Advanced Analog Integrated Circuits

Switched Capacitor Gain Stages

Bernhard E. Boser
University of California, Berkeley
bosер@eeecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
OpAmp versus OTA

OpAmp

OTA

\[\equiv \]
Gain Stages

Resistive Feedback

Capacitive Feedback
Low Frequency Gain

Resistive Load

![Resistive Load Circuit](image)

Capacitive Load

![Capacitive Load Circuit](image)
Transconductor Choices

<table>
<thead>
<tr>
<th>BJT</th>
<th>MOS</th>
</tr>
</thead>
</table>

\[\beta = 100, \ V^* = 150\text{mV} \]
Aside: MOS Voltage Buffers
Advanced Analog Integrated Circuits

Switched Capacitor Gain Stage

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
SC Gain Stage

Switches controlled from non-overlapping 2-phase clock:

Note: *important* details of clocks and switches will be discussed later.
Multiphase Clock Generators

Cross-coupled RS flip-flop

Delay sets nonoverlap period. (time period in which both ϕ_1 and ϕ_2 are 0).

Spectre:

```
phil (vphil 0) vsourcetype=pulsevalu0=0valu1=1.8 +period=1/fswidth=0.45/fsdelay=0.01/fs
```
Phase 1

![Diagram of a phase 1 SC (Switched Capacitor) gain stage circuit with capacitors C_1 and C_2, switches ϕ_1, ϕ_2, ϕ_{1e}, and ϕ_{2b}, and input v_i and output v_o.]}
Phase 2
Charge Conservation
Transient Analysis
Advanced Analog Integrated Circuits

Time Invariant Circuits

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Switched Capacitor Circuits
Time Invariant and Linear
Periodic ac Simulation (Spectre)

• Perform first a “periodic operating point analysis”:

 pss1 pss fund=fs maxacfreq=20*fs
 +errpreset=conservative harmonicbalance=no
 – fund is the sampling frequency
 – maxacfreq is the highest frequency from which folding noise is relevant. Run several circuit simulations, doubling the value each time until the result no longer changes.

• Now perform the ac analysis:

 pac1 pac start=1k stop=10G log=100
Advanced Analog Integrated Circuits

Sampling Noise

Bernhard E. Boser
University of California, Berkeley
bos er@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Sampling Noise

Noise in phase 1 (sampling phase):

Voltage across C_1:

RC Noise Spectrum

\[S_y(f) = \frac{k_B T_r}{C f_s} \frac{2}{1 + e^{-2a} \left(1 - \cos 2\pi f T\right)} \]

\[a = \frac{T}{R_{sw} C} = \frac{T}{\tau} \quad \text{and} \quad T = \frac{1}{f_s} \]

\[\int_0^{f_s/2} S_y(f) df = \frac{k_B T_r}{C} \]

- Noise essentially white for \(T/\tau > 3 \)
- Settling constraints ensure that this condition is usually met in practice, e.g. \(T/\tau > 10 \)
Noise Folding Interpretation

Noise densities:

Continuous time

Discrete time

Ratio:

Effective Noise Bandwidth
Advanced Analog Integrated Circuits

SC Noise Analysis

Bernhard E. Boser
University of California, Berkeley
bosер@eeecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Circuit for Noise Analysis
Noise in Phase 1
Equipartition Principle
Noise in Phase 2
Total Integrated Amplifier Noise

\[R_o \approx \frac{1}{\beta g_m} \]
Total Noise from Phases 1 & 2
Advanced Analog Integrated Circuits

Noise Simulation

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Methods to Simulate Noise for Verification

1. .noise analysis
 - Linear time-invariant circuits only
 - For time variant circuits, simulate each phase separately and combine results manually (as in hand analysis)

2. Periodic noise analysis
 - Analog to pac
 - Perform pss analysis first

3. Transient noise analysis
 - Closest to “reality”, very general
 - Average results from many simulations
 - Good alternative when pss has convergence problems
 - Can be slow …

Periodic Noise Simulation (Spectre)

- Perform first a “periodic operating point analysis”
- Then perform the pnoise analysis:

 pnoise1 pnoise (vo 0) fund=fs start=0 stop=fs/2
 +noisetype=timedomain maxsideband=150
 +noisetimepoints=[1us]

 - noisetype=timedomain instructs the simulator to compute the spectrum of discrete time noise samples at specified sampling instances
 - maxsideband=150 sets the maximum frequency relative to fs for which noise folding is significant. Try doubling this value and increase until simulator output converges.
 - noisetimepoints=[1us] is the sampling instance. For the SC gain stage, this is near the end of phase 2
 - See simulator docs and http://www.designers-guide.org/analysis/sc-filters.pdf