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Abstract 

Both non-determinism and multi-level networks compactly characterize the flexibility allowed in 
implementing a circuit. A theory for representing and manipulating non-deterministic (ND) networks 
is introduced. The theory supports the usual network manipulations, done on deterministic binary 
networks, such as node minimization, elimination, decomposition etc. Three ways to interpret the 
behavior of an ND network are given. Operations performed on ND networks are analyzed for how 
they can change behavior under each interpretation. Some common network operations can increase 
different behaviors and thus might cause the network to violate its external specification. Several 
methods to correct this problem are proposed. 

1 Introduction 

A non-deterministic (ND) network is similar to a Boolean network, except that nodes have multi-
valued (MV) outputs and are represented by non-deterministic relations. Don’t cares are a form of non-
determinism, where for some input minterms, the output takes any allowed value. More generally, non-
determinism occurs when, for an input minterm, the output takes values from a subset of allowed values. 

Non-determinism and multi-level networks offer compact ways to represent behaviors. Non-
determinism arises naturally in a synthesis setting. A system’s specification is given by an ND network 
or ND automaton. A known or well-defined part of the system may be given also. To be synthesized is 
an unknown component. The set of all possible behaviors of the unknown component can be derived as 
an ND relation or automaton, using complementation and composition operations [10].   

In logic synthesis, an initial network representation is given along with possibly compatible don’t 
cares at the primary outputs. In some RTL specifications, incomplete specification can be specified at 
internal nodes. Incomplete specification is interpreted as don’t cares, i.e. for some inputs, the output can 
be any value allowed for the variable. Don’t cares are also derived from the network’s functionality as 
observability or satisfiability don’t cares. When these concepts are generalized to MV networks, they 
give rise to non-determinism.  

Using the initial specification, a Boolean network is manipulated to obtain a smaller one, which 
finally is mapped into a set of logic gates for implementation in hardware. An analogous network and 
set of operations is desired for ND networks. It has been found that the use of such networks can lead to 
smaller deterministic binary implementations, since the generalization to MV ND networks allows a 
wider scope for optimization algorithms [5]. 

In developing a theory for ND networks, some of the classical operations need to be modified to 
account for the presence of non-determinism, and the different effects caused by non-deterministic 
nodes need to be clarified. We define three network simulation models (SS, NS, NSC) for ND networks 
which reduce to the same behavior if the network is deterministic. One of these is equivalent, in the 
binary case, to simulation with three values, {0,1,X} [1]. We prove results about how the corresponding 
ND network behaviors can be changed under some common network operations, such as 
decomposition, substitute, eliminate, collapse, node minimize, and merge [8]. We also study the limits, 
within which the functionality of a node in an ND network can be changed, without violating the 
external specification. We show that, for all behaviors, the complete flexibility (CF), as computed in 
[4], correctly specifies all deterministic behavior that can be implemented at the node, but (unlike for 
NS and NSC) for SS, it incorrectly specifies ND behavior. 

The computational procedures for network optimization proposed in [4] for finding a small ND 
implementation of an ND relation are supplemented with one that finds an exact minimum ND 
representation. Minimum ND representations are never larger than minimum deterministic ones and 
often much smaller. 

In Section 2, we define an ND network and introduce some notation. Section 3 compares three 
methods for interpreting the behavior of an ND network. Section 4 analyzes the changes in the 



behaviors caused by node minimization. Section 5 examines the node elimination process, Section 6 
extraction and decomposition, and Section 7 merging. Section 8 discusses the relative merits of the two 
computationally viable behaviors, NSC and SS. Section 9 provides three methods for minimizing an 
ND relation, including a new one for finding an exact minimum cover. Section 10 discusses how a 
circuit can become non-compliant when SS-behavior is used and gives one method to correct this. 
Section 11 concludes with some longer-term goals for the application of this theory. 

Because of space limitations, we do not give any proofs of the theorems, which can be found in [6]. 
The main purpose of this paper is to present the theory and provide the set of results known so far. 

2 ND Networks 

An ND network is an acyclic directed graph. A node represents an ND relation between its inputs and 
its single output. An edge is directed from node i to j if the relation at node j depends syntactically on 
the variable yi, associated with node i. The output of node i can take values from domain 

{0, , 1}= −Li iD n . 

 Primary input nodes (PI) have no inputs. Primary output nodes (PO) deliver the functionality of the 
network to its environment. Single input and output storage element nodes have the next state (NS) 
variables as inputs, and the present state (PS) variables as outputs. Since this paper is concerned only 
with the combinational portion of the network, the set (PI, PS) is denoted CI and represented by the 
vector X, and the set (PO, NS) is denoted CO and represented by the vector Z. The CI and CO are the 
combinational inputs and outputs, respectively. 

An external specification of a network, ( , )specR X Z , is the set of all acceptable (CI, CO) minterm pairs, 
( , )X Zm m , such that ( , ) 1=spec

X ZR m m . These sets of pairs can be in two forms, compatible (or output-
symmetric) and free. A free external specification has no restrictions on which pairs are allowed, except 
that it is “well-defined”. 

Definition: A relation is well-defined if for each input minterm, there exists at least one output 
minterm in the relation.  

A free specification in the binary case has been called a Boolean relation [9]. A compatible 
specification has an additional “symmetry” restriction. 

Definition: A relation ( , )R X Z  is output-symmetric when the following is true. If  input Xm  can 
produce a value for output zi  in a set Si and Xm  can produce a value for output zj in a set Sj, then for 
any choice ∈ ia S  and ∈ jb S  there exists Zm  such that =

izm a , =
jzm b , and ( , ) ( , )∈X Zm m R X Z . 

Example. Consider a network with two binary outputs, z1 and z2. Suppose, for some minterm, the 
values the outputs can take are {00, 01}. The relations R(X, Z) is output-symmetric in this 
minterm, because z1∈{0}, z2∈{0,1}, and every combination from the set {0}×{0,1}={00, 01} 
belongs to the relation. If the same outputs were to take values {00, 01, 11} in this minterm, it 
would not be output-symmetric because z1∈{0,1}, z2 ∈{0,1}, and there exists a combination 
{11} in {0,1}×{0,1}={00, 01, 10, 11}, which does not belong to the relation. 

Output symmetry has been used to define “compatible” external don’t cares in binary networks. The 
advantage is that the choice of value made at one output can be made independently of the choice made 
at other outputs. For a free specification, once a choice is made at one output, the choices possible at 
another output may be restricted. 

Definition: The B-behavior of an ND network is the set of all input-output pairs that can be 
simulated using the simulation of type B. 

An ND relation giving the functionality of a node in a network can be represented by the 
characteristic function relating inputs and outputs. For a single output relation, it is more efficient to 
store a set of deterministic binary functions, the ith of which is 1 if some fanin minterm can produce 
value i at the output. Such functions are called the i-sets of the multi-valued (MV) relation at the node. 
A smaller representation can obtained by designating one of the i-sets as the default, which is not 
represented explicitly, but is assumed to be the complement of the union of the other i-sets. However, 
general ND relations cannot be represented this way. For example, for binary relations, the default is 
either the 0-set or the 1-set; thus only deterministic binary relations can be represented if a default value 
is used. 

The notation ( , )specR X Z  will be used to represent the specification of the network. An ND network 
conforms to or complies with its external specification if when the network is simulated with input Xm , 
any output minterm Zm  satisfies ( , ) ( , )∈ spec

X Zm m R X Z . We will define three types of simulations for an 



ND network {NS, NSC, SS}, all of which agree with the usual one if the network is deterministic. 
Compatible specifications have the advantage that a set of individual single-output relations, one for 
each CO, can be used to represent them. 

The behavior of a network with respect to the simulation of type B is represented as ( , )BR X Z . We 
often use the arguments of a relation to identify it, e.g. ( , )jR X Y  and ( , )j jR Y y  denote different relations 

even though eac is named R. The relation at a node j in the network is denoted ( , )j j jR Y y  where jY  is 

the set of fanin variables and jy  is the single output variable of the node. 

Binary-output multi-valued-input functions can be minimized using a program like Espresso-MV. 
This results in a minimized MV sum-of-products (SOP) expression for the function. A product is the 
conjunction of multi-valued literals. A literal of MV variable y, for example, {0,3,5}y , is the binary 
function, which is 1 if y takes any value from the set {0,3,5}  and 0 otherwise. 

3 Behaviors of ND Networks 

Different interpretations, associated with different ways to simulate an ND network, can be used for 
its behavior. All of these yield the same behavior if the network is deterministic. The interpretations 
discussed are listed in the order of increasing amount of behavior: 

1. Behavior by normal simulation (NS-behavior). 
2. Behavior by normal simulation made compatible (NSC-behavior).  
3. Behavior by set simulation (SS-behavior). 

We define each and discuss their relative merits.  
It is important in manipulating a network to consistently use only one interpretation of a network’s 

behavior, because, during a network’s manipulation, its behavior is periodically compared with the 
specification. It is possible that an ND network satisfies its specification under one interpretation but 
not another. During an optimization sequence, it is common to refine and optimize the network. In 
many applications, even though the final network must be deterministic (for hardware implementation) 
switching between different interpretations of behavior might lead to a final network that does not 
satisfy the specifications. 

3.1 Behavior by Normal Simulation (NS) 

NS is the most intuitive simulation. It proceeds in topological order. Each node non-
deterministically selects one of its allowed values and transmits this to all of its fanouts. Even though it 
is easy to obtain single pairs ( , )X Zm m , it is difficult to obtain all pairs, which makes it the most complex 
simulation method computationally.  

The complete NS-behavior can be given by the MV Boolean relation, 

internal  nodes

( , ) ( , )
∈

= ∃ ∏
i

NS
j j jy

ji

R X Z R Y y ,    (1) 

This is not the same as eliminating nodes in some order since here, each time an existential 
quantification on an internal node variable is done, the effect is as if the fanout nodes are merged into a 
single multi-output node, and a Boolean relation is given for this node. After all quantifications are 
done, the MV Boolean relation is obtained for the entire circuit. A pair ( , )X Zm m  is in an MV Boolean 
relation ( , )NSR X Z  precisely if there is a choice at each node such that if mX is given at the CI, and at 
each node, the choice is propagated, then the vector mZ can be seen at the CO.  

A possibly more efficient method for computing ( , )NSR X Z  is to use early quantification of a 
conjunctive relation as is done in formal verification applications. However, this computation is still 
problematic since the final resulting relation connects all CI with all CO. In contrast, the other two types 
of behaviors can be represented by N relations, each connecting the CI with one CO, , {1, , }∈ Lkz k N . 

3.1.1 Input Determinization (ID) 

An approach used for binary circuits with incompletely specified internal nodes introduces a new 
binary variable for each incompletely specified node. This variable is used to determinize the node; 
then collapsing the resulting deterministic network leads to a representation of the behavior. This gives 



for each output a well-defined deterministic function depending on the CI, X, and the set of parameters 
(or pseudo-inputs), P, used to determinize the internal nodes.  

We generalize this to ND MV networks.  An MV pseudo-input variable pi is introduced at each ND 
node yi, where the range of pi is the range of yi. The relation at the node is made deterministic using ip . 
Such a determinization can be computed using the compatible projection operator, µ y , defined by Lin et 

al [3].  This operator selects for each input minterm a single representative value, say the least value 
allowed. The computation is °

$
$ $( , , ) ( , )( ) [ ( , )( )] ( ( , ))µ= = + ∃ =

i
i i i i i i i i i i i i y i i iy

R Y p y R Y y p y R Y y p y R Y y . The second 

term on the right-hand-side finds all the values not allowed and associates these with the value selected 
by the compatible projection operator. The relation is deterministic and well defined.  

Example: Let the range of yi be {0,1,2,3} and let {0,2} be the output values for a fanin minterm 

iYm ; thus currently {0,2}( , ) ( , )∈
iY i i i im y R Y y . This relation is determinized by adding pi to control the 

ND choice, replacing {0,2}( , )
iY im y  with {0} {0} {2} {2} {1,3} {0}( , )

iY i i i i i im p y p y p y+ + . The last term is added to 

make the relation well-defined for all values of pi.  
After this is done for all ND nodes and the circuit is collapsed, at each output, kz , its global MV-

function is obtained in terms of the CI X and the set of pseudo-inputs P, ( , )k kz G X P= . This is precisely 
what can be simulated with normal simulation mode, since at each internal node, the output value is 
controlled by ip , and this single value is propagated to all fanouts. If the above equations are combined 

to give an MV Boolean relation at the outputs, the result is 
1

( , ) ( ( , ))
=

= ∃ =∏
N

NS
P k k

k

R X Z z G X P , the same as 

in Equation (1). 

3.2 Behavior by NS Compatibility (NSC) 

 Each output can be converted into a separate relation to obtain a set of compatible relations,  

( , ) ( ( , ))= ∃ =NSC
k k P k kR X z z G X P     (2) 

for all outputs, 1, ,= Lk N . This increases the behavior since the existential quantification is done 
independently at each output. Equation (2) represents the second type of behavior, called NSC-
behavior, since it represents the operation of making the NS-behavior compatible, or output-symmetric. 
Thus NSC is the same as NS, except that each output is treated independently. If there is only one 
output, then NS and NSC are the same.  

Theorem 1: The NSC-behavior is equivalent to not introducing pseudo-inputs, but by eliminating the 
nodes in the network in reverse topological order. 

Thus there is no need for introducing pseudo-input parameters if NSC-behavior is used. Collapsing in 
reverse topological order yields the smallest set of output symmetric relations that contain the NS 
behavior of the network. 

A way to understand NSC behavior is to consider each CO output cone as being cut away from the 
network and then doing NS simulation on that cone. The set of values that an internal node can have 
during the NSC simulation of an input vector Xm  is the union of all values obtained by normal 
simulation of each output separately. Hence, this set is exactly the set of values that node can assume by 
normal simulation of the network. However, note that NSC simulation of the whole network has the 
effect that different fanouts of an internal node i can have different values during the same simulation 
cycle if these values go along paths to different CO. The image that a set of fanins to a node can have 
under input Xm  is the same as with NS. We will use this later in computing the flexibility of a node 
where we need to know the set of values that a set of nodes can have under different forms of 
simulation. 

Theorem 2: The NS and NSC behaviors of a network are not changed by eliminating any or all 
deterministic nodes in any order. 

3.3 Behavior by Set Simulation (SS) 

Set simulation is performed as follows. The CI are assigned values, Xm . If a node has all its fanins 
assigned a set of values, the value of the output of the node is the set of all values possible for that node 
given its fanin sets. For example, each input has a set of values, 

ki
S . We evaluate the output of a node i 

as the set, 
1 2 | |

{ | ( , ) 1, }= = ∈ × × ×L
Yi

i i i i i i iS v R V v V S S S . Each edge i j→  is assigned the set iS . When all 



nodes have been computed, the cross product of the CO sets forms the set of minterms { Zm } allowed 
for Xm . Such a pair ( , )X Zm m  is in the SS-behavior of network.1 

This is the method that has been implemented currently in MVSIS [7] and for which we have some 
experimental results. We will show that a key operation, elimination of an internal node, cannot 
increase the SS-behavior of an ND network. Note that the SS-behavior of a network is a compatible 
(output-symmetric) relation and hence can be represented by a set of i-set covers, one set for each 
output. Like NSC behavior, a key advantage is that the network can be manipulated as a network of 
single output MV nodes. In contrast, NS-behavior must deal with multi-output nodes and MV Boolean 
relations at these nodes or must introduce possibly many pseudo-inputs. 

3.3.1 Binary Interpretation 

A good way to understand SS-behavior is to consider the ND network as a set of binary deterministic 
nodes, one for each i-set of each MV node in the network. For example, consider node j, which has 3 
values, and thus a 0-set, a 1-set and a 2-set; each is represented by an MV-input binary-output SOP. 
However, each internal MV signal and each CO is replaced by a set of binary signals and each 
corresponding literal in its fanouts is converted to a sum of binary literals, e.g. {1,3,5}

1 3 5= + +y y yy b b b  
where y

jb  is the binary signal controlled by the jth i-set of y. This network is deterministic and can be 

manipulated like any other deterministic network. The only MV signals are the CI.  
Lemma 1: The SS-behavior of an ND network can be obtained by treating each i-set as a separate 

binary function and eliminating all internal nodes in the network in any order. 

3.3.2 Eliminating in Topological Order 

Collapsing (eliminating all internal nodes) can also be done in the usual way if the elimination process 
is done in topological order. 

Lemma 2: The SS-behavior of a network is exactly that obtained by eliminating the nodes of the 
network in topological order. 

The effect that an ND node can have on the behavior of this type of simulation is controlled by the set 
of all paths from the ND node to the CO outputs. Each time a partial path branches, additional 
independent “copies” of the ND node are made. This provides a good intuitive way to think about SS 
behavior. 

3.4 Comparison 

Each of the three types of behaviors, NS, NSC and SS will be examined, relative to a) the ease with 
which the network is kept compliant when a network operation is performed, b) the ease of computation 
during network manipulations, c) the ease of representation of the network, and d) its relative 
optimization potential. 

A network’s specification gives an upper bound on the network’s allowed behavior. The specification 
can be output-symmetric (compatible relations - similar to don’t cares) or free (a Boolean relation 
relating all outputs at once). Operations on an ND network can change its behavior, no matter how 
behavior is defined. An increase in behavior is allowed as long as it is still contained in the 
specification. The node minimization operation (see Section 4) directly uses the specification to test 
how much the network behavior can be increased without violating the specification. Then, an ND 
relation at a node is computed to describe a flexibility allowed in implementing the node. Different 
interpretations of the network behavior will affect the flexibilities allowed. Minimization of these 
flexibilities is done in order to choose a sub-relation with a small representation for the node. An ND 
relation is always a smallest representation. 

The second aspect concerns how the network specification is represented and compared. Output 
symmetric specifications can be stored individually, at each output, as a set of binary-output i-set 
functions. Other specifications may require a single Boolean relation. Although Boolean relations can 

                                                                 
1 This is similar to what is done in X valued simulation, or 3-valued simulation where values 0,1,X are propagated. X stands 

for set  {0,1}. The truth table for each gate is made conservative; a logic function produces an X only if the set of inputs with 
known values (non X) is not a controlling set of values. 



be determinized by using pseudo-inputs and stored individually at each output, many pseudo-inputs 
might have to be introduced making this representation cumbersome.  

The third aspect is the ease with which the computations involved in the network manipulations can 
be done. The three behaviors differ in this respect. The most efficient seems to be SS-behavior since 
this behavior is related to collapsing in topological order. This allows the building of global BDDs 
where only CI variables are needed. NSC is also relatively easy because reverse topological order can 
be used, but building global BDDs is more difficult. NS-behavior requires use of Boolean relations 
everywhere or the introduction of pseudo-inputs, P. 

We saw that NSC-behavior is defined in terms of NS behavior: ( , ) ( , , )= ∃NSC NS
k k P k kR X z R X P z . Thus NS 

behavior is contained in NSC-behavior. Also NSC is a subset of the SS-behavior, since in NSC, various 
copies of ND relations, which lead to the same CO, are kept correlated (by the parameters P) during the 
collapsing process. On the other hand, with SS, all correlations between different fanouts of an ND 
node are lost when the node is eliminated. Defining ( , ) ( , )≡ ∏NSC NSC

k k
k

R X Z R X z , we have 

( , ) ( , ) ( , )⊆ ⊆NS NSC SSR X Z R X Z R X Z .    (3) 

In Section 4, it is shown that this ordering has the reverse effect on optimization potential. 
All behaviors can be seen from a common point of view of quantifying internal variables.  

1. NS: Multiply all relations together and then existentially quantify all internals variables: 

 internal
( , )∃ ∏

i
j j jy

j

R Y y . 

2. NSC: Intermix the products and existential quantifications so that the quantifications are done 
in reverse topological order. The same variable may be quantified several times. 

3. SS: Intermix the products and existential quantifications so that the quantifications are done in 
topological order. The same variable may be quantified several times. 

4 Node Minimization 

The node minimization process consists of deriving a flexibility for the node being minimized, and 
then replacing the current representation at the node with a smaller one contained in the flexibility. We 
first examine how the flexibility is computed, and then the possible changes, in the various types of 
behaviors of the network, that can happen when the current representation is replaced. The 
minimization of non-deterministic relations is the subject of Section 9. 

4.1 Deriving Complete Flexibilities 

The computation of the complete flexibility, CF, at a node iy  can be described generically for all the 
behaviors { , , }∈B NS NSC SS .  

Cut the network at yi and consider a new network (the cut network) with iy  as a new primary input. 
Require that the B-behavior of the cut network, ( , , )B

iR X y Z , comply with the network specification 
( , )specR X Z , 

( , ) ( ( , , ) ( , ))= ∀ ⇒B B spec
i Z iR X y R X y Z R X Z .    (4) 

This is called the Observability Partial Care (OPC) for the node and is analogous to the observability 
don’t care set for a node in a binary network.  

Theorem 3: ( , )B
iR X y  is maximal, i.e. if any deterministic function ( )=i iy f X  is used to replace 

node i, such that ( ( )) ( , )= ⊄ B
i i iy f X R X y , then ° ( , ) ( , )⊄

B specR X Z R X Z , i.e. the B-behavior of the new 

network °N  does not satisfy the specification. 
Note that by Equation (3),  

( , ) ( , ) ( , )⊆ ⊆SS NSC NS
i i iR X y R X y R X y .    (5) 

 Next we bring in the “satisfiability don’t cares” (SDC) to derive a local “complete” flexibility (CF). 
Define the relation between CI minterms and vectors of values that the fanin variables iY  of iy  can take 
during the B-simulation of the network as ( , )B

iM X Y . Then the CF is computed by the formula 

( , ) ( ( , ) ( , ))= ∀ ⇒B B B
i i X i iR Y y M X Y R X y .    (6) 



Because of Equations (3) and (5) , 

( , ) ( , ) ( , )⊆ ⊆SS NSC NS
i i i i i iR Y y R Y y R Y y .    (7) 

In general, the CFs, ( , ) for { , , }∈B
i iR Y y B NS NSC SS , are ND relations and since the current relation, 

( , )i i iR Y y , is well defined and ( , ) ( , )⊆ B
i i i i iR Y y R Y y , then so is ( , )B

i iR Y y .  

We will show that all CFs have the property that any well-defined deterministic relation contained in 
them can be used to replace the current relation at node i without causing the B-behavior of the network 
to violate the specification. In Section 4.2 we will show that NS and NSC allow the current relation to 
be replaced by any well-defined ND relation contained in it; unfortunately, this does not hold for SS-
behavior. 

The SDC are added in those cases where a fanin Yj minterm, 
jYm , is not associated (through B-

behavior) with any Xm . In this case, the node at iy  on input 
jYm  can be allowed to produce any value in 

the range of jy , and thus 
jYm  is a don’t care. Since in general, ( , )B

jM X Y  is ND, ( , )B
X jM m Y  can 

produce a set { }=
jYA m  and similarly ( , )B

X jR m y  can produce a set { }=
jyV m  of values for yj. Consider 

the double complemented RHS, ( , ) ( , ) ( , )= ∃ ∩B B B
j j X j jR Y y M X Y R X y . The expressions under the 

complement symbol relate, for Xm , those ∈
jYm A  with those values in V . Then all those  pairs 

( , )
j jY ym v  not so related are put in ( , )B

j jR Y y . Thus increasing ( , )B
jM X Y  (e.g. by making some nodes 

ND, or moving from NS to NSC to SS behaviors) causes two effects. First, it decreases the SDC, and 
second it puts more values in the sets A thereby increasing the pairing of values with V  and thus 
reducing the pairs in the complement. 

4.2 Computing with Different Flexibilities 

4.2.1 NS Behavior 

Theorem 4: If a well-defined ND relation contained in ( , )NS
jR X y  is inserted at node j, the new 

network °N  remains compliant, i.e. ° ( , ) ( , )⊆
NS specR X Z R X Z . 

Theorem 5: If a well-defined ND sub-relation contained in ( , )NS
j jR Y y  is inserted at node j, the new 

network, °N , remains compliant, i.e. ° ( , ) ( , )⊆
NS specR X Z R X Z . 

The computation of ( , )NS
jM X Y  can be done using a method similar to the image computation 

procedure of [2], where output cofactoring is done. 
After ( , )NS

i iR Y y  is minimized, a new relation is inserted at node i. If the minimized relation is ND, 
then a new pseudo-input needs to be introduced. As the manipulation continues, the set of pseudo-
inputs may be different compared to the original network. Checking that the new network conforms to 

its specification requires verifying that ° ( , ) ( , )⊆
NS specR X Z R X Z , where ° ( , ) ( ( , ))≡ ∃ =∏

NS

Q k k
k

R X Z z R X Q . 

Thus the verification problem is a difficult one in which two Boolean relations, each relating all CI to 
all CO, are compared.  

4.2.2 NSC Behavior 

NSC-behavior is computationally more viable than NS; since it is equivalent to collapsing in reverse 
topological order, there is no need for introducing pseudo-inputs. Alternatively, it is possible to perform 
collapsing in direct topological order while performing some additional manipulations. For each ND 
node with reconvergent fanout, the i-sets in the fanout cone are computed in terms of CI and a 
temporary MV variable representing each ND node. After the computation reaches the meeting point of 
the reconvergent paths (called the assembly point) of a temporary variable, it is possible to get rid of it 
by substituting the i-sets of the node expressed in terms of CI. This way, the temporary variable 
synchronizes the behavior of the node along the reconvergent paths and makes it compatible with the 
NSC model. 

 However, in computing and using the flexibility, a comparison with the specification ( , )specR X Z is 
required. If this is given as a Boolean relation, and NSC behavior is used, it is best to project the 



specification to an output symmetric form a priori, by computing ( , )spec
kR X z  such that 

( , ) ( , )⊆∏ spec spec
k

k

R X z R X Z . The computation for the OPC at a node then becomes, 

1

( , ) ( ( ( , , ) ( , )))
=

= ∀ ⇒∏ k

N
NSC NSC spec

j z k j k k
k

R X y R X y z R X z . 

Theorem 6: If a well-defined ND relation contained in ( , )NSC
jR X y  is inserted at node j, the new 

network °N  remains compliant, i.e. ° ( , ) ( , )⊆
NSC spec

k kR X z R X z  for all 1 ≤ ≤k N .  

However, it still remains to be proved that using an ND sub-relation of the local CF will not violate the 
specification. 

Theorem 7: If a well-defined ND relation contained in ( , )NSC
j jR Y y  is inserted at node j, the new 

network °N  remains compliant, i.e. ° ( , ) ( , )⊆
NSC spec

k kR X z R X z  for all 1 ≤ ≤k N . 

Note that in computing ( , )NSC
j jR Y y , we can use that ( , ) ( , )=NS NSC

j jM X Y M X Y . 

4.2.3 SS Behavior 

Theorem 8: If a well-defined deterministic relation contained in ( , )SS
jR X y  is inserted at the node j, 

the new network °N  remains compliant, i.e. ° ( , ) ( , )⊆
SS specR X Z R X Z . 

Unlike the other behaviors, with SS, we cannot guarantee conformance if any ND sub-relation of 
( , )SS

jR X y  is allowed at node j. The SS-behavior can increase if an ND subset is used and the node has 

multiple paths to one of the CO (reconvergent fanout). The following network, structurally similar to 
that of Figure 1 below, gives an example. 

Example: Consider the following deterministic network: 
{1} {1} {0} {0} {1}

{1} {1} {1}

{1} {1} {0}

{1} {1} {1} {0} {0}

= +

= +

=

= +

y a b a b

v a y

w b y

z v w v w

 

Let this network also serve as the specification. Since the network is deterministic, the 
specification can be obtained by collapsing the network. It is easy to show that the ( , , ) 1=SSR a b y  
(since y is redundant). If we insert this ND relation in for y and eliminate y, v, w in that order we 
get  

{0} {0,1} {0,1}

{1} {0,1} {0,1}

1

1

= =

= =

z a b

z a b
, 

i.e. ( , , ) 1=SSR a b z . This has a behavior, for example a = 1, b = 1, z = 0, which was not in the 
original network specification, 

{1} {1} {1} {0} {0}

{0} {1} {0} {1} {0}

= +

= +

z a b a b

z a b a b
 

Theorem 9: If any well-defined deterministic sub-relation of ( , )SS
j jR Y y  is put at j, the new network 

remains compliant. 
The same example after Theorem 8 demonstrates that an ND sub-relation of the local flexibility 

cannot be used in general. 

5 Elimination 

Elimination is the process of substituting the relation of a node into all the relations of its fanouts. 
Substitution of a relation into another is defined as follows. Let the relation at node i be ( , )i i iR Y y   and 
suppose k is a fanout of i with  a similar relation Rk. Then, substitution of i into k yields the new relation 
at k, ( , ) ( , )∃

iy i i i k k kR Y y R Y y , which replaces Rk, where yi is one of the kY . After Ri has been substituted into 

all its fanouts, it can be removed from the network. We remark that this kind of elimination is to be 
distinguished from first determinizing all nodes and then existentially quantifying out all internal 



variables. The latter generates correlations between the outputs of the fanout nodes, while the former 
keeps the fanout nodes independent. 

Theorem 10: Eliminating a node can increase the NS or NSC behaviors of a network only if the node 
is ND and has more than one fanout. 

If there is more than one fanout, then the effect is as if a new copy of the node is assigned to each 
fanout. Each new fanout node has the behavior of the combined old node and the copied ND node. 
Since each copy acts independently, then each can select a different value in the same simulation cycle. 
This can lead to an increase of the network’s NS or NSC behavior, i.e. these behaviors of the new 
network with the node eliminated can be a strict superset of the corresponding behaviors of the original 
network. Further elimination may cause additional increases in these behaviors. In fact, if the 
elimination is done in topological order and the network is collapsed to single nodes for each output, 
then the NS and NSC behaviors of the collapsed network will coincide with SS-behavior of the original 
network. 

As already discussed, we can manipulate NS-behavior by determinizing the network first. Suppose a 
fanout j is given by the function ( , , )j j j jR Y p y and similarly for node i. Then the new function at j after 

node i is eliminated is ± °( , , , ) ( , , ) ( , , )= ∃
ij j i j j y i i i i j j j jR Y p p y R Y p y R Y p y  and thus it has two pseudo-inputs. 

Existentially quantifying out pi and pj leads to the same result as elimination without determinization. 
Note that pi and pj cannot be replaced with a single pseudo-input because this would cause any 
correlation between the different fanouts of node i (through the parameter ip ) to be lost. Thus, in 
general, as the network is manipulated, the nodes in the network will depend on an increasing number 
of pseudo-inputs. Although the determinized elimination process done this way will not increase the 
NS-behavior of the network, it is more expensive computationally. 

Theorem 11: Eliminating a node can increase a network’s NSC behavior if and only if the node is 
ND and has reconvergent fanout. 

The reason for initially considering the SS-behavior of a network is because elimination effectively 
substitutes a copy of the eliminated node into each fanout. Each copy acts independently of the other 
copies and is thus like broadcasting independent sets of values to the fanouts. Thus elimination does not 
increase the SS-behavior of a network. However, elimination may decrease SS-behavior if several 
nodes are eliminated and a proper order is not followed.  

Example: Consider the network in Figure 1. There is reconvergent fanout from node 4. 
Suppose 2 and 3 are eliminated first and then node 4. After eliminating 2 and 3, 4 has only one 
fanout, so intuitively only one copy is made to be substituted. In contrast, if 4 is eliminated first, 
then two copies of 4 are made in 2 and 3.  

Figure 1. An ND network. 

2

14

3

 
 
Eliminating 2 and 3 first has the same effect as if the network is simulated with a single value 

on the fanouts of 4. Thus we could lose the behavior where the two fanouts of 4 can have 
different values (assuming that 4 is non-deterministic). This can be seen by observing how the 
relation at 1 changes under different orders of elimination. For the elimination order 4 3 2, we 
get 2 3 4 4 3 1 4 4 2( ( ( ) )( ))∃ ∃ ∃ ∃y y y R R R y R R , and for order 3 2 4, we get 4 2 3 3 1 2 4( ( ( ) ) )∃ ∃ ∃y y y R R R R . The 
difference is that in the first expression, there are two existential quantifications on y4 which are 
uncorrelated.  

The following theorem states sufficient conditions when a node’s elimination preserves the SS-
behavior. The global SS-behavior of a node A is defined to be that obtained by eliminating all nodes in 
the TFI of A in topological order.  

Theorem 12: Eliminating a node A does not change the SS-behavior of the network if 
1. there are no ND nodes in the TFI of A, or 
2. for every fanout of A, its fanins are disjoint from the fanins of A. 



Note that collapsing in topological order is not necessary to preserve SS-behavior, since in the above 
example we could eliminate in the order of 3 4 2 1 because this would lead to 

2 4 3 3 1 4 4 4 2( ( ( ) )( ))∃ ∃ ∃ ∃y y y R R R y R R  which can be obtained from the topological elimination result. 

Corollary 1: Eliminating a node can never increase the SS-behavior of a network. 
Corollary 2: Elimination a node A can decrease the SS-behavior of a network only if  

1. A has an ND node B in its TFI and  
2. a fanin of A in the TFO of B is also a fanin of a fanout of A (see Figure 2). 

 

B

A  
Figure 2. Topology where number of paths from B can decrease. 

6 Extraction and Decomposition 

Extraction and decomposition are similar; the latter operates on a single node at a time, while the 
former operates on a set of nodes. With decomposition, a new node (divisor) is created, which has only 
a single fanout; with extraction there are at least two fanouts. The objective is the same, to find a good 
divisor. There are two forms of extraction, disjoint and non-disjoint. Extraction is disjoint if the fanins 
of the new node are not also fanins of the fanouts of the new node.  

Theorem 13: Extraction and decomposition cannot increase the NS and NSC behaviors of an ND 
network. 

Theorem 14. The SS-behavior of a network is not changed if a node extraction is disjoint, or there 
are no ND nodes in the TFI of the extracted node. 

A non-disjoint extraction will increase the number of paths. As an example, consider the network in 
Figure 3. 

 
 

B  

A  

B ’  

A  

C  

 
Figure 3. Non-disjoint extraction from B 

 
B has been decomposed into a non-disjoint extraction because the inputs of C are not disjoint from the 
inputs of B’. Thus the number of paths from A to B has increased. If A is non-deterministic or there is 
an ND node in TFI(A), according to Theorem 12, the SS-behavior could increase. 

7 Merging 

Merging is the process of combining two or more nodes (the merging set) into a single node with 
more values [7]. A constraint on the merging set is that after merging, the network should remain 
acyclic. The i-sets of the new node are composed of intersections of the i-sets of the merging set.  

Example: Suppose two nodes are to be merged with ranges 3 and 5 respectively. Then the 0-set 
of the new node is the intersection of the 0-sets of the two relations, the 1-set is the intersection 
of the 0-set and the 1-set, the 2-set the intersection of the 0-set and 2-set, etc, and the 14-set the 
intersection of the 2-set and the 4-set.  

The second step of merging involves substituting the new node into the union of the fanouts of the 
merging set by replacing some literals of each cube in the i-set covers of a fanout by a single literal of 
the new variable.  



Example: In the above example, if a fanout cube in some i-set involves the product {0,2} {1,3,4}x y (x 
and y are three-valued and five-valued MV variables, respectively), this cube is replaced by the 
literal of the new 15-valued variable, say z, {1,3,4,11,13,14}z . A cube with the literal {1}x but no y is 
replaced by {5,6,7,8,9}z since the absence of y implies all values of y. 

Thus the number of i-set cubes in the fanouts cannot increase and might be decreased by making the 
resulting i-sets prime and irredundant.  

Example: An example of the reduction is given by the binary EXOR gate with inputs x and y: 
{0} {1} {1} {0}+x y x y . It has two cubes and four literals. If x and y are merged into a single node z, the 

MV-SOP of the gate becomes one cube with one literal, z{1,2}. 
Theorem 15. The merging of two or more nodes cannot change the NS or NSC behaviors and can’t 

increase the SS behavior of the network. 

8 Two Computationally Viable Theories 

There seem to be two computationally viable choices for a theory of non-deterministic networks, NSC 
and SS behavior. Comparison leads to the following statements. 

1. Both methods give output-symmetric relations at the outputs. 
2. The computational process for SS seems simpler since collapsing in topological order leads to 

an efficient method for building global BDDs.  
3. Both methods lead to network operations that are similar to those used for binary networks. 
4. No pseudo-inputs need to be introduced for either method to control the choice at a node. 
5. As the network is manipulated, both allow changes in behavior to be analyzed and easily 

understood. 
6. NSC leads to the smallest increase in behavior over the more intuitive NS behavior. SS gives 

the largest increase. 
7. NSC can provide more flexibility at a node. 
8. Both methods may cause the network to become non-compliant. However, the non-compliance 

is more easily controlled in NSC, since only one operation, elimination, can cause non-
compliance, and only under the case that a ND node with reconvergent fanout is eliminated. 

The theory based on SS-behavior is currently implemented in MVSIS. Although it suffers from a 
higher probability that the network will become non-compliant during network manipulation, no 
difficulties have been encountered because of this. We are currently exploring methods which would 
allow efficient computations when NSC behavior is used. 

Table 1 compares NSC behavior with SS-behavior in terms of possible non-compliance of the 
network after the corresponding operation. 

 
Operation SS-behavior NSC-behavior 
elimination compliance non-compliance 
extraction non-compliance compliance 
node minimization non-compliance compliance 
node flexibility less more 
merging can’t increase can’t change 

Table 1. Comparing two computationally viable theories 

9 Minimizing an ND Relation 

Given a flexibility (ND relation) at a node, the goal is to construct the smallest (in terms of the total 
number of i-set cubes) well-defined relation contained in it.  

Definition: The i-set of an ND relation, ( , )R Y y , is the set of minterms that can produce i, i.e. 
{ } ( , )iy

R Y y , the cofactor of ( , )R Y y with respect to the literal { }iy . The essential i-set is the minterms that 

can only produce i. 



9.1 Deterministic MV-SOP Minimization 

The computation starts by ordering the i-sets heuristically. Then in increasing order, for each i, we 
extract the minterms of its i-set not yet covered by i-set covers already computed. The minimized SOP 
for the i-set is computed by a call to an SOP minimizer using the part of the i-set not yet covered by 
preceding i-set covers and which aren’t in the remaining i-sets, as the on-set and the rest of the 
remaining uncovered terms in the i-set as the don’t-care set. Since the remaining i-sets computed in 
each step do not overlap with the covers selected for the previous i-sets, the resulting MV-SOP is 
disjoint and, therefore, deterministic. 

9.2 Heuristic ND MV-SOP Minimization 

The computation proceeds in two steps. First, the essential part of each i-set is minimized using the 
rest of that i-set as don’t-care. Computed this way, the i-sets are allowed to overlap resulting in a non-
deterministic cover. This cover cannot be larger than the deterministic cover if we use the same 
ordering of the i-sets. If at this point, all minterms are covered, the algorithm has computed the exact 
minimum cover (provided that the MV-input binary-output covers for each i-set have been minimized 
exactly). Surprisingly, in our experience, this has been the case for about 90% of MV-SOP 
minimization problems that arise in the simplification of non-deterministic networks implemented in 
MVSIS.  

If there are remaining uncovered minterms, then each must be associated with at least two i-sets. If 
there is at least one output value common to all remaining minterms, then all these are added to the 
common value. This situation has occurred in about 9% of the cases, leaving only about 1% to be 
processed further. Finally, a simple greedy approach is taken. Considering values one by one in some 
heuristic order, as many minterms as possible are added to each of the successive i-sets. 

9.3 Exact ND MV-SOP Minimization 

An exact minimum cover of a relation can be found as follows.  
Procedure: For each i-set, generate its set of primes. Form a combined unate covering problem 
where the minterms to be covered is the entire input space and the union of primes of all i-sets is 
the set of covering cubes. Solve for a minimum cover. Each prime chosen in the minimum 
cover is put into its appropriate i-set to form the minimum i-set covers. 

Theorem 16: The above procedure gives a set of i-set covers which has the minimum number of 
cubes. Each i-set cover is prime and irredundant. 

A common situation is that a default i-set is used which is never represented since it can be obtained 
by complementing all other i-sets.2 The problem is to choose the default so that the remaining i-sets can 
be covered with the minimum number of cubes. This can be solved as follows.  

Procedure: For each i, form the covering problem as in Theorem 16, except force the primes of 
the i-set to be in the cover. The measure of the solution obtained is the number of cubes in the 
cover, not counting those in the ith set. Do this for each i and choose the one, k, that leads to the 
smallest measure, to be the default and the cubes of the kth covering problem, with the primes of 
the kth i-set deleted, as the final covers. 

Theorem 17:  The above procedure leads to the minimum set of covers when the default cover is not 
counted. 

In some cases, it is desired to reduce the number of values produced by the node to a minimum (value 
reducing minimization). This can be done by solving the following covering problem.  

Procedure: Create a column for each i-set, which has a 1 in it if the minterm is in the i-set. A 
minimum cover gives a minimum set of values. Now restrict to these i-sets and find a minimum 
set of i-set covers for these using either Theorem 16 or Theorem 17. It might happen that there 
are several sets of minimum values. It that case, the set that leads to the minimum i-set covers is 
required. Thus all minimum value subsets can be found, and for each, the minimum i-set 
covering problem is solved. This is done by simply deleting those primes not in the value set 
being solved and using the procedure of either Theorem 16 of Theorem 17. The set of all 
minimum value sets can be obtained by finding the complement of the unate function associated 
with the covering matrix and choosing those primes with the least number of literals. 

                                                                 
2 In binary logic synthesis, we usually implement only the onset of a node; if the offset is required, it is produced by an 

invertor. 



10 Managing Non-Compliance When Using SS 

A goal in manipulating an ND network is often to derive an efficient network representation 
contained in the original ND specification.3 The current network (called the cover network) can be 
incrementally modified, so that its behavior is contained in the specification given for the network. As 
the network is manipulated, a subset of behaviors is allowed, usually restricted to those that always 
satisfy the external specification. 

Several network operations can cause an ND network to increase its behavior and possibly cause the 
network to become non-compliant. We discuss only the use of the CF for SS (SS-CF) and leaving an 
ND subset of this at the node. In our experiments so far with using the SS-CF, where an ND relation at 
a node replaces the old one, we have never experienced a problem of not being able to verify the final 
network. Since this seems experimentally to work, we examine some reasons for this. 

Consider the following scenario. Suppose an ND relation is put at a node during node minimization, 
where the SS-CF is used, and this makes the network non-compliant but this is not detected. When this 
happens, there is a subset of COs that have values not allowed by the external specification for a 
particular CI minterm. Moving to the next node, its SS-CF is derived. There are two cases. 

1. RSS(Y,y) for the new node is well-defined.  Then a sub-function can be chosen and part of the 
non-compliance will be corrected without ever knowing that the network was non-compliant. 

2. RSS(Y,y) for the next node is not well-defined; this can be easily detected. It means that all non-
conformance in the COs in the TFI of the node can’t be corrected by changing only this node.4  

Our current strategy is to correct when possible and to leave the current relation alone when the SS-
CF is not well-defined. This has the advantage that the SS-CF can be used and no extra checking is 
done.  

11 Conclusions 

Both multi-level networks and non-determinism are efficient ways to compactly represent behavior. 
To merge these two concepts, a theory of non-deterministic networks was presented and the legality of 
various network manipulations was analyzed assuming three different definitions of behavior. Such 
networks can have, at any node, a non-deterministic relation, which specifies how the node behaves. 
Behaviors of such networks were defined in terms of normal (NS), normal compatible (NSC), and set 
simulation (SS).  SS was shown to be the same as that obtained by collapsing the network in topological 
order and NSC was shown to be equivalent to collapsing in reverse topological order. It was shown that 
some operations might cause the network to become non-compliant, and there are several methods to 
bring the network back to compliance.  

We observed that only deterministic node implementations contained in SS-CF flexibility can be 
guaranteed to create a compliant network. However, subsequent extractions done on the network might 
cause non-compliance. Conditions were given, under which this increase in SS-behavior could happen. 

A new method was given for computing a minimum well-defined relation contained in an ND relation. 
The size of a relation is measured in terms of the number of cubes in all its minimized i-sets. The 
minimized relation is never larger than any contained deterministic realization. 

The manipulation of ND networks using SS-behavior has been implemented in MVSIS [7]. Our initial 
experience with using operations that could cause the network to become non-compliant has been that it 
happens rarely, and when it does, simple greedy procedures bring it back to compliance. We are 
currently developing a number of Boolean operations using ND networks and multi-valued variables to 
enhance various optimization algorithms, even when a final binary deterministic implementation is 
sought. 

Our longer-range goal is to use ND network manipulations to operate on ND regular automata with 
the hope that the operations of complementation and composition, applied directly to multi-level 
network representations of the automata, can be done efficiently in many practical cases.  

                                                                 
3 Some applications require a final deterministic representation in order to implement each node as a circuit. However, a final 

step can accomplish this, while intermediate steps can take advantage of the compactness and generality of ND representations. 
Determinization can be done using the heuristic in Section 9.1 applied to  the CF for each node. 

4 However, it may be that some non-compliance can be corrected, but we do not know exactly how this should be done. If it 
was known that the network was compliant before the last node was changed, we could backtrack and change that node back. 
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