
UC Berkeley, EECS Department Prof. B. E. Boser

EE 49 LAB6: GPIO, Interrupts, Concurrency

Name SID Checkoff

Objectives: Design app that combines analog and digital GPIO, interrupts and timers. We also familiarize
ourselves with the oscilloscope.

The application combines the following elements:

a) Buzzer playing tune

b) LED with PWM dimming

c) Two-axis joystick and pushbutton serving the following functions:

• Pushbutton toggles between playing tune and synthesizer function

• Left-right controls the frequency of the synthesizer

• Up-down controls the duty cycle of the synthesizer

The key to getting all this working is to construct and test each part individually, and then gradually
assemble them.

Although simple, the setup demonstrates the capabilities and may serve as a starting point for more
sophisticated applications. After completing the lab, you are encouraged to improve the setup (e.g. adjust
the range of the joystick control for better sensitivity) and try other ideas. Or hook up a speaker for real
sound.

Parts and Tools

HUZZAH32 board, joystick, resistors (available in the lab), buzzer, LED, solderless prototyping board.

Prelab

Since different sections depend on reach other, read the entire document before starting work.

Get started early on the prelab to have sufficient time for resolving potential problems. Use Piazza, office
hours, and discussions to get help and your questions answered so that you will come completely prepared.

LED Brightness

The goal is to gradually modulate the intensity of an LED from off to fully on over a period of 5 seconds.
When the LED reaches full brightness, turn it off and start over. Use the built-in LED of the HUZZAH32 for
the prelab and switch to an external (and brighter) LED in the lab with an approx. 500Ω resistor in series
(to limit the current and avoiding frying the ESP32). Draw the circuit diagram for the LED connection in
the space below:

1



Note: LEDs are polarized. Current enters the terminal with the slightly longer lead and exits the shorter
lead.

a) Configure the Pin to which the LED is connected as an open-drain output. Verify that you can turn the
LED on and off.

b) Initialize PWM timer 0 for the led Pin with 500Hz and 50% duty cycle. Vary the duty cycle and verify
that you can control the intensity between fully on and off.

c) Now configure timer 0 to call a function (e.g. led_cb) at a regular interval (determine the correct period
to get a 5 second cycle). Each time led_cb is called, increase the PWM duty cycle for the LED by 1
(reset when 100 is reached). Suggestion: use a global variable brightness to keep track of the LED
state.

Note 1: import PWM from machine.

Note 2: After setting up the timer, the program continues. If there is no more code to execute,
microphython returns control to the repl. led_cb continues to be called at the period you specified. If
you are executing the program with run (shell49), issue the repl command to see output from print
statements you may be using for debugging.

Note 3: Reset the ESP32 to stop the timer. This also frees up PWM channels—if you get a message
that there are no more channels, reset the board before running the program.

Note 4: Note that the ESP32 uses several kinds of timers: several timers to set the frequency of PWM
outputs, several timers for executing code at periodic intervals, and the deepsleep timer. Probably a few
other ones as well. For clarity they are all called timer!

Now you have configured the LED with PWM do to its “light show” without processor intervention: the
ESP32 is available to do other things, e.g. play a tune.

Important: Use a timer, not a loop to control the LED brightness. Although a loop will work when the
LED is the only part to be controller, the objective of the lab is to do several things simultaneously. If
you use a loop in this part, you will have to rewrite your code later with a timer (replacing the loop) to
complete the lab!

Tune

Here we configure a PWM channel to output the frequencies corresponding to a tune we want to play. A
sample tune is reproduced at the end of this document. Search the internet for alternatives, or compose
your own.

Configure an output as open-drain. Remember that the microcontroller ties open-drain outputs to GND
when set to logic 0, and open (i.e. not connected to GND or VDD) when set to 1. Connect the buzzer
in a circuit from 3.3V to a resistor (approx. 150Ω), to the microcontroller output. If you do not have a
150Ω resistor use the LED for testing and replace with the buzzer during the lab session. In the space
below, draw the schematic showing the ESP32 pin, resistor, buzzer, and all other relevant terminals and
connections. Remember that the buzzer is polarized.

2



a) Configure a PWM timer to control the pin the buzzer is connected to. Verify that you can control the
buzzer frequency with PWM. Use a different PWM timer than for the LED (e.g. 1).

b) Use a for-loop to play a tune. Don’t forget a sleep statement in the loop, or the tune will be very short!

c) Analogous to the LED, set up timer 1 to change the frequency of the buzzer output to the next note in
your tune. Start over after reaching the end of the tune. Again, use a timer, not a loop to implement
this part!

Run the LED and buzzer timers simultaneously. In more interesting applications, you may be controlling
a robot, play safety warning sounds, and send measurement results to the cloud, all at the same time!

Button Interrupt

The goal is an interrupt driven program that counts the number of times the joystick button is pressed
and switches between playing a tune and operating the synthesizer each time the button is pressed. The
joystick button suffers from very bad bounce—use the tricks to debounce you learned in the lecture!

Since you will solder the joystick only in the lab, use a wire between the pin configured to read the button
and ground “to simulate” its function. In the lab replace the wire with the button.

a) Choose a pin for reading the button state and configure as input with pull-up enabled.

b) In a for-loop, read and print the pin state. Verify that it changes as you press and release the button
(insert/remove the wire).

c) Remove the for-loop and instead define an interrupt handler and attach it to the pin. Does pressing the
button (inserting the wire) result in a falling or raising transition? Configure the trigger accordingly!
Use a global counter to keep track of the number of button presses. Each time the button is pressed,
print out the updated count.

d) Notice how the count changes by more than one each time the button is pressed. Follow the approach
from the lecture to “de-bounce” the switch. Verify that the count increases by only one each time the
button is pressed. Try different delays until you get the correct behavior.

ADC & DAC

Read the description of the joystick at https://www.adafruit.com/product/512.

The joystick consists of two potentiometers coupled to the x- and y-axes of the control button. The poten-
tiometers are wired to the Vcc and GND terminals and the center pickoffs to Xout and Yout, respectively.
Sel is tied to GND when the control button is pressed, and open otherwise.

In the lab we will be using the Joystick to control the synthesizer frequency and duty cycle. Connecting Vcc
and GND to 3.3V and GND of the HUZZAH32, Xout and Yout voltages will follow the joystick position.
We will use the ESP32’s ADC to read those voltages.

3

https://www.adafruit.com/product/512


In the space below, draw a circuit diagram showing the joystick connected to the HUZZAH32 for reading
out its position and button state.

Since we do not have the joystick available, we’ll use the HUZZAH32’s DAC to generate an analog output
voltage and read it right back with an ADC for verification of our code (and the DAC and ADC).

a) Connect one of the DACs (e.g. DAC1) to an ADC input (e.g. ADC6) of the the HUZZAH32 board.

b) Configure the DAC and ADC (what’s the best attenuation for reading the DAC output and for reading
the joystick outputs, respectively?) and write a loop that iterates over all DAC values (0 . . . 255) and
reads resulting voltage with the ADC. Print both the DAC code and the ADC readout during each loop
iteration. Use a delay (e.g. 100ms in the loop to give the DAC some time to settle and the ADC to
perform the conversion). Verify that the ADC readout increases monotonically with the DAC code.

c) Remove the wire from the DAC to the ADC. What happens? Why?

Oscilloscope

Familiarize yourself with the function and operation of oscilloscopes following the tutorial at

https://learn.sparkfun.com/tutorials/how-to-use-an-oscilloscope

(search the web for many other resources including videos). Make sure you understand the function of the
trigger.

Write a program that configures two different PWM timers for 5 kHz and 8 kHz respectively, with 20%
and 60% duty cycle. Have it ready in the lab!

Prelab Checkoff

At the start of the lab session, show the following results from the prelab to the instructor to get credit.

Task Points Checkoff
LED brightness demo and program 10
Tune program 10
Button interrupt count and code 10
ADC/DAC demo and code 10
Oscilloscope trigger and code 10

Lab

Solder Joystick

Solder the joystick and header to its breakout board. Make sure that the joystick is oriented correctly and
that the pins are aligned correctly before inserting it into the board. Excessive force will bend the

4

https://learn.sparkfun.com/tutorials/how-to-use-an-oscilloscope


pins, preventing the joystick from working.

Use an Ohm-meter and check the resistance between

• Vcc and GND

• Sel and GND (low when button pressed, high otherwise)

• Xout and GND (varies as a function of joystick angle)

• Yout and GND (varies as a function of joystick angle)

After verifying correct operation, connect the joystick to the HUZZAH32 and verify the button interrupt
and ADC readout of Xout and Yout.

Checkoff: (10 points)

Oscilloscope

Start up the oscilloscope, connect a probe to channel 1, enable the channel and set it to high sensitivity. Do
not connect anything to the probe. Without touching anything, try to pick up the 60Hz from the power
lines.

This is an example of interference and of course affects not only oscilloscope probes, but all electronic
circuits. Building circuits that are robust to such interference (i.e. their operation unaffected by it) is a
quality of a good engineer!

Run the program from the prelab that sets up two PWM outputs to check out the oscilloscope. Connect
an oscilloscope probe to one of the PWM outputs. Adjust the trigger such that the waveform is stable
(i.e. does not run across the display). Set appropriate scaling to read the frequency and duty cycle off the
display. Vary the duty cycle and verify that the oscilloscope output changes accordingly.

Now connect the second probe to display both PWM waveforms simultaneously. Choose to trigger on the
first, then the second channel. Can you get both images to be stable, i.e. not run across the screen? Why
not?

Checkoff: (10 points)

Synhesizer and LED Testing

Modify the callback handler playing the tune to have two states:

a) Play the tune, or

b) Operate the synthesizer.

In synthesizer mode, the buzzer plays a tone whose frequency and duty cycle are controlled by up-down
and left-right motion of the joystick. In “play the tune” mode, the tune is played over and over.

The state changes (reliably, remember debouncing!) with each press of the joystick button.

If each part from prior section works as intended (in particular, you used timers and not loops to control
the LED brightness and playing the tune), then this last part is little more than putting the code from each
part into a single file and changing the code in the button interrupt handler to control the state (rather
than count the number of presses).

Use your debugging skills acquired in prior labs. Make small incremental changes, and verify that each
piece operates as required at each step. Go back and test individual parts if a complex setup is not working
as intended. Check voltages (including the supplies for all components) with the DMM and waveforms with
the oscilloscope. Use the continuity tester to verify connections (turn off power during this step to avoid
confusing the meter).

5



Your program should be entirely interrupt and timer driven and return to the repl after everything is set
up. Later we will add to the program to operate a robot while playing music.

If you do not finish during the lab you may complete your work later and submit for checkoff in the following
lab session. Full credit for the immediately following lab session reduced/no credit later. Remember that
you are required to complete all labs to pass the course.

Checkoff: (30 points)

Better Sound

The sound quality of the buzzer is pretty bad, if “sound” is even the right word. Easily fixed by replacing it
with an audio amplifier and speaker. Many choices are available, e.g. https://www.adafruit.com/product/2130
or, for stereo and I2C volume control, https://www.adafruit.com/product/1712. Some speaker options:
https://www.adafruit.com/product/1314 or https://www.adafruit.com/product/1313. These and similar
parts are available from many vendors including major online sources.

Note that the speaker supply must be connected to a good 5V source, e.g. VUSB. The 3.3V output of the
HUZZAH32 does not have sufficient current drive for this application.

Of course the ESP32 can synthesize several tones simultaneously and suitable circuits can combine the
outputs for stunning effects. We will discuss circuits that accomplish this later in the course.

Sample Tune

# define frequency for each tone

C3 = 131

CS3 = 139

D3 = 147

DS3 = 156

E3 = 165

F3 = 175

FS3 = 185

G3 = 196

GS3 = 208

A3 = 220

AS3 = 233

B3 = 247

C4 = 262

CS4 = 277

D4 = 294

DS4 = 311

E4 = 330

F4 = 349

FS4 = 370

G4 = 392

GS4 = 415

A4 = 440

AS4 = 466

B4 = 494

C5 = 523

CS5 = 554

D5 = 587

DS5 = 622

E5 = 659

F5 = 698

FS5 = 740

6

https://www.adafruit.com/product/2130
https://www.adafruit.com/product/1712
https://www.adafruit.com/product/1314
https://www.adafruit.com/product/1313


G5 = 784

GS5 = 831

A5_ = 880

AS5 = 932

B5 = 988

C6 = 1047

CS6 = 1109

D6 = 1175

DS6 = 1245

E6 = 1319

F6 = 1397

FS6 = 1480

G6 = 1568

GS6 = 1661

A6 = 1760

AS6 = 1865

B6 = 1976

C7 = 2093

CS7 = 2217

D7 = 2349

DS7 = 2489

E7 = 2637

F7 = 2794

FS7 = 2960

G7 = 3136

GS7 = 3322

A7 = 3520

AS7 = 3729

B7 = 3951

C8 = 4186

CS8 = 4435

D8 = 4699

DS8 = 4978

# Bach Prelude in C.

bach = [

C4, E4, G4, C5, E5, G4, C5, E5, C4, E4, G4, C5, E5, G4, C5, E5,

C4, D4, G4, D5, F5, G4, D5, F5, C4, D4, G4, D5, F5, G4, D5, F5,

B3, D4, G4, D5, F5, G4, D5, F5, B3, D4, G4, D5, F5, G4, D5, F5,

C4, E4, G4, C5, E5, G4, C5, E5, C4, E4, G4, C5, E5, G4, C5, E5,

C4, E4, A4, E5, A5_, A4, E5, A4, C4, E4, A4, E5, A5_, A4, E5, A4,

C4, D4, FS4, A4, D5, FS4, A4, D5, C4, D4, FS4, A4, D5, FS4, A4, D5,

B3, D4, G4, D5, G5, G4, D5, G5, B3, D4, G4, D5, G5, G4, D5, G5,

B3, C4, E4, G4, C5, E4, G4, C5, B3, C4, E4, G4, C5, E4, G4, C5,

B3, C4, E4, G4, C5, E4, G4, C5, B3, C4, E4, G4, C5, E4, G4, C5,

A3, C4, E4, G4, C5, E4, G4, C5, A3, C4, E4, G4, C5, E4, G4, C5,

D3, A3, D4, FS4, C5, D4, FS4, C5, D3, A3, D4, FS4, C5, D4, FS4, C5,

G3, B3, D4, G4, B4, D4, G4, B4, G3, B3, D4, G4, B4, D4, G4, B4

]

7


