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This short paper discusses the effect of the internal resistance of the inductor in Chua’s
circuit which is often neglected by many even when actual implementation is intended.
Using a fixed point stability analysis it is shown that varying the inductor resistance it
is possible to suppress or allow chaotic oscillations. The results reported in this paper
have clear consequences for the control of Chua’s circuit.

1. Introduction and Statement of the Problem

One of the most popular benchmarks for studying nonlinear oscillations is Chua’s
circuit.1=3 This system has been also used as a benchmark for studying several
aspects of nonlinear system identification and control.#=® One of the reasons for the
preference of Chua’s circuit in practical applications is that this circuit can be easily
built to produce chaotic oscillations.”® The equations governing Chua’s circuit are
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where v; is the voltage across capacitor C;, i is the current through the inductor
and the current through Chua’s diode is given by
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where B, mg and m, are respectively the break point and the inclinations of the
piecewise-linear function of Eq. (2).

The following components were used in the implemented circuit: C; = 10 +
0.5nF, Cy =100+ 5 nF, L = 18 +2% mH and R is a 2.0 k2 trimpot. Chua’s diode
was built using the two-operational-amplifier configuration suggested in Ref. 8 and

*This paper was recommended by Associate Editor M. Simaan.
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the following parameters were measured: mo = —0.37 £ 0.04 mS, m; = —0.68 =
0.04 mS, and B, =1.1+0.2 V.

The location and the stability of the fixed points of a system are important in
determining the general structure of the flow in phase space and depend on the
parameters of the system. This paper discusses the stability analysis performed on
Chua’s circuit fixed points and shows the effects of the inductor resistance. The
results discussed in this paper are believed to be relevant in some control problems
of Chua’s circuit.

2. Stability Analysis

Expressing Eq. (1) as # = f(z), the fized points are defined as the solutions of & = 0.
Equation (1) has three distinct fixed points, namely a trivial fized point and two
nontrivial fized points which are symmetrical with respect to the origin and will be
denoted by {pn,ps, —pa} € R3.

Chua’s circuit exhibits a wealth of dynamical regimes. For instance, varying the
resistor in the range 2.00kQ > R > 1.40 k2, the oscillator goes from a dc equi-
librium to a limit cycle passing through a sequence of period-doubling bifurcations
and different chaotic attractors.® An important point to notice is that the first bi-
furcations are characterized by the loss of stability of the nontrivial fized points and
subsequent bifurcations by the loss of stability of periodic cycles.

An example that illustrates this fact is the behavior shown in Fig. 1. These
results were encountered in practice. In this figure, v, is plotted against v;. This
procedure yields a projection of the phase space onto the plane va X v;. The roughly

Fig. 1. vz X v1. Bifurcation sequence displayed by Chua’s oscillator with large inductor resistance.
The only attractors observed were those which coincided with the nontrivial fixed points and the
last period-one limit cycle. {R,;}?.__l ~ {2.00,1.86,1.80,1.75,1.74,1.35 kQ2}. The dimension of both
axes is volts.
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horizontal lines in this figure correspond to the location of the system nontrivial
fixed points as the trimpot was varied from R = 2.0 kQ to R = 1.74 k2. Notice
how the nontrivial fixed points just move towards the trivial fixed point but with-
out losing stability, thus hindering the appearance of any oscillations. Finally, for
R ~ 1.35 k1 the system “reaches” the trivial fixed point which is unstable, thus
provoking the limit cycle shown. This scenario revealed that the nontrivial fixed
points were always stable. Such fixed points, however, have to be unstable in order
to enable oscillations. This suggested that a fixed-point stability analysis should
be carried out in terms of one of the circuit parameters, and in the present study
the inductor internal resistance was selected. This choice was motivated by the fact
that this parameter is not usually considered in the literature and therefore it was
not included in the dynamical Eq. (1). All the simulations based on such equations
showed that the circuit should be oscillating even if other parameters such as Ci,

C, and L were varied over reasonably wide ranges.
The analysis outlined above was carried out using the following set of equations
dvy _ (v2 1)
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which now includes the parameter r;. The fixed points for this system are
located at
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e = {0,0,0} for |v;| < B, (5)

and —p, for v; > B,. Evaluating the jacobian Df at the nontrivial and trivial fixed
points yields, respectively
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(6)

In order to assess how rp affects the stability of the fixed points, the eigenvalues
of Df|p, and Df|,, were calculated for various values of r;. The results are shown
in Fig. 2.

This figure shows that the trivial fixed point is always unstable for all values of
r considered. This is in perfect accord with the dynamic behavior shown in Fig. 1.
On the other hand, Fig. 2(a) shows how the unstable complex eigenvalues of Df|,_
stabilize as 7y, is increased. In fact, as can be seen in Fig. 2(b) for values greater
than 19 Q, all the eigenvalues associated with the nontrivial fixed points are stable.
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Fig. 2. (a) Root locus of the eigenvalues of Df|,, and Df|p, for 0 @ < rp < 100 . The arrows
indicate the direction in which 7, increases. T and NT indicate the eigenvalues of Df evaluated

at the trivial and nontrivial fixed points, respectively. (b) A detailed view of the marked part
of (a).
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The results reported so far have clear consequencés for control of chaos in this
circuit.®® Because the inductor internal resistance has a stabilizing effect on the
nontrivial fixed points, this fact could be incorporated in the design of a control
scheme for this circuit. In particular, a variable resistance element in series with
the inductor could be used as the control parameter and could be varied in order
to stabilize or unstabilize the nontrivial fixed points.

3. Conclusions

This paper has discussed the stability analysis of Chua’s oscillator fixed points.
The results reported in this paper seem relevant in two aspects. First, if real
implementations are in view, the set of Eq. (3) should be preferred to Eq. (1). This
observation seems pertinent because most authors tend to use Eq. (1) even when
real implementations are intended. Second, the analysis performed revealed that
the inductor internal resistance has a stabilizing effect on the nontrivial fixed points
of the circuit. Consequently this can be used in designing chaos control schemes for
Chua’s circuit.
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