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Abstract 

We discuss the creation of hyperchaotic attractors in a system of two coupled Chua circuits. Both mutual and unidirectional 
couplings are considered. Results from chaos synchronization theory allow us to determine chaos-hyperchaos intermittency. 

1. Introduction 

Hyperchaotic behaviour is characterized by two 
positive Lyapunov exponents. In dissipative systems 
hyperchaotic attractors can arise in at least four-di- 
mensional systems of ordinary differential equations 
[1-12].  There are a number of dynamical systems 
evolving on hyperchaotic attractors, for example the 
chemical reaction model [ 1,2], electronic circuits 
[6 ], coupled logistic maps [7 ] and generalized 
H6non maps [ 8 ]. Recently, hyperchaotic attractors 
have been experimentally observed in hydrodynam- 
ics [ 9 ], semiconductor systems [ 10 ] and a chain of 
Chua circuits [ 11 ]. Transition from chaos to hyper- 
chaos in nonautonomous systems of periodically or 
chaotically coupled oscillators has been investigated 
in Refs. [3,5]. 

In what follows we investigate the hyperchaotic at- 
tractors in an autonomous system of a pair of cou- 
pled identical Chua circuits, whose combined equa- 
tions of  motion are 

~ = a ( y - x - f ( x )  ) , ( l a )  

# = x - y + z + K ( v - y )  , ( lb )  

~=-/~y, (it) 

~ = o l ( v - - u - - f ( u )  ) , ( l d )  

b = u - v + w + M ( y - v )  , ( l e )  

~v= - f l y ,  ( l f )  

where 

f ( x )  = b x +  ½ ( a - b )  ( I x +  I I - I x -  I I ) ,  

f ( u ) = b u + ½ ( a - b ) ( l u + l l - l u - l l ) ,  (2) 

et, fl, a and b are constants. The first Chua circuit 
(Eqs. ( 1 a ) -  ( I c ) ) is coupled to the second one ( Eqs. 
( l d ) - (  l f ) )  in such a way that the difference be- 
tween the signals y and v 

d t ( t ) = K ( y - v )  , (3) 

or 

d2(t)  = M ( v - y )  , (4) 

is respectively introduced into the first or the second 
circuit as a negative feedback. K, M>  0 are the stiff- 
ness of the perturbations. If K and M are nonzero the 
two circuits are mutually coupled and if one of them 
is zero both circuits are coupled unidirectionally. 
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The Chua circuit is of  course a particular dynami- 
cal system, but a great number of extensive studies of  
it dynamics showed that it can be considered as par- 
adigms for chaos [ 13 ]. That is why we believe that 
our results presented in this Letter can be generalized 
for a larger class of dynamical systems. 

The outline of  this Letter is as follows. Section 2 
describes the complete route to hyperchaos in mu- 
tually ( K = M )  coupled Chua circuits. In Section 3 
we consider the birth of  hyperchaotic attractors in a 
unidirectionally coupled system and we describe 
chaos-hyperchaos intermittency. This new type of 
intermittent behaviour is easily observed in unidirec- 
tionally coupled circuits. Finally, we summarize our 
results in Section 4. 

2. Mutual coupling 

Considering the case of  mutual coupling it is nec- 
essary to note that for K = M  Eqs. ( 1 ) are symmetri- 
cal with respect to the variable transposition 

(x, y, z, u, v, w)--* ( - x ,  --y, - z, - u ,  --v, - w )  , 

( x , y , z , u , v ,  w)- - , (u ,v ,  w , x , y , z )  , 

(x ,y ,  z, u, v, w ) ~ ( - u ,  - v ,  - w ,  - x ,  - y ,  - z )  , 
(5) 

and that they have the following nine fixed points, 

Pl: ( x = D , y = O ,  z = - D ,  u=D,  v=0,  w = - D )  , 

P2: ( x = D ,  y=O, z=  - D ,  u= - D ,  v=0,  w = D )  , 

P3: ( x = - D , y = 0 ,  z = D ,  u= - D ,  v=0,  w = D )  , 

P4: (X= - D , y = O ,  z=D,  u=D,  v=0,  w= - D )  , 

Ps: ( x = O , y = O , z = O ,  u=0,  v=0,  w = 0 ) ,  

P6: (x=0 ,  y=0,  z=0 ,  u= - D ,  v=0, w = D )  , 

P7: (x=0 ,  y = 0 ,  z = - D ,  u=D,  v=0,  w = - D )  , 

Ps: ( x = - D , y = 0 ,  z=D,  u=0,  v=0,  w=0)  , 

P9: ( x=D,  y=0 ,  z =  - D ,  u=0 ,  v--0, w = 0 )  , 

where 

a - b  
O . - ~ - - -  

b + l  " 

In our numerical investigation we considered the fol- 

lowing parameter values: fl = 22.0, a = - t. 142857 l, 
b=-0 .71428571  and K=M=0.0025 ,  and a was 
taken as a control parameter. Numerical computa- 
tions have been performed using the fourth-order 
Runge-Kutta method. For a < 8.78, the fixed points 
P1, P2, P3 and P4 are stable. When crossing the line 
a = 8.78 on the parameter plane, limit cycles with pe- 
riod T are born from these points due to Hopf  bifur- 
cation. The phase trajectory projections of  these cycles 
on the u - x  plane are schematically shown in Fig. 1. 
Cycles C °, C~3 as well as C °, C O are symmetrical with 
respect to transposition (5). Two of them (C °, C O ) 
lie in the symmetric subspace ( x =  u, y =  v, z =  w) of 
the complete phase space (they are located on the 
plane normal to the plane of Fig. 1 and that is why 
they are visible as lines) and two of the others are 
placed outside this subspace. It is necessary to note 
that the cycles C~2 and C O are self-symmetric with re- 
spect to substitution ( 5 ) in the sense that a point on 
the cycle transforms to a point on the same cycle un- 
der this substitution. A detailed description of the 
dynamics of  two mutually coupled Chua circuits with 
a full spectrum of Lyapunov exponents in the consid- 
ered interval a < 14.0 is given elsewhere [35 ]. Here 
we describe only the properties of hyperchaotic 
attractors. 

After a series of bifurcations [35] at a >  11.8 we 
observe four co-existing, symmetrical, with respect to 
transposition (5), hyperchaotic attractors born from 
the stable fixed points PI, P2, P3 and P4. An example 
of such an attractor is shown in Fig. 2. Phase space 

c :y  

_~ ~x~ 

/ ,  
-3 

Fig. 1. Location of the fixed points in the phase space ofEqs. ( 1 ). 
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Fig. 2. Hyperchaotic a t t r ac to r s  of Eqs. ( 1 ) (mutual coupling) 
shown in the 2D x - u  projection; a =  11.8; Lyapunov exponents: 
21 =0.268, 22=0.236, 23=0, 24=0, ;%= -2.75,  26= -2.82. 
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Fig. 3. Hypcrchaotic attractor of Eqs. (1) (mutual coupling) 
shown in the 2D x - u  projection; ix= 12.2; Lyapunov exponents: 
21 =0.416, 22=0.373, 23 =0  A4=0, 25= - 3.151, 26= -3.577. 

trajectories on this attractor are characterised by two 
positive Lyapunov exponents (21=0.268, 22=0.236, 
23=0, 24=0, 2 5 = - 2 . 7 5 ,  2 6 = - 2 . 8 2 )  and the sys- 
tem evolution takes place in the neighbourhood of one 
of the fixed points P~, P2, P3 and P4. At a value 
et ~ 12.1 all four hyperchaotic attractors of this type 
merge together to create a hyperchaotic attractor 
shown in Fig. 3. Phase space trajectories on this at- 

tractor are also characterised by two positive Lyapu- 
nov exponents ( ,~=0.416, 22=0.373, A3=0 24=0, 
25=-3 .151 ,  2 6 = - 3 . 5 7 7 ) ,  but unlike in the pre- 
vious case they jump between neighbourhoods of P l, 
P2, P3 and P4 in an unpredictable way. As the mech- 
anism of  the origin of this attractor is similar to the 
creation of a classical double-scroll attractor in one 
Chua circuit [26,27] we propose to call it double- 
double-scroll. 

3. Unidirectional coupling: chaos-hyperchaos 
intermittency 

In the case of unidirectional coupling (M=0 ) ,  if 
we consider again a as a control parameter, we ob- 
serve the same types of hyperchaotic attractors. Al- 
ternatively if we fix the value of ot in such a way that 
both Chua circuits show chaotic behaviour and con- 
sider the coupling stiffness K as a control parameter, 
then results from chaos synchronization theory allow 
us to observe a new type of intermittency. 

First let us recall some fundamental properties of 
the theory ofintermittency. Intermittency is a type of 
chaotic behaviour commonly observed in determin- 
istic systems [ 14-22 ]. It is characterized by long pe- 
riods of regular motion interrupted by short chaotic 
bursts. When a burst starts at the end of a laminar 
phase this denotes an instability of the periodic mo- 
tion due to the fact that the modulus of at least one 
Floquet multiplier is larger than one. Besides this 
simple case, more complicated intermittent behav- 
iour can take place in the general case, such as the 
"chaos-chaos" intermittency [24,25 ]. 

The possibility of chaotic (lower-dimensional) and 
hyperchaotic (higher-dimensional) attractors in the 
six-dimensional phase space of Eq. (1) shows the 
possibility of chaos-hyperchaos intermittency. This 
new type of intermittent behaviour occurs when the 
system evolution takes place on a chaotic (lower-di- 
mensional) attractor embedded in the three-dimen- 
sional subspace of the six-dimensional phase space 
for a significantly long time and only occasionally 
bursts to a higher-dimensional attractor. 

In our numerical investigations we considered the 
following parameter values: et=10.0, fl=14.87, 
a = -  1.27, b = - 0 . 6 8  and M=0 ,  i.e. unidirectional 
coupling of both Chua circuits. In the case of  K= 0 
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(no coupling) the dynamics of  both Chua circuits 
evolves along a double-scroll attractor [26,27 ]. We 
chose slightly different initial conditions for both cir- 
cuits x (0 )=0 .010 ,  u(0)=0.011  y ( 0 ) = z ( 0 ) =  
v ( 0 ) = w ( 0 ) = 0 .  Numerical computations in this 
section have been performed using the software IN- 
SITE [28]. Lyapunov exponents have been calcu- 
lated using the algorithm described on p. 80 of Ref. 
[28]. 

The trajectories of  Eqs. ( l d ) - ( I f )  are located on 
a 3D manifold. I f  the trajectories of  the whole system 
( l a ) - ( I f )  approach this 3D manifold (in our case 
this manifold is described by x = u, y = v and z = w) as 
well (the attractor is embedded in the three-dimen- 
sional subspace of the six-dimensional phase space of 
Eq. ( 1 ) ), then the first circuit simply reproduces the 
chaotic oscillations of the second circuit. In this case, 
all trajectories converge to the attractor of  Eqs. ( l d ) -  
( l f ) ,  d ( t ) - - , O  and both circuits synchronize [29,30]. 
The described 3D manifold exists for any value of 
the coupling stiffness K. This enables us to investi- 
gate the stability of  the chaotic limit set located in 
this manifold as a function of K. The spectrum of the 
Lyapunov exponents of  the coupled system ( 1 ) can 
be divided into two subsets 2 (~) and •(2), respec- 
tively, along the orthogonal to the manifold. The first 
subset of Lyapunov exponents is associated with the 
second circuit ( 1 d ) -  ( I f )  and consists of  three ex- 
ponents describing the evolution of perturbations 
tangent to the manifold. The Lyapunov exponents of  
the second subset describe the evolution of the per- 
turbations transverse to the manifold. I f  at least one 
M2)-Lyapunov exponent is positive the resulting limit 
set is not restricted to the manifold of  the second cir- 
cuit ( l d ) - ( I f )  and we observe a hyperchaos regime. 
As shown by de Sousa et al. [31 ] the ),(2)-Lyapunov 
exponents are equivalent to the conditional or sub- 
Lyapunov exponents of  Pecora and Carroll [32,33]. 
This is why the chaos-hyperchaos transition in our 
system is strictly connected with the synchronization 
problem. 

As is was shown in Ref. [ 11 ] for smaller values of  
K (K< 1.17) the chaotic trajectories of  system (5) 
are characterized by two positive Lyapunov expo- 
nents; one in the 2 (I)-subset and the other in the M 2)- 
subset, so that in this case the two Chua double scroll 
circuits cannot synchronize. In this case we have hy- 
perchaotic evolution of the system. For higher values 

of  K (K> 1.17) there is no positive Lyapunov expo- 
nent in the 2~Z)-subset, the evolution takes place on a 
three-dimensional manifold and the circuits can syn- 
chronize. The synchronization property of  the cha- 
otic attractors in our case allows us to find the quali- 
tative difference between chaotic and hyperchaotic 
attractors from in x - u - z  projections. Generally, this 
distinction is not straightforward [ 4 ]. 

In Fig. 4 we show three-dimensional x - u - z  projec- 
tions of chaotic and hyperchaotic attractors. The 
evolution of the projection of the chaotic attractor of  
Fig. 4a takes place on a two-dimensional x =  u plane, 
while the evolution of the projection of the hyper- 
chaotic attractor of  Fig. 4b is represented by a three- 
dimensional structure. The attractor of Fig. 4a is a 
classical double-scroll attractor, while the attractor of  
Fig. 4b has the same structure as the double-double 
scroll attractor introduced in the previous section. 

The same x - u - z  projections allow us to observe 
chaos-hyperchaos intermittency. Shortly after the 
transition from chaos to hyperchaos at K =  1.17 the 
trajectories of  system ( 1 ) evolve on a three-dimen- 
sional manifold for a long time and only occasionally 
burst to higher dimensions. This process can be ob- 
served in Fig. 5. In Fig. 5a we observe how after a 
relatively long evolution on a three-dimensional 
manifold the trajectory goes out of it towards one of 
the unstable fixed points. Fig. 5b shows the double- 
double scroll attractor shortly after its birth. With a 
further decrease of  the coupling stiffness K the inter- 
vals with evolution on the three-dimensional mani- 
fold become shorter and finally at K=0.92 they 
disappear. 

The chaos-hyperchaos intermittency phenome- 
nology is as follows. For values of  the control param- 
eter p less than a critical transition value p* the at- 
tractor is chaotic and the system trajectories evolve 
on a 3D manifold. For p slightly larger than p* there 
are long stretches of  time ("chaotic phases" ) during 
which the trajectory appears to evolve on the 3D 
manifold and closely resembles the trajectory for 
p < p*, but this chaotic behaviour is intermittently in- 
terrupted by a finite duration burst in which the tra- 
jectory leaves the 3D manifold of  the chaotic attrac- 
tor. These bursts occur at seemingly random times, 
but one can define an average length of time interval 
during which the system trajectory evolves on the 3D- 
manifold (a mean time between the bursts to a higher 
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(a) 

I z 

Fig. 4. Chaotic and hyperchaotic attractors of Eqs. ( 1 ) ( unidirectional coupling ) shown in the 3D x-u-z projection. (a) K= 1.15: chaotic 
attractor; (b) K~-0.02: hypcrchaotic attractor; 2j --0,431, 22--0.412, ~3=0 24-0,  2~= - 3.741, 26= - 3.852. 

dimensional manifold) T(p) .  As p increases sub- 
stantially abovep*, the bursts become so frequent that 
the chaotic evolution on the 3D-manifold can no 
longer be distinguished. 

In our system ( 1 ) we observed the following scal- 
ing behaviour of the average interburst time T(p) ,  

T(p)  oc {p-p*) -a ,  (7) 

where p = - K  and o~=0.22_+0.01. Computation of 
Lyapunov exponents of trajectories showing inter- 
mittency with two different types of behaviour sepa- 
rated by long time intervals requires the considera- 
tion of long trajectories to obtain convergence to true 
values. Long intervals with different types of behav- 
iour can cause fluctuations of transient Lyapunov ex- 
ponents similar to those described in Ref. [37]. In 
this type of computations we considered trajectories 

which consist of 106 intervals with evolution on a 
chaotic attractor and 106 bursts to a higher dimen- 
sional attractor. In calculations of the scaling factor 
~x we considered an average of 1000 simulations for 
randomly chosen initial conditions: 
x(O) # u(O) ~ [--0.I,0.I ], y ( O ) = z ( O ) = v ( O ) =  
w(O) =0. We considered 1000 trajectories for differ- 
ent initial conditions to be sure that the described be- 
haviour is typical in the domain of the phase space, 
as our system is quasi-hyperbolic and many different 
attractors can coexist. 

In the regions of chaos-hyperchaos intermittency 
in K-parameter space one can observe exponential 
growth of the Lyapunov dimension of an attractor, 

& = j 4  1;,,+,1 ' (8) 
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Fig. 5. Details of the evolution on the hyperchaotic attractor (unidirectional coupling); (a) escape from the 3D manifold; (b) birth of 
the double-double scroll attractor. 
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Fig. 6. Plot of the Lyapunov dimension venus K ~ r  Eqs. ( 1 ): a = 10.0, p = 14.87, a = - 1.27, b = -0.68; dotted line: numerical results; 
solid line: scaling law (6). 

where  j is d e t e r m i n e d  by EJ/=I / ~ 0  but  E N+~i=~ 2 < 0  

[ 26 ]. In  Fig. 3 we show the  plot  0fdL versus  K. It  can  
be seen tha t  wi th  a decrease  o f  K, the  L y a p u n o v  di- 

m e n s i o n  dL grows. We can d is t inguish  two regions.  In  
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the first one, in which chaos-hyperchaos  intermit-  
tency takes place, the growth is exponent ia l  with the 
scaling law 

dLoC(p_p .  ) - a ,  (9 )  

with approximate ly  the same oL as in scaling law (4) .  
It should be noted here that  relat ion (6 )  holds as long 
as chaotic evolut ion on the 3D-manifo ld  can be dis- 
t inguished ( in our  system for p c  ( - 1 . 1 2 ,  - 0 . 9 2 ) .  
When hyperchaotic behaviour  is fully developed (the 
evolut ion on the 3D-manifo ld  cannot  be dist in-  
guished) the Lyapunov d imens ion  becomes much 
smaller  and  tends towards  the value 2d~ s for K =  0, 
where dE ~ = 2.11 is the informat ion  d imension  o f  the 
double  scroll at tractor.  The Lyapunov exponents  
(Lyapunov  d imens ion)  necessary to establish rela- 
t ion (9 )  were (was)  based on the average o f  1000 
numerical  simulations o f  hyperchaotic trajectories for 
randomly  chosen init ial  condit ions:  
x ( 0 ) ~ u ( 0 ) ~ [ - - 0 . 1 ,  0.11] ,  y ( O ) = z ( O ) = v ( O ) =  
w (0)  = 0. A mean-square  fit was applied.  

Final ly  it should be noted that  a s imilar  chaos-hy-  
perchaos in termit tency can be observed in the mu- 
tually coupled system considered in Section 2, but  in 
this ease it cannot  be directly observed and can be 
de te rmined  only by investigations o f  power spectra 

[361. 

4. Conclusions 

To summarize,  it  has been demons t ra ted  here that  
two coupled Chua circuits can exhibit  chaotic or  hy- 
perchaotic  behaviour .  Hyperchaot ic  at t ractors  are 
robust  in the phase space o f  both  mutual ly  and uni- 
direct ional ly coupled circuits. We de te rmined  two 
types of  at t ractors  with two posi t ive Lyapunov ex- 
ponents.  One type is equivalent  with the spiral  
Rfissler-type o f  chaotic a t t rac tor  in one Chua circuit. 
Depending  on the ini t ial  condi t ions two such attrac- 
tors exist in the phase space. The second type, which 
we called double-double-scro l l  at tractor,  is created 
when four spiral- type at t ractors  merge together in a 
s imilar  way as the classical double-scroll  a t t ractor  is 
created from two spiral- type at t ractors  in one Chua 
circuit. 

Addi t ional ly ,  it  has been shown that  two coupled 
Chua double scroll circuits can demonst ra te  chaos -  

hyperchaos intermit tency.  This new type o f  in termit-  
tent  behav iour  is character ized by the long evolu- 
t ions o f  the hyperchaot ic  t rajectory on a lower-di- 
mensional  chaotic a t t ractor  with occasional bursts  to 
higher dimensions.  As this mechanism is s imilar  to 
the mechanisms o f  classical in termi t tent  behaviour  
[ 1,2], chaos-hyperchaos  in termi t tency can be con- 
sidered as its general izat ion for higher-dimensional  
systems. 
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