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Abstract

Controller design procedures for nenlinear systems
with small time-delay in the control input are pro-
posed. These controllers solve approximately the
model-matching problem. The delayed nonlinear sys-
tem is represented in an approximate form by a sys-
tem having a singular perturbation structure free from
time-delays. The controller is an improved version of
that one corresponding to a design where the delay is
neglected. An application to a Chua system present-
ing a short delay in the control input, and displaying
regular and chaotic dynamics, illustrates the proposed
procedure.

1 Introduction

One of the most exciting and interesting ideas devel-
oped in the past few decades is the complex and chaotic
behavior of dynamical systems. At present, practical
implications of these ideas are leading to novel appli-
cations where chaos must be controlled. Among the
kind of chaotic systems, the Chua circuit has an impor-
tant place. Different conventional control techniques
have been proposed to make this system display a reg-
ular or a chaotic behavior [8]. Because this is a non-
linear system, the use of nonlinear control techniques
may yield better results when the control objectives are
more complicated than merely to regulate an equilib-
rium point; for example, tracking of periodic orbits or
matching the behavior of a given model. In this sense,
the matching of the dynamical behavior of the plant
to that given by a reference model, problem known as
model-matching, can give excellent results when the
plant and the model has similar behavior. In the case
of a chaotic plant matched to a chaotic model, the ver-
satile dynamics of the reference model may produce a
closed-loop system that can display, in an efficient way,
a great variety of dynamical behaviors: equilibrium
points, periodic orbits of different periods, or chaotic
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trajectories.

On the other hand, systems with time-delays are found
in many situations, for instance, mechanical compo-
nents, electronic circuits, teleoperators, etc. Some pro-
cedures to control these systems involve input-output
decoupling and disturbance decoupling techniques [7],
[10]. In many cases, the feedback laws result non
causal. Time-delays appear also in electronic circuits,
including the Chua oscillator [2], introducing phase-
lags that are very difficult to cope with.

In this paper we propose a procedure to design con-
trollers for nonlinear systems with small time-delays
in the control input. These controllers solve approxi-
mately the model-matching problem. The delayed non-
linear system is represented in an approximate form by
a system having a singular perturbation structure free
from time-delays. Thus, by using singular perturbation
theory [6], together with some results from the geomet-
ric nonlinear control literature [4], a model-matching
controller can be designed and the stability analysis
can be carried out. The approach presented in this
work is based on similar ones followed independently
by Sannuti [9] and Inuce et al [3] for linear systems. We
illustrate the procedure with an application to a con-
trolled Chua system having a control input with a short
time-delay. In this application the plant is fixed, and
the reference model is another Chua system that can
display a variety of attractors by varying slightly one
parameter, ranging from equilibrium peints to chaotic
attractors.

2 Problem description

Let us consider the nonlinear time-delay system
@) = FPEF®)+ P P ®)u—7), (1)
y' (1) = WP (7 (),

where £ € 2P c R”, =P is an open set containing the
origin; u, yF € R, fF (0) = 0, h” (0) = 0. Consider



also a nonlinear model given by

M) = MEM®)+M @) @), (2
M@ = M (EY @),
where £ € EM ¢ R%, ZM is an open set containing

the origin; uM, y™ € R, fM (0) = 0, hM (0) = 0. We
define the moedel-matching problem.

Definition 1 (Model-matching problem)
Consider the system (1) and the model (2). Find, if
possible, a reqular static state feedback

u (t) =9 (EP (t) >£M (t) 7UM (t)) ) (3)

defined in an open subset of ZF x EM x R, such that
there exists a domain D C EY x M containing the
origin and, if (£F(0),&M (0)) € D, then the closed-
loop system yields im,_, o (y™ (t) — 4% (t)) = 0.

Suppose that the relative degrees about the origin of
system (1) with respect to « (t — 7}, and of system (2)
with respect to uM (t), are both n. It is known [4] that
it is possible to find local coordinates transformations
P=TF (7)) = (n",LyphP,..., L35 07 (€7)
and
=T™ (M) = (hM,LthM,... ,L;:;}hM) (€M)

such that (1) and (2) will be given by

&) = 25,0, (=1,...,n-1),
p (1) = fq (=7 @)+ @ @) ult-7),
yo(t) = 27 (),

and
@) = M, (), (i=1,...,n-1),
oy (t) = £ (M@)o (M () uM (1),
y @) = 27" (0),

where

fo =Lph" (€F), gF =1L e L7z hF (6F) #0,
=L h™ (EM), gt = Lou Ly WM (eM) 0,
&= (") 67), M= (@) =),
zfP e XP =TP (EP),and 2™ € XM = TM (EM). Let
us suppose that the model is a self-excited system with
bounded trajectories, sou™ = 0. Define z = (M, z¥ ),

y = yM —yP. Therefore, we can define a global system
having the form

10
y (t)

il

fa@®)+g@®)ult-7), @
h(z(t)),

i
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where [ = (x%’f,...,x%,f,{”,xzp,...,mﬁ,ff), g =
(O, ..., 0, gf), h = a:{w - xf. The model-matching
problem is then reduced to the stabilization of the ori-
gin of this system.

If we follow the same technique used to determine the
control law for systems without delay (T = 0) to calcu-
late the control law that solves this problem for systems
with delay (T > 0), then we obtain the control

(@M @ +1) = fF (2P (t+ 7)) — 7 (t+7)
u (t) P (P )
gn (P (t+7))

(5)
where r is a new input. The noncausality of this con-
trol law makes it inapplicable; therefore, we will con-
sider an approximation of (4) that is free from delays
and permits to obtain a causal control law that solves
approximately the model-matching problem. We also
discuss the stability of the closed-loop system.

3 Approximate model-matching control

Let us denote the delay by 7 = ke, where ¢ is a small,
positive number, and % is a pesitive integer. Now de-
fine 2; (t) = u(t~1e), 1 = 1,...,k, and consider the
approximation #; (t) & (2z; (t +¢€) — 2; (t)) /e. There-
fore, we obtain

€z (t) = Az (t) + bu(¢), (6)

where 2 = (2,...,2), b = (1,0, .,O)T € R*, and A
is the (k X k)-matrix

-1 0 e 0
1 —-10 - 0
A= | : N :
0 -~ 1 -10
0 -~ 0 1 -1

Using (6), the nonlinear system (4) can be approxi-
mated by

o= f@0)Ef@)+g(@),

et = Az+buy,

v o= cz, (7
y = hi),

where ¢ is the k-row vector (0,...,0,1), and all the
signals are evaluated at the pr@ent time . Note that
£(0,0) = 0 and the matrix A is strictly Hurwitz, with
all its eigenvalues at —1. Now we want to find the
conditions such that the output y converges to zero,
remaining bounded the state trajecteries of (7).

Assume that, for a given input u, the solution of the
2-subsystem of (7) is given, for £ small enough, by

PICEAGE (8)

1=0

2() = 6(t,e) =



In the same way, assume that the control law u can be

expressed as
o0
i
U= E e'u;.

=0

Using (8-9) into (6) leads to

i et = i &' (Agi + bus) .

1=0 1=0

(9)

By grouping the corresponding coefficients of ' we ob-

tain
Ago +bug =0, ¢; = Apipy +bdujy, 120,

from where it is possible to get

: L d
—_ '_(1‘+1—.7) .__..__i
S arin-mEzy
j=

Now using (8) and (10) into the z-subsystem of (7) we
find

>0.  (10)

&=f(z)+g(@)i-g(x)c)

t=1

. : , L odiT iy
) —(i+1-7) J
€ EOA b——_dti“j ,

(11)
where & = —cA 'buy = uy because cA™1b = —1.
Therefore, if we set

ciei iA—(iH—J)bﬂﬂ =0
dti-i

i=1 §=0

(12)

then (11) reduces to & = f(z) + g(x) 4. Therefore,
we propose to design @ to stabilize this last system,
with condition (12) fulfilled. From a practical point
of view we can truncate the series on ¢ up to a finite
order, obtaining an approximate solution. For instance,
if we consider only the first-order approximation, then
from (10) and (12) we will have ¢o = —A~ buo, $1 =
—A~2bly — A" buy, and u; = cA~2bly = ki because
cA =k

The reduced-order model, obtained with £ = 0, will be

f(:t, ug) = (13)
h(z).

& f(z) +g(x) o,

Then the state feedback control law

N () %! (@™ (X)) — fn (& (@) —r ()
o g% (F (1)) :
(14)
with rg) =—ay,a=(05...,0n), ¥ = U1, ,Un)s

y; = zM —2xF, and a; such that \" +a, \" 14+ 4+
is strictly Hurwitz, yields lim;—, oy (t) = 0, keeping
bounded the state trajectories of this system. In fact,
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the reduced system (13) with the control law (14) has
the form

Ui (¢) yie1(t), =1,...,n—1),
In(t) = —a-y@),

() = M, (), (i=1,....,n=1), (15)
() = fM(M@),

y() = n().

It is evident that, if the origin of the model is stable,
then this reduced system will also have the origin as a
stable equilibrium point.

Remark When ¢ # 0, the first-order approximate
control law is given by v = ug 4 79, which cor-
responds to the first-order approximation of (5)
with respect to 7.

In the (y,2, 2) = (2%, 2) ~coordinates, the complete
closed-loop system is given by

() = G(xG(t),z(t),a),
ez(t) = G(:CG(t),z(t),s),
y(t) = U (t)’
where
fG = (y2,--~,yn--1,f7?,$§l,~',%Iy_pf',{w),
=1 (wM) — I (@™ —y) = gF (z™ —y) ez,
¢ = Az + bu (z9),
u=uo( )+ keug (z9) +
and ug given by (14) with z¥ = zM —y. We then

have a singularly perturbed system where the reduced,
“nominal” closed-loop system (15) has the origin as
an equilibrium point whose stability depends on the
model. On the other hand, the boundary-layer model
n = An, where n = 2 + A lbug, is independent of
z€, linear, and exponentially stable. Furthermore, note
that

£6(0,0,¢)

gG (xG :
lated root z = h (2%) =
h(0) =

=0, ¢¢(0,0,¢) =0

,z,O) = Az + byg (IG) = 0 has an iso-
—A~bug (¢%) such that

The origin of the reduced system € (t)
fG (_er (£}, h (acG (t)) 0) is exponentially stable
if the origin of the model does it.

Then we can conclude exponential stability of the ori-
gin of the complete system (7) for a small enough delay
T = ke [5].



Remark Exponential stability of the origin is accom-
plished if the model has the origin as an exponen-
tially stable equilibrium point. This is a sufficient
condition for stability if ¢ is small enough. In the
case where the model has bounded trajectories
only, it is also possible to have convergence of
the error y™ — yF to zero and boundedness of
the state trajectories. This is illustrated with the
example discussed below.

Remark The proposed control law u uy +
ke dug/dt+-- - +c(e™) d™up/dt™ is known as an
mth-order approximate solution for the model-
matching problem defined before, applied to the
system in singular perturbation form (7) that ap~
proximates the original delayed nonlinear sytstem
(1). The zero-order approximation can be ob-
tained by setting &€ = 0 (so u = up), which is
equivalent to design a control law for the delayed
system by neglecting the time-lag.

4 Application to the Chua system

In this section we apply the proposed control law to
a delayed Chua system. A schematic diagram of the
Chua circuit is shown in figure 1 [1]. It is described by

R

My

+

+

Nr

C2 Vi W Ct W

RO

Figure 1: Schematic diagram of the Chua system.

City = Gua—v)— frr(v),
Cog = G (’Ul — ’02) + i3, (16)
Liz = —(vz+ Rois),

where Cy, Co, L, G = 1/R, and Ry are real numbers,
and

1

fne (vr) = Gyor + 2 (Ga — Go) (lvr + E| — |vg — E|)

' (17)
is the v — 1 characteristics of the nonlinear resistance
Npg, which is a piece-wise linear function with slopes G,
and Gy, and corners at vg = +FE. A change of variables
given by
s
GE’

1 = s Trog = s Ir3 =

v v
E E
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— &) — Cy _Rocz
« = oo B=1m h=g
G, Gy t
N G’ G’ T RCGy

leads to the adimensional model

z a(ze—z — fvr (7)),
E2 = Zy—Tg+x3, (18)
I3 = _ﬁa:Z — HZ3,

with

e (@) = bxy + % (a—b)(Jzr + 1| — |21~ 1]). (19)

This system can display a variety of limit sets. Figure 2
shows some responses obtained from the system, from
equilibrium points to strange attractors, for the para-
meter values 8 = 16.5811, 1 = 0.13083, a = —1.39386,
b= —0.75590, and different values of a.

(a) Equilibrium Point (b) Period-1 Orbit

0 5
9-4 ® -5
-% - ; 0.5 1% . 1
q 405 e a 5ox
(c) Period-2 Orbit (d) Chaotic Orbit
5
0
25
9 1

Figure 2: Trajectories of the Chua system.

(a) a
7.7189, (b) a = 9.0066, (c) a = 9.100, (d)
o = 10.0063.

A controlled Chua system with time-delay in the input
can be described by

g = o[ @) - )~ 1R (€8 )]
+u(t—71),

€}f (t) & () —&F ) +&5 (), (20)

& () = —pPed () - uPel (),

y© () & (),

with f§; () given by (19). This corresponds to the
injection of a control current in the node corresponding



to capacitor 1 to control the inductance current. This
system can be given the normal form

sz (t) = le')+1 (t) ’ (7‘ = 1’2) )
() = f5 (a7 @®)+6f @) ult-7),
y' () = 27 (1),
where
xf = 5‘57 .’L'g = _:BP£2P - “P'r3p7 g?}: - _';BPa

2§ =670 + 87 (" +1) & + ((W")" - 67) &,

£ = —afpPzf - [BF +47 (1+a")]f
—(aP+uP+1):v§J+aP6Pf§L (acP),
e = BP 5 (6P 0P) (| + 1] = [ 1),
P+ P P+1 1
o= F Sl - ek - o

Now consider a reference model with the same structure
of the plant. The zero-order approximate control law
(14) has the form

aMpBMaM _ oPBP P

Ug

,BP

X BM +puM + aM/‘MwM
T ﬂp 2

IBP+#P +QP/LP p

(aM 4+ uM 4 1) 2 — (of +pP +1) 2§
+ 57

Mg it (M) ~ PP 1L (2F) |

If we choese 7 = —ay; — aoyz — asys, with y; = -"%M -

zf , and a; such that A3 + az\? + ag A + a; be strictly
Hurwitz, then we can obtain, for an small enough delay
T, an output error converging asymptotically to zero,
with bounded state trajectories.

A first-order approximate control law is given by u =
tg+ketyy. Note that, due to the time derivative present
in this expression, the nonlinear functions 5 and f3,
must be at least C!. This is not the case for the Chua
system (see equation (19)), so for the calculation of the
control law we have approximated these functions to
the form

fur(@) ~ bzt “T‘b (z+1)tanh [\ (z + 1)]

a —

= (o~ 1)tanh [A (z ~ D),

with a large value of \.
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Output Error y = ¢™ — y*

1.0

0.8 -

0.6

0.4+

02+

0.0 ———
0 5 10 15
time

Figure 3: Typical output error of the controlled Chua
system without delay, for a reference model dis-
playing an equilibrium point, a periodic oscil-
lation, or a chaotic attractor.

Note that the fast subsystem (6) has all its k¥ poles
placed at ~1/e. Therefore, to maintain a good separa-
tion between the “fast” dynamics induced by the delay,
and the “slow” dynamics corresponding to the closed-
loop reduced system {13), we have placed all the n poles
of this last subsystem at —1/pe, with p a large integer.

In figure 3 we show a typical output error y = y™ —
yF obtained when the plant has an open-loop response
corresponding to a stable equilibrium point (figure 2.a,
af = 7.7189) with no time-delay (r = 0), and the
reference model is set to have a steady state given by
an equilibrium point, a periodic oscillation, or a strange
attractor. In all cases the output error is completely
similar.

On the other hand, figure 4 shows the same output
error when the plant has a stable equilibrium point
(e = 7.7189), the reference model is displaying a
chaotic behavior (a™ = 10.0063), for different time-
delays. In this figure, the dotted lines correspond to
the zero-order approximate control, the solid lines to
the improved first-order approximate control law. Note
the better response of this last controller.

Finally, figure 5 compares two attractors obtained from
the model and those corresponding to the plant, for a
time-delay 7 = 0.05 and the improved control law: a
strange attractor (figures 5.a and 5.b, o™ = 10.1), and
a period-2 oscillation (figure 5.d). Figure 5.c shows the
control signal for the chaotic case. Note the perfect
reproduction of the attractors.



(a) T=0.01 (b) 7 = 0.02
0.025 0.025
0.015 1 0.015 1
0.005 l 0.005
—0.005 T 0.005 .
0 10 20 0 10 20
time time
(c) T =0.03 (d) 7=0.05
0.03 0.10
0.01 0.00
—-0.01 +— T -0.10 r
10 20 0 10 20
time time

Figure 4: Output error y = yM — y¥ of the con-
trolled Chua system (af = 7.7189) with differ-
ent time-delays and a chaotic reference model
(a™ =10.0063). Zero-order (dotted) and first-
order (solid) approximation.

{a) Model

10 20 x2m

Xim
(c) Controt

o 50 100 150
Time

200

(b) Plant

10 -20 x2p

x1p
(d) Period-2 Oscillation

X1 10 <20 x2

Figure 5: Model-matching of the Chua system with a
time delay 7 = 0.05 and an improved first-
order approximate control. (a) Model attrac-
tor. (b) Plant attractor. (c) Control signal for
the chaotic attractor. (d) A period-2 oscilla-
tion: model (dashed) and plant (solid).
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5 Conclusions

In this paper we have proposed a model-matching con-
troller for a class of nonlinear systems with time-delay
in the control input. The controller is an improved
version of that one corresponding to a design where
the delay is neglected. The stability analysis of the
closed-loop system has been carried out by approxi-
mating the delayed system to a nonlinear system with
a singular perturbation structure. The application of
this control law has been illustrated with a Chua sys-
tem presenting a short delay in the control input; this
system can display regular and chaotic dynamics. This
controller has made the delayed plant follow perfectly
a variety of steady-state behaviors, ranging from equi-
librium points, simple limit cycles, period-2 oscillations
and chaotic trajectories.
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