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ABSTRACT

In the paper a new type of Multi. Layer Perceptron,
developed in Quaternion algebra (QMLP), is adopted in
order to predict chaotic time series. The use of QMLPs
allows to perform accurate time series prediction with a
decreased network complexity with respect to the classical
real valued MLP, when the involved time series are
multidimensional. The approach proposed has been
adopted to estimate the chaotic behavior of Chua's circuit
and of a circuit containing a piece-wise linear hysteresis
element. A comparison between the performance of the
QMLP and the real MLP is also reported in order to show
the improvement introduced by the QMLP in terms of a
sentivive decreasing of the network complexity.

1. INTRODUCTION

In the last few years artificial neural networks, and in
particular Multi-Layer Perceptrons (MLP), have been
introduced in order to predict non-linear time series as
well as to perform continuous real valued function
approximation and to carry on non linear system
identification.

Dealing in particular with chaotic time series, the
prediction accuracy decreases when the prediction time
increases. In this field MLPs have shown better results
with respect to conventional methods at large prediction
time steps [1]. When the system taken into consideration
involves signals defined in multidimensional domains, as
often occurs in chaotic systems, a drawback can arise,
caused from the growing of the network size. In
particular, when the size of the input and output layer
increases, the number of the weights connecting such
layers to the hidden one heavily grows, thus slowing down
the learning phase without contributing to the network
generalization capabilities and enhancing the possibility
of being trapped into local minima. In this perspective the
proposed strategy is aimed to reduce the influence of such
phenomenon, enhancing the generalization properties.

A new type of MLP developed in Quaternion Algebra
(QMLP) is therefore introduced as a powerful strategy to
decrease the number of free parameters , as shown in the
application proposed. The introduced QMLP allows to
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perform complex non-linear system and time-series
prediction employing a reduced complexity with respect to
real MLP in order to reach the same or even better
performance.

2. THE PROPOSED QMLP

One of the drawbacks of MLP structures is that the
connections number heavily increases with the
input/output dimension. In order to overcome this problem
a new type of MLP developed in Quaternion Algebra [2]
has been proposed (QMLP) in [3], [4], [5], where the
suitable learning algorithm is derived. Quaternion
Algebra has been introduced by Hamilton in 1843 to
extend Complex Algebra in three dimensional spaces.

Quaternion Algebra
A quaternion g is defined as a complex number:

q=q, +q1;+q2j+q_3k
formed from four different units 1,7,/ & by means of the
real parameters, g, (i=0,..4), where i ,j,k are the 3

orthogonal spatial vectors. It is convenient to represent q
in the matrix form:

- T

q= [qo)ql >q2’q3]
The conjugate of a quaternion is denoted by g " and is
defined by:

g =4,~ i ~,J 9k
Addiction and subtraction of two quaternions ¢ and P
are defined, in the matrix form, as:

gtp= [qo * Py £ P19, £ D209 ipa]T
Quaterzion inultiplicatior_l is defined as:
q®Pp=qopo —P-q+qoP+Pod+qxp
where:
T
= [fh:qz)(b]

q
ij = [pl’ p2’p3]T
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and * and x represent the usual scalar and vector
product respectively.
It has to be remarked that quaternion multiplication is not
commutative, so that the space of quaternions has the
algebraic structure of a ring.
Unlike spatial vectors, the set of quaternions forms a
division algebra since for each non zero quaternion there
is an inverse such that:
g®g7'=7"'®g=1
The inverse is given by:
—

R

q ®q

where:

7' ®7=|ql’

is the norm of g .

Quaternion MLP
Let us define a quaternion MLP (QMLP), a MLP in which
both the weights of connections and the biases are
quaternions, as well as input and output signals.
For this neural structure, the following notation will be
adopted:
M :number of layers in the network;

{ :layer index (/=0 and /=M denotes the input and output

layer respectively);

N ;-number of neurons of the /-th layer;

n: neuron index; _

X=X, +iX| +jX) +kX, :

quaternion output of the n-th neuron of the /-th layer;

(In particular X, 01 =1 represent the bias inputs , X f
n=1,..N, is the input signal and X =Y n=1,.,N,, is
the output)

'M_I"Im = w(’)ﬂm +l_wllnm + jw;nm + kw;nm:

quaternion sinaptic weigth of the n-th neuron of the /-th
layer, relative to the m-th output of the (/-1)-th layer;
S!=8; +iS, +jS; +kS. :

‘net function' relative to the n-th neuron of the /-th layer;
6,=6,+i6,+j6,,+k6,,:

bias of the n-th neuron of_ the /-th layer;

[ =t, +it, +jt, +kt,, n=1,M: target of the n-th
output of the network.

The forward phase of the QMPL is described by the
following equations:

no

Forward phase:
for =1, Mand n=1,. N,
_ Ny _ _
S-S weX W
m=0
X! = 551 ®

where the quaternion activation function 6(q) is defined
by: _
o(q,+iq, +jq, +kq;) =

o(q,) +io(q,) + jo(q,) + ko(q;)
and o(-) is the classical real-valued sigmoidal function.
As in the real back-propagation algorithm [10], the
learning procedure involves the presentation of a set of
pair of samples, in the quaternion space, which represent
the inputs and outputs of the network.
During the forward phase the network computes its output
and compares it with the target.
An error function is then computed as:

1 - M2
E=22 (0= X,) @
n=1

where p indicates the p-th pattern.
The weights are updated at time k+I, back-propagating
the error in such a way as to perform a steepest descent on
a surface in the weight space whose heigth at any point is
equal to the error measure;

In the following, the derived training algorithm is
reported.

3

Learning phase:
for I=1,. . M and n=1,..N,

e =f-X" forl=M
Nl&l _— 5
EJ=ZW;:I®5;” forl=M-1,..,1 e

h=1
here:

w
8, = e4,0(8,,) +1e,,0(S,,) + je;, 0(8;,) + ke, o(S3,)
W (k+1)=w. (k)+&6 @ X!
m=0,...,N,_, ©)
6,(k+1) =, (k) +&0,

and ¢ is the learning rate.

The approximation capabilities of QMLP have been
investigated in [5] where a density theorem is proven. In
particular it is stated that QMLP can approximate with the
desired accuracy any quaternion-valued non-linear
function defined in a compact subset of H.

This result is a generalization of the density theorem
proved for MLP in the real space [6].

3. APPLICATIONS AND RESULTS

The approach proposed has been applied to perform time
series prediction of two chaotic circuits. The performance
of the neural network have been evaluated by computing
the correlation function between the actual time series and
the predicted one for each state-variable, over a set of
testing samples never presented to the networks:



et . .
ﬁ;[oxk)—am][a(k)—om]

p.(0)= —
\/M; [0,(k)-0 ]

O(k) 0]

t—l

where Oy, is the mean value of the generic state variable
O, s=t,x,y,z while Oy, is the mean value of the <

step ahead estimated state varible O, and M is the number
of testing patterns.

The correlation functions have been computed when the
prediction step t increases from 1 to 10. In order to select
the optimal neural network topology the growing strategy
has been adopted, it means that the number of hidden
neurons has been increased until good performance have
been reached, both for the real and the quaternionic
MLPs.

Chaotic circuit with hysteresis element.

The time series considered describes the behavior of a
chaotic circuit with four state-variable, including a
dependent voltage source characterized by a piece-wise
linear hysteresis function [7].

The circuit dynamics undergoes transition from torus
doubling route to area and volume expanding chaos when
the width of hysteresis threshold is modified.

The circuit dynamics is governed by following equation:
qo =—qp — Mp;h(2) +q; - n(p, / Bh(z)

qy = ~0ty(qo — Mph(z)) + B, (q; —n(p; / Bh(2))
‘h =—q, —Mp,h(z) +q; —n(p, / B,)h(z)

43 = —a,(q; —Mp;h(2)) +a,B,(q; —n(p, / B,)h(2))

where:

h(z)=1 jfor z>2-1 and h(z)=1 for z<1
z2=4,+q,

p=p5110-5)

P, =5/ (1-5;)

h is the normalized hysteresis and is switched from 1 to -1
if z hits the left threshold -1 and viceversa. This system
has five parameters (a;,f3,, ®,,f3,,1). which control
oscillation frequencies, dumping and the width of the
hysteresis threshold respectively.

The corresponding time series has been derived by
simulating the circuit equations with AT=0.002 and the
following values of initial condition and parameters which
lead to volume expanding chaos:

(q()7q17q2’q3): (1’0;130)

(a,,b,a,,b,,m)=(7.5,0.16,15,0.097,1.3)

In order to train the neural networks a set of 500 pattern
has been built, 250 have been used during the learning
phase while the remaining have been used to test the
network performance by computing the correlation
functions for each state variable.

Several topologics have been trained both for the real and
the quaternionic MLPs, in particular a number of hidden
neurons growing from 1 to 4 for the QMLP and from 4 to
12 for the real MLP have been considered. The number of
I/O neurons is 1 for QMLPs and 4 for the real MLPs. The
best performance has been obtained with the 1-2-1 QMLP
and the 4-8-4 real MLP. In Fig. la,b,c,d a comparison of
the correlation trends obtained with these networks for
each state-variable is reported.
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Fig1
Comparison between the correlation trends of the 1-2-1
QMLP () and the 4-8-4 real MLP (-) for the q state
variable

Fig 2
Comparison between the correlation trends of the 1-2-1
QMLP (-) and the 4-8-4 real MLP (-.) for the q) state
variable.
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Fig 3
Comparison between the correlation trends of the 1-2-1
QMLP (-) and the 4-8-4 real MLP (-) for the q) state
variable.
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Fig 4
Comparison between the correlation trends of the 1-2-1
QMLP (-) and the 4-8-4 real MLP (-.).for the q3 state
variable.

As shown in the figures, the real and quaternionic MLPs
give similar performance. However a strong difference can
be observed when comparing the number of real
parameters involved into the networks, which is 28 for the
1-2-1 QMLP and 76 for the 4-8-4 real MLP.

Chua's circuit

The well known Chua's circuit is the simplest circuit with
the most complex behavior [8]. It is described by the
following equations, here reported in the normalized

form:
4 =a[y~h(q,)]
92 =91~ 9z + Q3
43=-Pq,—

h(z) = m1q1+0 5(1110—"11)(|X+1|—|x 1

The 'double scroll' actractor is obtained for the following
value of the parameters:
(a,B,7,m,,m) =(9,14.286,0,—-1/7,2/7)

The initial conditions have been set to:
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(x,y,2)=(0.1,0.1,0.1)

Starting from these conditions a set of 500 samples has
been collected: among them 250 have been considered to
perform the network learning and the remaining one for
the testing step. In order to compare the real and the
QMLP performance, the learning parameters as well as
the maximum learning cycles equal to 10000 have been
fixed to the same values for each topology.

In particular, as regards the QMLP, topologies employing
from 1 to 5 hidden units have been taken into
considerations. For such networks the real part of the
input and output neurons has been set to zero. The best
results have been reached with the QMLP with 3 hidden
units, which employes 40 real parameters. As regards the
real MLP, topologies starting from 6 to 12 hidden units
have been trained. After performing such step, it has been
noted that none of the topologies reaches a value of the
testing error comparable or lower than the 1-3-1 QMLP
testing error within the fixed cycle number. The
comparison between the performance of the different
topologies has been performed using the correlation
function (7) evalued with a prediction step increased from
1 to 10. Fig. 2ab,c clearly show the efficiency of the
QMLP structures with respect to the real ones.

T~ T
0.95 \-\‘ ~ 4
~ ~N ~
S . TN
"\ \
0.9} \ \
.\ /’\. \\\‘
. /l \4
e \
0.85} i \
N
‘\
0.8} ~
AN
073 ] 3 ¥ % ; 8 5 o
Fig. 5

Comparison between the correlation trends of the 1-3-1
QMLP after 10000 lerning cycles (-), the 3-12-3 real MLP
after 10000 cycles (-) and the 3-12-3 real MLP after
20000 cycles (--) for the qy state variable.
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Comparison between the correlation trends of the 1-3-1
QMLP after 10000 lerning cycles (-), the 3-12-3 real MLP



after 10000 cycles (-) and the 3-12-3 real MLP after
20000 cycles (--) for the qy state variable.
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Fig. 7

Comparison between the correlation trends of the 1-3-1
QMLP after 10000 lerning cycles (-), the 3-12-3 real MLP
after 10000 cycles (-.) and the 3-12-3 real MLP after
20000 cycles (--) for the q3 state variable.

It has to be observed that the real MLP with 12 hidden
units improves its performance when the number of
learning cycles is increased but in any case it employs a
number of real parameters equal to 87, more than twice
with respect to the QMLP. Under these consideration the
suitability of the proposed strategy acquires more interest.

4. CONCLUSIONS

In the paper a strategy in order to decrease the number of
parameters needed to perform a multidimensional time
series prediction has been introduced. Such a methodology
makes use of a Multi Layer Perceptron defined in
Quaternion Algebra, for which a suitable density theorem
has been proven. The efficiency of the proposed approach
has been validated through a series of examples regarding
the estimation of chaotic time series derived from some
chaotic circuits well known in literature.
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