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Abstract—In this paper a new method for non integer order
integration is presented. It is based on a Multi-layer Perceptron
modelization that allows an easy circuit design and a wide range
of integration order. The neural network approach allows to
overcome some problems related to practical implementation of
the circuit. An example of application regarding the control of a
chaotic system is also reported in order to validate the proposed
Neural Network modeling technique.

Index Terms—Nonlinear systems, Non Integer Order Systems,
Neural Networks.

I. INTRODUCTION

In recent literature, increasing interest has been devoted to
non-integer-order systems, because of the wide variety of
their application fields [1-3]. Referring in particular to [4-
6] fractional-order systems with complex dynamics have
been studied in a theoretical way. However their
realization is not always very exact, due to frequency
limitations and approximations error. In particular analog
design implies the realization of a time varying capacitors
usually difficult to modulate according to desired trend [7]
and digital circuitry needs a large memory area to store
function samples. A neural network modelization may
guarantee, at the same time, a good degree of
approximation and the possibility, by keeping a fixed
structure, of changing the integration order by well-defined
configuration of weights.

II. OVERVIEW OF FRACTIONAL SYSTEMS

Fractional systems (or more Non Integer Order Systems)
can be considered as a generalization of integer order
systems. The most common example of a fractional system
transfer function is given by:

H(s)= meR* (1)
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which is called a “fractional integrator” and can be found
in studying many physical phenomena [8-9]. The study of
fractional systems may be approached in the time domain
by using the following non integer order integration
operator [10-11]: :

a’""h(t)

dr™" r( )e j(’ )" h(y)dy 2)
m

where I'(m) is the factorial function. It must be noted that
h(t) may be any function for which the integral in (2)
exists. To build the numerical algorithm, we need a
discrete approximation of relation (2). Taking T as the
sample time and supposing h to be constant during this
time interval, after some calculation results [10]:

d7"h(0)
—=h(0
= hi0)
—m m k-1
d I:(”k)= T h(1)+h(/+l)[,]\ W =tk=j-1"]
dt Ir'd+m) % 2
(k>1)
3)

Sampling time 7 must be chosen in a suitable way,
according to precision requirements (which need a small
T) and speed performances (for which the number of
intervals considered must be not so high and therefore T
not too small). For example, for our purposes it has been
used the value T =0.006, which fits quite well with the
previous considerations.

In the frequency domain high-order model approximations
are used. In fact, an exact representation of a fractional
system would require an infinite number of linear time-
invariant systems represented by an alternative sequence of
poles and zeros [2]. The choice of the approximation
degree depends on the desired bandwidth, which is strictly
related to the model order.

In terms of frequency response, the order m modulates the
slope of the magnitude plot, being for G(s)=1/(s+1)™ equal
to —20m dB/dec, like reported in figure 1.
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Fig.1- Magnitude Bode Plot of fractional systems F(s)=1/s+1)"
with m=1 (solid), m=0.5 (dashed), m=1.5 ( pointed).

III. PROPOSED STRATEGY

The proposed approach has been structured in the
following steps:

a) Structure of the network
As explained in [2], non integer order systems can be

approximated by suitable relaxation systems. Some
examples are reported in the table I:

Ry 1.766(s + 0.127)(s + 21.79)

5% (s+0.0013)(s + 02155)(s + 35.93)

1 4849(s+ 0.0064)(s + 0.0578)(s + 5.179)(s + 46.41)

s%7 (s+0.0139)(s + 0.1245)(s + L116)(s + 10)(s + 89.61)
1 1597(s + 01269)(s + L777)(s + 35.232)

5% (s+0.0316)(s + 05013)(s + 7.945)(s + 1258)

q

it

q

Table L.

However, due to the few poles representation, these
approximations are not sufficient for a large bandwidth
simulation of non integer order systems behavior. This fact
leads us to consider higher order approximations for our
fractional integrators because the more integer order poles
are used for obtaining the desired approximation, the more
it results to be accurate. To this aim it is chosen a multi-
layer perceptron with a sufficiently large number of inputs
in order to simulate a high order system. _

The integrator in (1) is supposed to be modelized by the
following NARMAX equation:

(k)= FLy(k = Do vk = 19). 060k = Dotk = 19)] (4

The order set to 19 resulted good compromise between
accuracy and simplicity of the network to be designed. In
fact, according to the theory of black box identification

[12], the Neural Network must have 38 inputs (19 real
inputs, 19 feedback of the output), and 1 output.

The use of only one hidden layer resulted to be sufficient
for our purpose, providing very good results.

The number of neurons in the hidden layer was set initially
to 20 and then moved to 25 so the total number of weights
is 950.

An example of structure for the network is reported in
figure 2.

Input Layer(38) Hidden Layer(25)  Output Layer(1)

u(k-1)

u(k-19)__ y(k)
y(k-1)

y(k-19

Fig. 2 The Multi-layer Perceptron adopted for the simulation of
the m-order integrator (38-25-1).

b) Learning Phase

It has now to be considered the type of integrator we wish
to realize. Due to several applications in the field of
control [13-14], we focus our attention to order 0.3, 0.4,
0.5, 0.7. Furthermore it must be noted that, with a suitable
combination of them, it is possible to obtain a universal
integro-differentiator whose order can be changed in the
range of [-1,1] by means of steps of 0.1 (see Fig. 3).

To this aim, four different neural networks are trained with
a chirp signal containing frequencies from 1 to 100 Hz
(Fig. 4) and with their m-order integrals (Fig. 5). The
number of learning patterns used for the training phase has
been fixed to 10000.
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Fig. 3 Switch configuration for a derivative of order 0.7.
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Fig. 5 Output signals used in the training of the four networks.
Nineteen samples are feed backed at each step.

c) Test Phase

The obtained networks are then tested with a square wave
signal at the frequency of 10 Hz. This choice has been
made since a square wave is a signal with a good number
of harmonics. It can be represented by the following
equation:

’(t) !0.9 n/10<t<(n+1)/10 n even
U =
—09 n/10<t<(n+1/10 n odd

The frequencies contained in the signal are the odd ones
(10, 30, 50, 70 Hz) and have appreciable amplitude until
190 Hz.

The assumption that the networks have been trained with a
signal having, as maximum frequency 100 Hz does not
affect the final results.

In fact, every network seems to fit quite well the expected
results (see Fig. 6) and therefore it can be concluded that
they perform exactly the desired integrations.
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Fig. 6 Comparison between the output of a 0.3 integrator (solid)
and the final network which approximate it (dashed). The input
signal is a square wave.

IV. AN EXAMPLE OF APPLICATION: NON INTEGER ORDER
CONTROL OF CHUA'S CIRCUIT

Chua’s circuit [15] is a third order non-linear system that is
able to display, for a well-defined set of parameters, a
chaotic behaviour. Its state equations are

x=a(y—x-f(x))
y=x—-y+z )

¢==py
in which f{x) is a piecewise linear function having the form

F(0 =bx+%(a—b)[|x+l|—|x—]” (5)

A typical parameters set that leads to the onset of chaos is
a=-1/7, b=2/7, a=9, [=14.286. The relative attractor
plotted in the phase space is a well-defined double scroll
(Fig. 7

04

Fig. 7 Chaotic attractor of the Chua’s System (parameters values
are a=-1/7, b=2/7, =9, p=14.286).

I1I-690



The control of a chaotic system is a quite difficult task to
achieve and for this reason it does not exist a general
theory to follow for the design of the controller. Non-
standard regulators have been proposed for the control of
nonlinear systems. In fact industrial controllers like PID,
commonly adopted due to their simple structure, not
always are able to achieve good performances. To this aim
the idea of a non integer order PID (called PI*D*) has been
introduced in [14] in order to realize a good compromise
between simplicity and efficiency provided by the
addiction of further tuning parameters like non integer
order A and .

Our aim is to build a PD" with neural networks in order to
obtain a circuital implementation. It follows the scheme
reported in fig. 8 in which the p-order derivative is
performed using an integrator of order 1-u (O<u<l)

realized by the Neural Network.
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Fig. 8 Block scheme of the non integer order controller PD.

This non integer controller has been used on-line for the
control of Chua's circuit, according to the scheme in
reported in Fig. 9.
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Fig. 9 Scheme of the Chua’s Circuit controlled by a PD neural
network.

The best performances for the controlled system have been
reached with the addition to a classical PID, that is not able
to stabilize the system, of a 0.7 non integer order
derivative using the scheme still reported in Fig. 3. The
stabilization of the y(t) state variable around an
equilibrium point is clearly depicted in Fig. 10

V. CONCLUSIONS

An approach based on neural network modelling for non
integer order integrators has been presented and validated
with an example. The black box method aims to overcome
realization problems due to frequency limitations and
approximations error. Further works are in progress to
obtain an hardware prototype for real world applications,
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Fig. 10 Time behaviour of y(t) when PD* neural network

controller is applied.
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