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The Use of Identified Models in the Control of a
Chaotic Circuit

Luis ANTONIO AGUIRRE

Abstract— A number of control techniques require a model
of the system to be controlled. There are many ways of es-
timating models from data obtained form the system. One
way is to fit nonlinear polynomials with carefully chosen
structure to the data available. The models obtained in
such a way have a number of nice properties such a ana-
lytical tractability. This paper investigates the usefulness
of such models in control problems in which a model is re-
quired. The numerical examples discussed in this paper
use both monovariable and multivariable discrete models of
Chua’s double scroll. The results of the paper suggest that
the multivariable model is especially well suited for control
problems.

Keywords— Chaotic systems, control of chaos, Chua’s cir-
cuit, nonlinear circuits.

I. INTRODUCTION

The synchronization and control of chaos has recently at-
tracted much attention {1}. Many control and synchreniza-
tion methods require a model of the system to be con-
trolled. This is especially true for the so-called “control
engineering approach” [2-3}. The difficulty with this as-
sumption is that in many real sitnations a detailed model
of the system is not readily available. In order to ap-
ply such methods to real systems of which models are
not known, it becomes necessary to learn the dynamics of
such systems from reasonable amounts of (possibly) noise-
corrupted data. A number of techniques have been devel-
oped to learn and predict the dynamics of strange attrac-
tors {4-5]. Most of such methods, however, yield models
which are either piecewise linear or nonlinear with com-
plicated structure and although the resulting models may
perform well in prediction and dynamical reconstruction
problems; their applicability to control and synchroniza-
tion of chaos is unclear.

An alternative way of modeling nonlinear systems is fit-
ting NARMAX (Nonlinear AutoRegressive Moving Aver-
age model with eXogenous inputs) models to a set of lim-
ited data [6]. This type of models has proved very useful
in modeling and reconstructing the dynamics of chaotic
systems [7,8].

This paper investigates the use of NARMA models in the
control of chaos. In particular the Chua circuit is consid-
ered in conjunction with both monovariable and mudtivari-
able models of the double scroll attractor [7,9]. The main
objective of the paper is therefore to investigate how useful
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such models are in the control of Chua’s circuit. This step
is believed to be crucial in practical control problems be-
cause it uses models which have been identified form data
with no a priori knowledge of the system.

II. PRELIMINARIES

Chua’s circuit is certainly one of the most studied nonlin-
ear circuits and a great munber of papers ensure that the
dynamnics of this circuit are also well documented [10]. The
normalized equations of Chua’s circuit are

&= a(y - h(z))
v=z —y + =z (1)
z= Wﬁy )
where
miz + (mg—my) z>1
hiz) = mox lz|<1 2)
miz — {(mp—my) z< -1

In what follows mo= —1/7 and m; =2/7. Varying the
parameters ¢ and 8 the circuit displays several regular and
chaotic regimes. The well known double scroll Chua’s at-
tractor, for mstance, is obtained for a=9 and §=100/7.

III. NARMA MobDEL ESTIMATION

A general NARMA model can be represented as [6]

y(t) = Félylt- .o ylt—ny),e(t), ..., e(t—ne) |, (3)

where n, and n, are the maximum lags considered for the
process and noise terms, respectively. y(t) is a time series
and e(t) accounts for uncertainties, possible noise, unmod-
eled dynamics, etc. and F¥[] is some nonlinear function of
y(t) and e(t) with degree of non linearity {€ Z". For the
models used in this paper, the map F?[] is a polynomial
of degree £. The parameter vector can be estimated us-
ing standard least-squares algorithms [11]. Moreover, least
squares minimization is performed using orthogonal tech-
niques in order to effectively overcome two major difficul-
ties in nonlinear model identification, namely i) numerical
ill-conditioning and ii) structure selection {12].

IV. NARMA MODELS OF THE
DOUBLE SCROLL ATTRACTOR

In this paper two models of the double scroll attractor are
used. The identification and validation of such models have
been discussed in some detail in [7,9]. It seems appropri-
ate, however, to include such models here for completeness.
Thus, the monovariable model is
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and the multivariable model is

z(k) = 1.1282x(k — 1) + 0.55867 y(k — 1) — 0.04719z(k — 1)*
+ 0.039805y(k — 1)z(k — 1) = 0.21220x 107 22(k — 1)3
4+ 0.0183632(k — 1) + \lfg'xfyé»: (k - J)@Ewﬁy{: +Ex(k)

y(k) = 0.91948 y(k — 1) — 0.10292x 107 3z(k — 1)?
+ 0.70843% 10 @ (k - 1) + 0.67T800x 10 " 2(k — 1)
~0.0013424x(k — 1)* + 0.44206x 10 %2 (k — 1)%y(k — 1)
+ W e (k- DO¢, ¢ e, +Ey(k)

2(k) = 0.96628z(k — 1) — 0.95854 y(k — 1) — 0.0367102(k — 1)

0.55765x 10" y(k — 1) + 0.10333%x 10 2a(k — 1)°
0.0020536 z(k—1)y(k—1)z(k—1)

Ve (k=10 g e +E(K) (5)

It suffices to say that these models reproduce the main
dynamical properties of the double scroll such as the largest
Lyapunov exponent, correlation dimension, attractor shape,
etc. The sampling times used were T = 0.15 and 75 = 0.07,
respectively.

V. DERIVATION OF TRANSFER [FUNCTIONS

One of the main advantages of using NARMA polyno-
mials with few terms is that the resulting models become
amenable to analytical handling. For instance, the Jaco-
bian of such models can be readily evaluated at, say, the
fixed points. Thus evaluating the Jacobian of model (5) at
the nontrivial fixed points (note that these points can be
easily and accurately obtained from the identified models
[7]) and considering the 2 component as the output and the
control applied to this component as the input, a discrete
transfer function was obtained. There are many ways of
obtaining a continuous-time model from the discrete coun-
terpart [13]. One approach yiclded the following model

14.1969s2 4- 79.6019s — 77.3048
$3 +5.0778s2 -+ 7.2894s + 50.9878

72(3) =

(6)

which has poles at s = —5.455 and s = 0.1886 4= j3.0515.
These singularities are reasonably close to the eigenvalues
of the Jacobian of the original system evaluated at the
nontrivial fixed points, {~3.9421, 0.1854 + j3.0470}. The

fact that the complex eigenvalues are better approximated
by the identified model can be explained considering that
it is easier to estimate information from the system which
lies on the unstable manifold of the fixed-point because it
is on such a manifold that the system is mostly excited. In
other words, because very little motion takes place on the
stable manifold, the stable eigenvalue is ‘less observable’
than the unstable eigenvalues. Fortunately, this does not
seem to be restrictive in control problems in which the aim
will be usually to stabilize the fixed points of the system
and in such cases the unstable part of the system seems to
be the most important anyway.

A similar transfer function for the model in equation (4)
was also obtained. In this case, however, the singularities
were not retrieved accurately. Two reasons are suggested:
i) the monovariable model was estimated from the mea-
surements of just one component and this seems to blur
some information, and ii) in order to estimate a model
which reproduces the main dynamical features of the at-
tractor, the embedding dimension n, had to be increased.
Counsequently, the Jacobian of the model in equation (4)
has a pair of spurious eigenvalues in addition to the three
‘original’ ones. In order to avoid this problem a model was
identified from the same set of data but with n, = 3. Such
a model was not as accurate as (4) as far as attractor re-
construction is concerned, but did reproduce the original
eigenvalues quite well.

V1. CoNTROLLER DESIGN

When it comes to controlling a system, the number of
options is enormous. An overview of methods is not in-
tended here (see {1] for a survey) nor is it claimed that
the control techniques used are the best suited in this case.
The objective of this section is to verify if the models (4)
and (5) convey analytical information which can be use-
fully employed in designing a controller. Moreover, it is
assiumed that the utmost ahm of the controller is to sup-
press chaos, that is, to force the circuit to a regular orbit
without altering any of its parameters. In particular, two
methods were investigated, namely i) proportional congrol
{14] and ii) approximate model matching control [15].

6.1 Proportional control

The effectiveness of the control u = K (Z — z) applied to
the z component in equation (1) was investigated in [14].
In that paper z was taken to be an unstable limit cycle
embedded in the double scroll. Thus forcing the system
to follow such a reference orbit resulted in the suppression
of chaos. Here the aim will be to try to stabilize the non-
trivial fixed points by means of a controller. It therefore
seems meaningful to compare the root loci of the real sys-
tem and that of equations (4) and (5) as the gain of the
controller is varied [2]. In the case of the original system
the root locus was obtained plotting the eigengvalues of
the Jacobian evaluated at the fixed point which should be
stabilized. The root loci of the original system
model (5) under the proportional feedback v = .

are shown in Fig. la and Fig. 1b, respectively.

1529



1
05
@
3
»
g [
E
05
-1
1
15 1 0.5 0 05 1 15
roal axis
15
1
]
"
3
=
% o
£
-0.5
-1
133 El 0.5 [ 05 1 15

real axis

Fig.1 Root loci of (a) Chua’s equations and (b) model (5)
under proportional feedback.

The root locus of the original equation was mapped unto
the z2-plane to facilitate comparison. The eigenvalues in
this case were mapped using A\g = e*T=, where T = 0.07.
It seems appropriate to point out that in order to compare
the gains meaningfully, these should also be mapped, by
multiplying the continuous-time gains by Ty in order to
obtain the discrete-time counterparts.

As figures 1a and 1b make it plainly clear, the NARMA
model (3) (via the linearized transfer function G,(s)) can
be used to obtain a root locus which is quite similar to the
original one. The critical gains of these loci are: complex
pair entering the circle: K ~ 0.03 x 0.07 = 0.02 (original)
and K = 0.02 (model (5)). Real pole crossing z = 1: K =~
5.70 x 0.07 = 0.40 (original) and K = 0.66 (model (5)).
Finally, only the locus of the model (5) crosses z = —1 for
K =~ 2.0. Thus the stability range inferred from Fig. 1b is
0.02 > K > 0.66 while the range of the original system
seems to be around 0.02 > K > 0.40. Although the upper
bound on the gain could be rather misleading, in many
applications this would not be too grave a problem because
the poles are usually placed in a region which is not too
close to 2z = 1.

In order to illustrate the design, the gain value K = 0.18
was (rather arbitrarily) chosen. The location of the roots
for this gain value have been indicated in Figs. la e 1b
with ‘x’. It should be noted that because the location of
such roots in both diagrams is quite similar it seems appro-
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Fig.2 Proportional feedback control. (a) z-component
(b) control effort. References (---) z= ~1.5767
(—) 2(t) = cos(1.771).

priate to use the identified model in the design. Figure 2,
shows two simulations using the original system with the
control law 2.5(% — z) where the value K ~ 2.5 ~ 0.18/0.07
is the ‘continuous counterpart’ of the value chosen from
the discrete system with 7y = 0.07. In Fig. 2, two differ-
ent reference orbits were used, namely i) the fixed point
z = —1.5767 around which the Jacobian of model (5) was
linearized, and ii) the periodic signal 2(t) = cos(1.77t).

The root locus obtained using the linearized transfer
function of model (4) did not prove helpful. As mentioned
before, there are two spurious poles in such a model and
these distort the root locus of the controlled system. More-
over, even when third-order models were used to avoid the
spurious poles, the resulting root locus did not yield useful
information. At this stage we can only conjecture that the
difficulty with the monovariable model is that some infor-
mation is Jost due to the inherent difficulty of retrieving
dynamical information from a set of measurements in R of
dynamics which exist in R®.

6.2 Approrimate model matching

The objective of this section is to apply linear controller
design techniques using G.(s) and to verify if the resulting
controller in fact suppresses chaos or not. In order to do so
an approximate model matching algorithm was used [15].
Of course, many other options exist.

Although the design method used is straightforward, it
entails the choice of some ‘variables’ such as the structure
of the controller and the reference model used in the design.
A detailed description of the design cannot be undertaken
here and will be the subject of a future paper. Thus the
objective is not to describe the procedure but to assess the
utility of the linearized model G,(s) in the design.

The design was carried out in two different ways. In
the first example it was not required that the closed-loop
should have unitary steady-state gain (Kpg), and in the
second example Kpc = 1 was imposed. Thus the following
controllers were obtained

B 0.6733s + 1.3120 @)
T 1.3571s2 + 3.0033s + 2.1970 °

C1(s)
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Fig. 4. Using Ca(s), (a) z component (b) control effort.

2
Cols) = 0.751032 + 0.66?13 6.1324 (8)
82+ 15.3540¢

Connecting C1(s) to the system at time t = 50 yielded
the results shown in Fig. 3. Clearly, the system is stabilized
and after transients have died out the system displays a
periodic motion. Similarly, Cy(s) was connected to the
system at time ¢ = 50, and the reference was switched
from 1.5767 to -1.5767 at ¢t = 100 and back to 1.5767 at
t = 150. It should be noted that these reference values
correspond to the nontrivial fixed points of equation (5)
around which this model was linearized to yield G,{s). The
results of this simulation are shown in Fig. 4 which reveals
that the system does reach the reference value in steady
state. This is probably due to the integrator which appears
as a consequence of imposing that the closed-loop should
have unitary steady-state gain.

On the other hand, the monovariable model (4) did not
prove helpful in controller designs of this type. No stabiliz-
ing controller was found. We believe that the reasons for
this are as conjectured in Sec. 6.1.

V1i. CoNCLUSIONS

This paper has investigated the use of identified models
of Chua’s double scroll in the design of control laws to sup-
press chaos. Monovariable and multivariable models were

considered. The latter model proved helpful in a number
of situations because such a model actually conveys impor-
tant dynamical information regarding the original system
such as the accurate location and stability information of
the fixed points. On the other hand, the monovariable
models did not yield satisfactory results when used to sta-
bilize the fixed points of the double scroll. Some reasons
for this have been conjectured. However, identified meno-
variable models can be quite effective in many other meth-
ods of synchronization and control of chaos. Two exam-
ples of such methods are model-following synchronization
problems {16] and when an unstable periodic trajectory is
required to synchronize the system [14,17]. In both cases,
the monovariable model can be used to provide both the
stable and unstable trajectories. In some cases these tra-
jectories can also be obtained directly from the system but
at a higher cost [17].
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