The Saito’s circuit, introduced in[19], is characterized
by 4 state variables and five parameters which determine
transition from torus doubling route to area and volume
expanding chaos. The circuit dynamics is governed by
the following equations:

; _ z1 — npi1h(z

Bﬂ - { *031 a11ﬁ1 } { Y1 —:fg'—ih((z)) ] (an
i -1 1 T2 — npah(z)

[75/2} - { —ag } { Y2 —W%h(Z)

where:

1 per z > —1
h(z)_{—l per z <1

The system is characterized by two positive Lya-
punov exponents which make the circuit behaviour hy-
perchaotic. The corresponding time series has been ob-
tained simulating the system with

(e, B, @s, B2,m) = (7.5,0.16, 15,0.097, 1.3},

starting from the initial condition

(m17y17m27y2) = (1,0, 170)

and with AT = 0.002 sec.

As in the previous application, several neural
topologies have been trained with 250 1/O samples. In
Fig.3 a comparison of the correlation trends obtained
with the HMLP 1-2-1 and the real MLP 4-8-4 is re-
ported for the first state variable. As it can be observed,
also in this case, the HMLP shows better performance
at large prediction steps. The correlation index for the
other state variables shows a similar trend. The number
of free parameters are 28 and 76 respectively.

3.3 The Lorenz System

The set of equations known as Lorenz system, [17] are
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Fig. 5 The 5 step predicted Lorenz attractor realized with the
1-3-1 HMLP.

reported in the following:

& =o(y—z) (19a)
y=—xz+rr—y (19b)
z=u2zy—bz (19¢)

The nominal value of the parameters are ¢ = 10,
r = % and b = 28. In the reported study, a set of real
and hypercomplex topologies have been trained with
200 terms of the time series. The best results have been
obtained with the real 3-11-3 MLP, (comparable with
the real MLP 3-12-3) and the 1-3-1 HMLP. A compar-
ison between their performance, in terms of correlation
index for the first state variable is shown in Fig. 4 where
the improvement due to the use of the HMLP can be
appreciated. However, also in this application the num-
ber of parameters employed by the HMLP is lower, with
respect to the real MLP. As an example, in Fig.5 the
Lorenz attractor realized with the 5-step predicted out-
put is reported. As it is emphasized the obtained per-
formance are satisfactory. The same attractor derived by
using the 5 step ahead prediction performed by the 3-11-
3 real MLP is clearly a degradated version of the one
reported in Fig.5, due to the lower correlation index
obtained with the real MLP.
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4. Conclusions

In this paper a new type of neural architecture (HMLP),
developed in the Quaternion Algebra, has been intro-
duced to realize the short-term prediction of chaotic
time series. The theoretical reported results guaran-
tee that such a structure can approximate any quater-
nion valued continuous function with an arbitrary de-
gree of accuracy. Taking into account that this results
also holds for real multivariable functions, HMLPs can
be employed to model MIMO dynamical systems and
multi-variables time series.

Several numerical examples are reported in the pa-
per showing the suitability of the strategy introduced,
which allows a satisfactory performance, in terms of the
correlation index, employing a structure with a lower
number of real parameters with respect to the classi-
cal real MLP. It is to be also emphasized how the use
of HMLPs allows to obtain higher correlation index
values at high prediction steps with respect to the real
MLP. A study of the capabilities of HMLPs linked to
the reduced number of real parameters involved is cur-
rently in progress in order to theoretically justify the
performance of HMLPs with respect to the real MLPs.
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Appendix: Quaternion Algebra

A Quaternion q is a generalized complex number com-
posed of four real parameters (go, ¢1, g2, ¢3) and of three
imaginary units (i, j,k) which represent the basis unit
vectors of an orthogonal reference frame:

q=qo+ @i+ gj+gk

The imaginary parts (i, j, k) in Quaternion Algebra
play the same role as the imaginary unit 5 = /=1 in
Complex Algebra. Quaternion Algebra, usually called
H (the first letter of the the name of its inventor), is an
associative division algebra which includes Real and
Complex algebra. A quaternion can be considered as
the direct sum of a real number ¢ and of a vector ¢; it
can therefore also be denoted as:

a=q+¢q

The fundamental operators are reported in the fol-
lowing:

e conjugate:
7 =go—q=¢go— @i —gaj — sk
e modulus:
lal = vaq”
e sum: For any two quaternions:
q=go+ @i+ qj+gsk
and:
P = po + p1i + poj + psk
a+p = (qo+po) +(q1+p1)i+(g2+p2)i+ (g3 +p3)k
e product:

(90 + @) ® (po+P) = qopo — P P+ qop'+pod + G X P
where > and ‘x’ represent the scalar and vector

product respectively, as commonly defined in Vec--

tor Algebra.
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The product of two quaternions is not commutative,
but the associative and distributive properties still hold.
Some useful definitions are reported in the following:
Definition 1: A function f: H — H = fo(q) +1if1(q) +
Jf2(q) +kfs3(g) is continuous if each of its components
is a continuous real valued function; it is differentiable
if each of its components is differentiable.

Definition 2: Given the operator:

d d d d
ve 2o S Sy Sk
dgo  dq dQ2J dgs

the gradient of the function f is defined as V ® f or as
f®V.
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