Interference

• Only V_{in} and V_o are "signals of interest"

• In practice, on a chip (or PCB), many signals are present:

$$V_o = a_{in}V_{in} + \sum_i a_i V_i$$

• Solutions:
 – Ensure that a_i small!
 – Eliminate V_i (?)
Typical Interferers
Fully Differential versus Single Ended
Differential versus Common-Mode
CMRR and PSRR
Conversion: Balun

- Use for simulation only
- Realizable transformers inadequate for implementation at mixed-signal frequencies
Loop-Gain Simulation

\[\Delta + \sum C_{s1} \quad C_{f1} \quad C_{L1} \]

\[v_{id} \quad v_{ic} \quad v_{xc} \quad v_{xd} \quad v_{oc} \quad v_{od} \]

\[C_{s2} \quad C_{f2} \quad C_{L2} \]
Interference Comparison

Single Ended

Differential
Advanced Analog Integrated Circuits

Differential Pair

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Differential Pair

Differential Half Circuit

Common-Mode Half Circuit
Tail Current Source

versus
Tail Current Source

Note: mismatch in differential pair
Simulation Result

![Graph showing CMRR vs Frequency](image)
Advanced Analog Integrated Circuits

Common-Mode Feedback

Bernhard E. Boser
University of California, Berkeley
bolser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Output Common-Mode Voltage
Common Mode Feedback (CMFB)
Adjust V_{oc}
V_{cm} Sense
Continuous Time CMFB

Advanced Analog Integrated Circuits

Switched Capacitor CMFB

Bernhard E. Boser
University of California, Berkeley
bos@eeecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
SC Common-Mode Feedback

\[I_{c/2} \]

\[I_{d/2} \]

\[I_{o/2} \]

\[V_{ip} \]

\[V_x \]

\[M = 2 \]

\[M = 1 \]

\[M_1 \]

\[M_3 \]

\[C_{cmfb} \]

\[V_{ocm0} \]

\[V_B \]

\[\phi_2 \]

\[\phi_1 \]
Continuous SC CMFB

SC CMFB in 2-Stage Opamps
CMFB Loop Gain

CMFB half circuit
Setting the Loop Gain
Noise in Differential Circuits
Noise from Tail Current Source