
student

6 Artificial Intelligence

human

Human Problem Solving

277

Program file for this chapter:

Can a computer be intelligent? What would it mean for a computer to be intelligent?
John McCarthy, one of the founders of artificial intelligence research, once defined the
field as “getting a computer to do things which, when done by people, are said to involve
intelligence.” The point of the definition was that he felt perfectly comfortable about
carrying on his research without first having to defend any particular philosophical view
of what the word “intelligence” means.

There have always been two points of view among AI researchers about what their
purpose is. One point of view is that AI programs contribute to our understanding of

psychology; when researchers take this view they try to make their programs reflect
the actual mechanisms of intelligent human behavior. For example, Allen Newell and
Herbert A. Simon begin their classic AI book with the sentence,
“The aim of this book is to advance our understanding of how humans think.” In one
of their research projects they studied cryptarithmetic problems, in which digits are
replaced with letters in a multi-digit addition or multiplication. First they did a careful
observation and analysis of how a human subject attacked such a problem, then they
pointed out specific problem-solving techniques that the person used, and used those
techniques as the basis for designing a computer simulation. The other point of view
is that AI programs provide a more abstract model for intelligence in general; just as
one can learn about the properties of computers by studying finite-state machines, even
though no real computer operates precisely as a formal finite-state machine does, we can
learn about the properties of any possible intelligent being by simulating intelligence in a
computer program, whether or not the mechanisms of that program are similar to those
used by people.

In the early days of AI research these two points of view were not sharply divided.
Sometimes the same person would switch from one to the other, sometimes trying to
model human thought processes and sometimes trying to solve a given problem by

Microworlds: Student

cognitive science,

expert systems
knowledge engineering,

microworld.

Natural Language Input for a Computer Problem Solving
System,

278 Chapter 6 Artificial Intelligence

whatever methods could be made to work. More recently, researchers who hold one or
the other point of view consistently have begun to define two separate fields. One is

in which computer scientists join with psychologists, linguists, biologists,
and others to study human cognitive psychology, using computer programs as a concrete
embodiment of theories about the human mind. The other is called or

in which programming techniques developed by AI researchers
are put to practical use in programs that solve real-world business problems such as the
diagnosis and repair of malfunctioning equipment.

In this chapter I’m going to concentrate on one particular area of AI research: teaching a
computer to understand English. Besides its inherent interest, this area has the advantage
that it doesn’t require special equipment, as do some other parts of AI such as machine
vision and the control of robot manipulators.

In the 1950s many people were very optimistic about the use of computers to
translate from one language to another. IBM undertook a government-sponsored project
to translate scientific journals from Russian to English. At first they thought that this
translation could be done very straightforwardly, with a Russian-English dictionary and a
few little kludges to rearrange the order of words in a sentence to account for differences
in the grammatical structure of the two languages. This simple approach was not
successful. One problem is that the same word can have different meanings, and even
different parts of speech, in different contexts. (According to one famous anecdote, the
program translated the Russian equivalent of “The spirit is willing but the flesh is weak”
into “The vodka is strong but the meat is rotten.”)

A decade later, several AI researchers had the idea that ambiguities in the meanings
of words could be resolved by trying to understand English only in some limited context.
If you know in advance that the sentence you’re trying to understand is about baseball
statistics, or about relationships in a family tree, or about telling a robot arm to move
blocks on a table (these are actual examples of work done in that period) then only
certain narrowly defined types of sentences are meaningful at all. You needn’t think about
metaphors or about the many assumptions about commonsense knowledge that people
make in talking with one another. Such a limited context for a language understanding
program is called a

This chapter includes a Logo version of Student, a program written by Daniel G.
Bobrow for his 1964 Ph.D. thesis,

at MIT. Student is a program that solves algebra word problems:

The price of a radio

understands

Microworlds: Student 279

variable1 units

variable1 variable2

variable2

student [The price of a radio is $69.70. If this price is 15 percent
less than the marked price, find the marked price.]

?

The marked price is 82 dollars

The weight of a giant size detergent box is 69.70 ounces. If this weight
is 15 percent less than the weight of an enormous size box, find the
weight of an enormous size box.

= 69.70

= 0.85 *

Find .

(In this illustration I’ve left out some of Student’s display of intermediate results.)
The program has two parts: one that translates the word problem into the form of
equations and another that solves the equations. The latter part is complex (about 40
Logo procedures) but straightforward; it doesn’t seem surprising to most people that
a computer can manipulate mathematical equations. It is Student’s understanding of
English sentences that furthered the cause of artificial intelligence.

The aim of the research reported here was to discover how one could build
a computer program which could communicate with people in a natural
language within some restricted problem domain. In the course of this
investigation, I wrote a set of computer programs, the Student system, which
accepts as input a comfortable but restricted subset of English which can be
used to express a wide variety of algebra story problems...

In the following discussion, I shall use phrases such as “the computer under-
stands English.” In all such cases, the “English” is just the restricted subset
of English which is allowable as input for the computer program under dis-
cussion. In addition, for purposes of this report I have adopted the following
operational definition of understanding. A computer a subset of
English if it accepts input sentences which are members of this subset, and
answers questions based on information contained in the input. The Student
system understands English in this sense. [Bobrow, 1964.]

How does the algebra microworld simplify the understanding problem? For one
thing, Student need not know anything about the meanings of noun phrases. In the
sample problem above, the phrase is used as a variable name.
The problem could just as well have been

For Student, either problem boils down to

student :radio

student :radio

How Student Translates English to Algebra

mathematical

mandatory substitutions

280 Chapter 6 Artificial Intelligence

15 percent less than
0.85 times

student

price, price ,
student1

idioms percent less than
perless

?

?

The problem to be solved is

The price of a radio is $69.70. If this price is 15 percent less than the
marked price, find the marked price.

With mandatory substitutions the problem is

Student understands particular words only to the extent that they have a
meaning. For example, the program knows that means the
same as .

Student translates a word problem into equations in several steps. In the following
paragraphs, I’ll mention in parentheses the names of the Logo procedures that carry out
each step I describe, but don’t read the procedures yet. First read through the description
of the process without worrying about the programming details of each step. Later you
can reread this section while examining the complete listing at the end of the chapter.

In translating Student to Logo, I’ve tried not to change the capabilities of the
program in any way. The overall structure of my version is similar to that of Bobrow’s
original implementation, but I’ve changed some details. I’ve used iteration and mapping
tools to make the program easier to read; I’ve changed some aspects of the fine structure
of the program to fit more closely with the usual Logo programming style; in a few cases
I’ve tried to make exceptionally slow parts of the program run faster by finding a more
efficient algorithm to achieve the same goal.

The top-level procedure takes one input, a list containing the word
problem. (The disk file that accompanies this project includes several variables containing
sample problems. For example,

will carry out the steps I’m about to describe.) Student begins by printing the original
problem:

The first step is to separate punctuation characters from the attached words. For
example, the word “ ” in the original problem becomes the two words “ ”
with the comma on its own. Then () certain are applied
(). For example, the phrase is translated into the single
word . The result is printed:

How Student Translates English to Algebra 281

of

numof
times of

numof [of / op]
[Bill / person] [has / verb]

bracket

as old as age years old

senform

marked price

The price numof a radio is 69.70 dollars . If this price is 15 perless
the marked price , find the marked price .

The simple sentences are

The price numof a radio is 69.70 dollars .

This price is 15 perless the marked price .

Find the marked price .

Mary is 24 years old.

Mary s age is 24 .

The equations to be solved are

Equal [price of radio] [product 69.7 [dollars]]

Equal [price of radio] [product 0.85 [marked price]]

(The word in an algebra word problem can have two different meanings. Sometimes
it means “times,” as in the phrase “one half of the population.” Other times, as in this
problem, “of” is just part of a noun phrase like “the price of a radio.” The special word

is a flag to a later part of the program and will then be further translated either
into or back into . The original implementation of Student used, instead of a
special word like , a “tagged” word represented as a list like . Other
examples of tagging are and .)

The next step is to separate the problem into simple sentences ():

Usually this transformation of the problem is straightforward, but the special case of “age
problems” is recognized at this time, and special transformations are applied so that a
sentence like

is translated into

An age problem is one that contains any of the phrases , , or .

The next step is to translate each simple sentence into an equation or a variable
whose value is desired as part of the solution ().

The third simple sentence is translated, not into an equation, but into a request to solve
these equations for the variable .

The translation of simple sentences into equations is the most “intelligent” part
of the program; that is, it’s where the program’s knowledge of English grammar and

Pattern Matching

patterns

282 Chapter 6 Artificial Intelligence

this price
this nmtest

this

senform1

$1

shelf
4

$1

something verb number unit

unit something verb number

Joe weighs 163 pounds .
The United States Army has 8742 officers .

.

The number of is .

Equal [number of pounds Joe weighs] 163

Equal [number of officers United States Army has] 8742

(* ($ ($1 / verb) (fn nmtest) $1 $ ($1 / dlm)) 0
(/ (*s shelf (*k equal (fn opform (*k the number of 4 1 2))

(fn opform (*k 3 5 6))))) return)

vocabulary come into play and many special cases must be considered. In this example,
the second simple sentence starts with the phrase . The program recognizes
the word (procedure) and replaces the entire phrase with the left hand
side of the previous equation (procedure).

Student analyzes a sentence by comparing it to several (). For example,
one sentence form that Student understands is exemplified by these sentences:

The general pattern is

Student treats such sentences as if they were rearranged to match

and so it generates the equations

The original version of Student was written in a pattern matching language called Meteor,
which Bobrow wrote in Lisp. In Meteor, the instruction that handles this sentence type
looks like this:

The top line contains the pattern to be matched. In the pattern, a dollar sign represents
zero or more words; the notation represents a single word. The zero at the end of
the line means that the text that matches the pattern should be deleted and nothing
should replace it. The rest of the instruction pushes a new equation onto a stack named

; that equation is formed out of the pieces of the matched pattern according to
the numbers in the instruction. That is, the number represents the fourth component
of the pattern, which is .

n

interesting part

Match

Match true

!
& @
? ^

^

Advanced Techniques,

first substring

pattern
sentence. matches

quantifier

O n
O

Pattern Matching 283

if match [^one !verb1:verb !factor:numberp #stuff1 !:dlm] :sent
[output (list (list "equal

opform (sentence [the number of]
:stuff1 :one :verb1)

opform (list :factor)))]

[^beg #end]

#
#var
#:pred
#var:pred

match

rmatch

* The version in this project is modified slightly; the procedure first does a fast test to try
to reject an irrelevant pattern in time before calling the actual pattern matcher, which could
take as much as time to reject a pattern, and which has been renamed (for “real
match”) in this project.

Here is the corresponding instruction in the Logo version:

The pattern matcher I used for Student is the same as the one in
the second volume of this series.* Student often relies on the fact that Meteor’s pattern
matcher finds the of the text that matches the pattern, rather than requiring
the entire text to match. Many patterns in the Logo version therefore take the form

where the “interesting part” is all that appeared in the Meteor pattern.

Here is a very brief summary of the Logo pattern matcher included in this program.
For a fuller description with examples, please refer to Volume 2. is a predicate
with two inputs, both lists. The first input is the and the second input is the

outputs if the sentence the pattern. A word in the pattern
that does not begin with one of the special characters listed below matches the
identical word in the sentence. A word in the pattern that does begin with a quantifier
matches zero or more words in the sentence, as follows:

zero or more words exactly one word
one or more words zero or more words (test as group)
zero or one word zero or more words (as few as possible)

All quantifiers match as many consecutive words as possible while still allowing the
remaining portion of the pattern to be matched, except for . A quantifier may be used
alone, or it can be followed by a variable name, a predicate name, or both:

()
(2)

−2

list

y x x

284 Chapter 6 Artificial Intelligence

true

factor @
true

?
!

opform
equal

[x]
price of radio

sum minus

!factor:numberp

to threep :list
output equalp count :list 3
end

@:threep

[equal [y] [sum [product 3 [square [x]]] [product 6 [x]] [minus 1]]]

If a variable name is used, the word or words that match the quantifier will be stored
in that variable if the match is successful. (The value of the variable if the match is not
successful is not guaranteed.) If a predicate is used, it must take one word as input; in
order for a word in the sentence to be accepted as (part of) a match for the quantifier,
the predicate must output when given that word as input. For example, the word

in the pattern above requires exactly one matching word in the sentence; that word must
be a number, and it is remembered in the variable . If the quantifier is then
the predicate must take a as input, and it must output for all the candidate
matching words taken together as a list. For example, if you define a procedure

then the pattern word

will match exactly three words in the sentence. (Student does not use this last feature of
the pattern matcher. In fact, predicates are applied only to the single-word quantifiers
and .)

Pattern matching is also heavily used in converting words and phrases with mathe-
matical meaning into the corresponding arithmetic operations (). An equation
is a list of three members; the first member is the word and the other two are
expressions formed by applying operations to variables and numbers. Each operation
that is required is represented as a list whose first member is the name of the Logo
procedure that carries out the operation and whose remaining members are expressions
representing the operands. For example, the equation

= 3 + 6 1

would be represented by the list

The variables are represented by lists like rather than just the words because in
Student a variable can be a multi-word phrase like . The difference
between two expressions is represented by a of one expression and the other,

student :tom

Solving the Equations

Solving the Equations 285

difference

squared times
plus

plus

opform

[^left !op:op1 #right]

?

The problem to be solved is

If the number of customers Tom gets is twice the square of 20 per cent of
the number of advertisements he runs, and the number of advertisements he
runs is 45, what is the number of customers Tom gets?

With mandatory substitutions the problem is

rather than as the of the expressions, because this representation turns out
to make the process of simplifying and solving the equations easier.

In word problems, as in arithmetic expressions, there is a precedence of operations.
Operations like apply to the variables right next to them; ones like are
intermediate, and ones like apply to the largest possible subexpressions. Student
looks first for the lowest-priority ones like ; if one is found, the entire rest of the
clause before and after the operation word provide the operands. Those operands are
recursively processed by ; when all the low-priority operations have been found,
the next level of priority will be found by matching the pattern

Student uses the substitution technique to solve the equations. That is, one equation is
rearranged so that the left hand side contains only a single variable and the right hand
side does not contain that variable. Then, in some other equation, every instance of
that variable is replaced by the right hand side of the first equation. The result is a new
equation from which one variable has been eliminated. Repeating this process enough
times should eventually yield an equation with only a single variable, which can be solved
to find the value of that variable.

When a problem gives rise to several linear equations in several variables, the
traditional technique for computer solution is to use matrix inversion; this technique is
messy for human beings because there is a lot of arithmetic involved, but straightforward
for computers because the algorithm can be specified in a simple way that doesn’t depend
on the particular equations in each problem. Bobrow chose to use the substitution
method because some problems give rise to equations that are linear in the variable for
which a solution is desired but nonlinear in other variables. Consider this problem:

numof
of

student1 student2 trysolve

dollars feet

square linear

units.

286 Chapter 6 Artificial Intelligence

If the number numof customers Tom gets is 2 times the square 20 percent
numof the number numof advertisements he runs , and the number numof
advertisements he runs is 45 , what is the number numof customers
Tom gets ?

The simple sentences are

The number numof customers Tom gets is 2 times the square 20 percent
numof the number numof advertisements he runs .

The number numof advertisements he runs is 45 .

What is the number numof customers Tom gets ?

The equations to be solved are

Equal [number of customers Tom gets]
[product 2 [square [product 0.2 [number of advertisements

he runs]]]]

Equal [number of advertisements he runs] 45

The number of customers Tom gets is 162

The problem is solved.

The first equation that Student generates for this problem is linear in the number of
customers Tom gets, but nonlinear in the number of advertisements he runs. (That
is, the equation refers to the of the latter variable. An equation is in a
given variable if that variable isn’t multiplied by anything other than a constant number.)
Using the substitution method, Student can solve the problem by substituting the value
45, found in the second equation, for the number of advertisements variable in the first
equation.

(Notice, in passing, that one of the special words in this problem was
translated into a multiplication rather than back into the original word .)

The actual sequence of steps required to solve a set of equations is quite intricate.
I recommend taking that part of Student on faith the first time you read the program,
concentrating instead on the pattern matching techniques used to translate the English
sentences into equations. But here is a rough guide to the solution process. Both

and call with four inputs: a list of the equations to
solve, a list of the variables for which values are wanted, and two lists of A unit is a
word or phrase like or that may be part of a solution. Student treats units

[product 69.7 [dollars]]

How many inches is a yard?

only

all

association list

Solving the Equations 287

units
feet

3 feet nmtest aunits
find how many

senform1

[inches]
aunits units

trysolve

Trysolve solve pranswers
Solve solver

solve.reduce Solver
:wanted solve1

solve1 solver

alis

Solve1

solver
solve1 solve1 solver

solver
solve1 solver

solve1
solveq

Solveq

like variables while constructing the equations, so the combination of a number and a
unit is represented as a product, like

for $69.70 in the first sample problem. While constructing the equations, Student
generates two lists of units. The first, stored in the variable , contains any word or
phrase that appears along with a number in the problem statement, like the word
in the phrase (). The second, in the variable , contains units
mentioned explicitly in the or sentences that tell Student what variables
should be part of the solution (). If the problem includes a sentence like

then the variable , and that variable, is allowed to be part of the answer. If
there are no -type variables in the problem, then any of the variables may
appear in the solution ().

first calls to solve the equations and then uses to
print the results. calls to do most of the work and then passes its output
through for some final cleaning up. works by picking one
of the variables from the list and asking to find a solution for that
variable in terms of the other variables—the other wanted variables as well as the
units allowed in the ultimate answer. If succeeds, then invokes itself,
adding the newly-found expression for one variable to an (in the variable

) so that, from then on, any occurrence of that variable will be replaced with the
equivalent expression. In effect, the problem is simplified by eliminating one variable
and eliminating one equation, the one that was solved to find the equivalent expression.

first looks for an equation containing the variable for which it is trying
to find a solution. When it finds such an equation, the next task is to eliminate from
that equation any variables that aren’t part of the wanted-plus-units list that
gave as an input. To eliminate these extra variables, invokes
with the extras as the list of wanted variables. This mutual recursion between
and makes the structure of the solution process difficult to follow. If
manages to eliminate the extra variables by expressing them in terms of the originally
wanted ones, then can go on to substitute those expressions into its originally
chosen equation and then use to solve that one equation for the one selected
variable in terms of all the other allowed variables. manipulates the equation
more or less the way students in algebra classes do, adding the same term to both sides,
multiplying both sides by the denominator of a polynomial fraction, and so on.

288 Chapter 6 Artificial Intelligence

solve

Trysolve

solve

[dollars]
Solve

insufficient

solver solve1 Solver
solve1

solve1 Solve1

solve1

Equal [price of radio] [product 69.7 [dollars]]

Equal [price of radio] [product 0.85 [marked price]]

(1) solve [[marked price]]
[[equal [price of radio] [product 69.7 [dollars]]]
[equal [price of radio] [product 0.85 [marked price]]]]
[[dollars]]

(2) solver [[marked price]] [[dollars]] [] []

(3) solve1 [marked price]
[[dollars]]
[]
[[equal [price of radio] [product 69.7 [dollars]]]
[equal [price of radio] [product 0.85 [marked price]]]]

[]

(4) solve1 [marked price]
[[dollars]]
[]
[[equal [price of radio] [product 0.85 [marked price]]]]
[[equal [price of radio] [product 69.7 [dollars]]]]

Here is how solves the radio problem. The equations, again, are

evaluates the expression

(I’m numbering these expressions so that I can refer to them later in the text.) The first
input to is the list of variables wanted in the solution; in this case there is only
one such variable. The second input is the list of two equations. The third is the list of
unit variables that are allowed to appear in the solution; in this case only is
allowed. evaluates

(There is a fifth input, the word , but this is used only as an error flag if
the problem can’t be solved. To simplify this discussion I’m going to ignore that input
for both and .) picks the first (in this case, the only) wanted
variable as the major input to :

Notice that the first input to is a single variable, not a list of variables.
examines the first equation in the list of equations making up its fourth input. The
desired variable does not appear in this equation, so rejects that equation and
invokes itself recursively:

Solving the Equations 289

outputs
to

outputs
to

outputs
to

Solve1
:eqns solve :eqt

[marked price] [dollars]
[price of radio]

solver
solve1

Solve1
Solve1 solveq

solveq
solve1 solveq

solveq

Solve1

Solver :wanted

(5) solver [[price of radio]] [[marked price] [dollars]] [] []

(6) solve1 [price of radio]
[[marked price] [dollars]]
[]
[[equal [price of radio] [product 69.7 [dollars]]]]
[]

(7) solveq [price of radio]
[equal [price of radio] [product 69.7 [dollars]]]

solveq (7) [[price of radio] [product 69.7 [dollars]]
solve1 (6)

solve1 (6) [[[price of radio] [product 69.7 [dollars]]]
solver (5)

solver (5) [[[price of radio] [product 69.7 [dollars]]]
solve1 (4,3)

This time, the first (and now only) equation on the list of candidates does contain the
desired variable. removes that equation, not from its own list of equations
(), but from ’s overall list (). The equation, unfortunately, can’t be
solved directly to express in terms of , because it contains
the extra, unwanted variable . We must eliminate this variable by
solving the remaining equations for it:

As before, picks the first (again, in this case, the only) wanted variable and asks
to solve it:

does find the desired variable in the first (and only) equation, and this time
there are no extra variables. can therefore ask to solve the equation:

It isn’t part of ’s job to worry about which variables may or may not be part of the
solution; doesn’t call until it’s satisfied that the equation is okay.

In this case, has little work to do because the equation is already in the
desired form, with the chosen variable alone on the left side and an expression not
containing that variable on the right.

appends this result to the previously empty association list.

only had one variable in its list, so its job is also finished.

Age Problems

outputs
to

outputs

to

290 Chapter 6 Artificial Intelligence

solve1 [marked price]
[price of radio]

solveq

solveq

Solve1

solver solve
solve trysolve solve.reduce

[price of radio]
[marked price] solve.reduce
subord

solve

personp s age ageify

agepron their ages ageprob

(8) solveq [marked price]
[equal [product 69.7 [dollars]] [product 0.85 [marked price]]]

solveq (8) [[marked price] [product 82 [dollars]]]
solve1 (4,3)

solve1 (4,3) [[[price of radio] [product 69.7 [dollars]]]
[[marked price] [product 82 [dollars]]]]

solver (2)

This outer invocation of was trying to solve for an equation
that also involved . It is now able to use the new association list to
substitute for this unwanted variable an expression in terms of wanted variables only; this
modified equation is then passed on to :

This time has to work a little harder, exchanging the two sides of the equation
and dividing by 0.85.

appends this result to the association list:

Since has no other wanted variables, it outputs the same list to , and
outputs the same list to . (In this example, has no

effect because all of the expressions in the association list are in terms of allowed units
only. If the equations had been different, the expression for might
have included and then would have had to substitute
and simplify ().)

It’ll probably take tracing a few more examples and beating your head against the
wall a bit before you really understand the structure of and its subprocedures.
Again, don’t get distracted by this part of the program until you’ve come to understand
the language processing part, which is our main interest in this chapter.

The main reason why Student treats age problems specially is that the English form of
such problems is often expressed as if the variables were people, like “Bill,” whereas
the real variable is “Bill’s age.” The pattern matching transformations look for proper
names () and insert the words after them (). The first such age
variable in the problem is remembered specially so that it can be substituted for pronouns
(). A special case is the phrase , which is replaced ()
with a list of all the age variables in the problem.

student :uncle

Age Problems 291

92

92. 92

Bill’s Bill s

(Note that in the original problem statement there is a space between the number and
the following period. I had to enter the problem in that form because of an inflexibility
in Logo’s input parser, which assumes that a period right after a number is part of the
number, so that “ ” is reformatted into without the dot.)

Student represents the possessive word as the two words because
this representation allows the pattern matcher to manipulate the possessive marker as a

?

The problem to be solved is

Bill’s father’s uncle is twice as old as Bill’s father. 2 years from now
Bill’s father will be 3 times as old as Bill. The sum of their ages is
92 . Find Bill’s age.

With mandatory substitutions the problem is

Bill s father s uncle is 2 times as old as Bill s father . 2 years
from now Bill s father will be 3 times as old as Bill . sum their
ages is 92 . Find Bill s age .

The simple sentences are

Bill s father s uncle s age is 2 times Bill s father s age .

Bill s father s age pluss 2 is 3 times Bill s age pluss 2 .

Sum Bill s age and Bill s father s age and Bill s father s uncle s age
is 92 .

Find Bill s age .

The equations to be solved are

Equal [Bill s father s uncle s age] [product 2 [Bill s father s age]]

Equal [sum [Bill s father s age] 2] [product 3 [sum [Bill s age] 2]]

Equal [sum [Bill s age]
[sum [Bill s father s age] [Bill s father s uncle s age]]] 92

Bill s age is 8

The problem is solved.

student :ann

every

292 Chapter 6 Artificial Intelligence

as old as ageprob

2 years from now in 2
years

Bill s age in 2 years
Bill s age pluss 2 years

agewhen pluss plus
opform squared

plus in 2 years
agesen

in 2 years
Bill s father s age Bill s age

pluss

plus
their ages

3 times [Bill s age pluss 2]

[3 times Bill s age] plus 2

?

The problem to be solved is

Mary is twice as old as Ann was when Mary was as old as Ann is now. If
Mary is 24 years old, how old is Ann?

With mandatory substitutions the problem is

Mary is 2 times as old as Ann was when Mary was as old as Ann is now . If
Mary is 24 years old , what is Ann ?

The simple sentences are

Mary s age is 2 times Ann s age minuss g1 .

Mary s age minuss g1 is Ann s age .

separate element to be matched. A phrase like is just deleted ()
because the transformation from people to ages makes it redundant.

The phrase in the original problem is first translated to
. This phrase is further processed according to where it appears in a sentence.

When it is attached to a particular variable, in a phrase like , the
entire phrase is translated into the arithmetic operation
(). (The special word is an addition operator, just like , except for
its precedence; treats it as a tightly binding operation like instead of a
loosely binding one like the ordinary .) When a phrase like appears at
the beginning of a sentence, it is remembered () as an implicit modifier for
age variable in that sentence that isn’t explicitly modified. In this example,
modifies both and . The special precedence of

is needed in this example so that the equation will be based on the grouping

rather than

as it would be with the ordinary operator. You can also see how the substitution for
works in this example.

Here is a second sample age problem that illustrates a different kind of special
handling:

was when

g1 was
when

ageprob
bracket

g1 years ago agesen
agewhen

implicit
now some number

generated symbol

before

Age Problems 293

Mary s age is 24 .

What is Ann s age ?

The equations to be solved are

Equal [Mary s age] [product 2 [sum [Ann s age] [minus [g1]]]]

Equal [sum [Mary s age] [minus [g1]]] [Ann s age]

Equal [Mary s age] 24

Ann s age is 18

The problem is solved.

Mary is 2 times as old as Ann was when Mary was as old as Ann is now .

was g1 years ago . g1 years ago

Mary s age is 2 times Ann s age g1 years ago .

G1 years ago Mary s age was Ann s age now .

Mary s age is 2 times Ann s age minuss g1 .

Mary s age minuss g1 is Ann s age .

What is new in this example is Student’s handling of the phrase in the
sentence

Sentences like this one often cause trouble for human algebra students because they
make reference to a quantity that is not explicitly present as a variable. The
sentence says that Mary’s age is twice Ann’s age of years ago, but that
number is not explicit in the problem. Student makes this variable explicit by using a

like the word in this illustration. Student replaces the phrase
with the words

This substitution (in) happens the division of the problem statement
into simple sentences (). As a result, this one sentence in the original problem
becomes the two sentences

The phrase in each of these sentences is further processed by
and as discussed earlier; the final result is

will
be when

AI and Education

in g2 years . in g2 years

heuristic
algorithm,

intelligent CAI

debugs

294 Chapter 6 Artificial Intelligence

A new generated symbol is created each time this situation arises, so there is no conflict
from trying to use the same variable name for two different purposes. The phrase

is handled similarly, except that the translated version is

These decoupling heuristics are useful not only for the Student program but
for people trying to solve age problems. The classic age problem about Mary
and Ann, given above, took an MIT graduate student over 5 minutes to solve
because he did not know this heuristic. With the heuristic he was able to
set up the appropriate equations much more rapidly. As a crude measure of
Student’s relative speed, note that Student took less than one minute to solve
this problem.

This excerpt from Bobrow’s thesis illustrates the idea that insights from artificial intel-
ligence research can make a valuable contribution to the education of human beings.
An intellectual problem is solved, at least in many cases, by dividing it into pieces and
developing a technique for each subproblem. The subproblems are the same whether
it is a computer or a person trying to solve the problem. If a certain technique proves
valuable for the computer, it may be helpful for a human problem solver to be aware of
the computer’s methods. Bobrow’s suggestion to teach people one specific heuristic for
algebra word problems is a relatively modest example of this general theme. (A
is a rule that gives the right answer most of the time, as opposed to an a rule
that always works.) Some researchers in cognitive science and education have proposed
the idea of (computer assisted instruction), in which a computer would
be programmed as a “tutor” that would observe the efforts of a student in solving a
problem. The tutor would know about some of the mistaken ideas people can have about
a particular class of problem and would notice a student falling into one of those traps.
It could then offer advice tailored to the needs of that individual student.

The development of the Logo programming language (and so also, indirectly, this
series of books) is another example of the relationship between AI and education. Part
of the idea behind Logo is that the process of programming a computer resembles, in
some ways, the process of teaching a person to do something. (This can include teaching
oneself.) For example, when a computer program doesn’t work, the experienced
programmer doesn’t give up in despair, but instead the program. Yet many
students are willing to give up and say “I just don’t get it” if their understanding of some
problem isn’t perfect on the first try.

student :nums

Combining Sentences Into One Equation

deliberately

Mindstorms

Combining Sentences Into One Equation 295

?

The problem to be solved is

A number is multiplied by 6 . This product is increased by 44 . This
result is 68 . Find the number.

The critic is afraid that children will adopt the computer as model and
eventually come to “think mechanically” themselves. Following the opposite
tack, I have invented ways to take educational advantage of the opportunities to
master the art of thinking like a computer, according, for example,
to the stereotype of a computer program that proceeds in a step-by-step,
literal, mechanical fashion. There are situations where this style of thinking
is appropriate and useful. Some children’s difficulties in learning formal
subjects such as grammar or mathematics derive from their inability to see the
point of such a style.

A second educational advantage is indirect but ultimately more important.
By deliberately learning to imitate mechanical thinking, the learner becomes
able to articulate what mechanical thinking is and what it is not. The exercise
can lead to greater confidence about the ability to choose a cognitive style
that suits the problem. Analysis of “mechanical thinking” and how it is
different from other kinds and practice with problem analysis can result in
a new degree of intellectual sophistication. By providing a very concrete,
down-to-earth model of a particular style of thinking, work with the computer
can make it easier to understand that there is such a thing as a “style of
thinking.” And giving children the opportunity to choose one style or another
provides an opportunity to develop the skill necessary to choose between
styles. Thus instead of inducing mechanical thinking, contact with computers
could turn out to be the best conceivable antidote to it. And for me what is
most important in this is that through these experiences these children would
be serving their apprenticeships as epistemologists, that is to say learning to
think articulately about thinking. [Seymour Papert, , Basic Books,
1980, p. 27.]

In age problems, as we’ve just seen, a single sentence may give rise to two equations.
Here is an example of the opposite, several sentences that together contribute a single
equation.

senform1

this
this

partial

296 Chapter 6 Artificial Intelligence

With mandatory substitutions the problem is

A number ismulby 6 . This product is increased by 44 . This result is
68 . Find the number .

The simple sentences are

A number ismulby 6 .

This product is increased by 44 .

This result is 68 .

Find the number .

The equations to be solved are

Equal [sum [product [number] 6] 44] 68

The number is 4

The problem is solved.

A number ismulby 6 .

[product [number] 6]

[sum [product [number] 6] 44]

Student recognizes problems like this by recognizing the phrases “is multiplied by,”
“is divided by,” and “is increased by” (). A sentence containing one of these
phrases is not translated into an equation; instead, a equation is saved until the
next sentence is read. That next sentence is expected to start with a phrase like “this
result” or “this product.” The same procedure () that in other situations uses the
left hand side of the last equation as the expression for the -phrase notices that there
is a remembered partial equation and uses that instead. In this example, the sentence

remembers the algebraic expression

The second sentence uses that remembered expression as part of a new, larger expression
to be remembered:

The third sentence does not contain one of the special “is increased by” phrases, but
is instead a standard “A is B” sentence. That sentence, therefore, does give rise to an
equation, as shown above.

senform1

Allowing Flexible Phrasing

stereotyped;

Allowing Flexible Phrasing 297

Robert has a certain number of jelly beans. This number is twice the
number of jelly beans Linda has.

The number of jelly beans Robert has is twice the number of jelly beans
Linda has.

if match [^one !verb1:verb a certain number of #stuff1 !:dlm] :sent
[push "ref opform (se [the number of] :stuff1 :one :verb1)
op []]

Perhaps the most interesting thing to notice about this category of word problem
is how narrowly defined Student’s criterion for recognizing the category is. Student
gets away with it because algebra word problems are highly there are just a
few categories, with traditional, standard wordings. In principle there could be a word
problem starting

These two sentences are together equivalent to

But Student would not recognize the situation because the first sentence doesn’t talk
about “is increased by.” We could teach Student to understand a word problem in this
form by adding the instruction

along with the other known sentence forms in . (Compare this to the pattern
matching instruction shown earlier for a similar sentence but with an explicitly specified
number.)

Taking advantage of the stereotyped nature of word problems is an example of how
the microworld strategy helped make the early AI programs possible. If word problems
were expressed with all the flexibility of language in general, Student would need many
more sentence patterns than it actually has. (How many different ways can you think of
to express the same idea about Robert and Linda? How many of those ways can Student
handle?)

In the examples we’ve seen so far, Student has relied on the repetition of identical or
near-identical phrases such as “the marked price” or “the number of advertisements
he runs.” (The requirement is not quite strictly identical phrases because articles are
removed from the noun phrases to make variable names.) In real writing, though, such
phrases are often abbreviated when they appear for a second time. Student will translate
such a problem into a system of equations that can’t be solved, because what should be
one variable is instead a different variable in each equation. But Student can recognize

student :sally

student2 vartest

298 Chapter 6 Artificial Intelligence

this situation and apply heuristic rules to guess that two similar variable names are meant,
in fact, to represent the same variable. (Some early writers on AI considered the use of
heuristic methods one of the defining characteristics of the field. Computer scientists
outside of AI were more likely to insist on fully reliable algorithms. This distinction still
has some truth to it, but it isn’t emphasized so much as a critical issue these days.) Student
doesn’t try to equate different variables until it has first tried to solve the equations as
they are originally generated. If the first attempt at solution fails, Student has recourse to
less certain techniques (calls).

?

The problem to be solved is

The sum of Sally’s share of some money and Frank’s share is $4.50.
Sally’s share is twice Frank’s. Find Frank’s and Sally’s share.

With mandatory substitutions the problem is

sum Sally s share numof some money and Frank s share is 4.50 dollars .
Sally s share is 2 times Frank s . Find Frank s and Sally s share .

The simple sentences are

Sum Sally s share numof some money and Frank s share is 4.50 dollars .

Sally s share is 2 times Frank s .

Find Frank s and Sally s share .

The equations to be solved are

Equal [sum [Sally s share of some money] [Frank s share]]
[product 4.50 [dollars]]

Equal [Sally s share] [product 2 [Frank s]]

The equations were insufficient to find a solution.

Assuming that
[Frank s] is equal to [Frank s share]

Assuming that
[Sally s share] is equal to [Sally s share of some money]

Frank s is 1.5 dollars

student :guns

variable1 variable2

Allowing Flexible Phrasing 299

[dollars]

[the
number of ice cream cones the children eat]

[the number of ice cream cones they eat]

Sally s share is 3 dollars

The problem is solved.

[equal]

?

The problem to be solved is

The number of soldiers the Russians have is one half of the number of
guns they have. They have 7000 guns. How many soldiers do they have?

With mandatory substitutions the problem is

The number numof soldiers the Russians have is 0.5 numof the number numof
guns they have . They have 7000 guns . howm soldiers do they have ?

The simple sentences are

The number numof soldiers the Russians have is 0.5 numof the number numof
guns they have .

They have 7000 guns .

In this problem Student has found two pairs of similar variable names. When it finds
such a pair, Student adds an equation of the form

to the previous set of equations. In both of the pairs in this example, the variable that
appears later in the problem statement is entirely contained within the one that appears
earlier.

Another point of interest in this example is that the variable is included
in the list of units that may be part of the answer. The word problem does not explicitly ask
“How many dollars is Sally’s share,” but because one of the sentences sets an expression
equal to “4.50 dollars” Student takes that as implicit permission to express the answer in
dollars.

The only other condition under which Student will consider two variables equal is
if their names are identical except that some phrase in the one that appears earlier is
replaced with a pronoun in the one that appears later. That is, a variable like

will be considered equal to a
later variable . Here is a problem in
which this rule is applied:

geteqns

student :jet

Using Background Knowledge

background

300 Chapter 6 Artificial Intelligence

In some word problems, not all of the necessary information is contained within the
problem statement itself. The problem requires the student to supply some piece of
general knowledge about the world in order to determine the appropriate equations. This
knowledge may be about unit conversions (one foot is 12 inches) or about relationships
among physical quantities (distance equals speed times time). Student “knows” some of
this information and can apply it () if the equations determined by
the problem statement are insufficient.

Howm soldiers do they have ?

The equations to be solved are

Equal [number of soldiers Russians have]
[product 0.5 [number of guns they have]]

Equal [number of guns they have] 7000

The equations were insufficient to find a solution.

Assuming that
[number of soldiers they have] is equal to
[number of soldiers Russians have]

The number of soldiers they have is 3500

The problem is solved.

?

The problem to be solved is

The distance from New York to Los Angeles is 3000 miles. If the average
speed of a jet plane is 600 miles per hour, find the time it takes to
travel from New York to Los Angeles by jet.

With mandatory substitutions the problem is

The distance from New York to Los Angeles is 3000 miles . If the average
speed numof a jet plane is 600 miles per hour , find the time it takes to
travel from New York to Los Angeles by jet .

The simple sentences are

number of

1 foot 2 feet

Using Background Knowledge 301

Student’s library of known relationships is indexed according to the first word of the
name of each variable involved in the relationship. (If a variable starts with the words

it is indexed under the following word.) The relationships, in the form of
equations, are stored in the property lists of these index words.

Property lists are also used to keep track of irregular plurals and the corresponding
singulars. Student tries to keep all units in plural form internally, so that if a problem
refers to both and the same variable name will be used for both. (That
is, the first of these will be translated into

The distance from New York to Los Angeles is 3000 miles .

The average speed numof a jet plane is 600 miles per hour .

Find the time it takes to travel from New York to Los Angeles by jet .

The equations to be solved are

Equal [distance from New York to Los Angeles] [product 3000 [miles]]

Equal [average speed of jet plane]
[quotient [product 600 [miles]] [product 1 [hours]]]

The equations were insufficient to find a solution.

Using the following known relationships

Equal [distance] [product [speed] [time]]

Equal [distance] [product [gas consumption]
[number of gallons of gas used]]

Assuming that
[speed] is equal to [average speed of jet plane]

Assuming that
[time] is equal to [time it takes to travel

from New York to Los Angeles by jet]

Assuming that
[distance] is equal to [distance from New York to Los Angeles]

The time it takes to travel from New York
to Los Angeles by jet is 5 hours

The problem is solved.

student :span

302 Chapter 6 Artificial Intelligence

1

remember

remember
pprop

remember

idioms

[distance]
[distance from New York

to Los Angeles]

[product 1 [feet]]

Feet is the plural of foot

Distance equals speed times time

?

The problem to be solved is

If 1 span is 9 inches, and 1 fathom is 6 feet,
how many spans is 1 fathom?

With mandatory substitutions the problem is

in Student’s internal representation. Then the opposite translation is needed if the
product of and some unit appears in an answer to be printed.

The original Student also used property lists to remember the parts of speech of
words and the precedence of operators, but because of differences in the syntax of
the Meteor pattern matcher and my Logo pattern matcher I’ve found it easier to use
predicate operations for that purpose.

The original Student system included a separately invoked procedure
that allowed all these kinds of global information to be entered in the form of English
sentences. You’d say

or

and would use patterns much like those used in understanding word problems
to translate these sentences into instructions. Since Lisp programs, like Logo pro-
grams, can themselves be manipulated as lists, could even accept information
of a kind that’s stored in the Student program itself, such as the wording transformations
in , and modify the program to reflect this information. I haven’t bothered to
implement that part of the Student system because it takes up extra memory and doesn’t
exhibit any new techniques.

As the above example shows, it’s important that Student’s search for relevant known
relationships comes before the attempt to equate variables with similar names. The
general relationship that uses a variable named simply doesn’t help unless
Student can identify it as relevant to the variable named

in the specific problem under consideration.

Here is another example in which known relationships are used:

spans

inches feet fathoms

Using Background Knowledge 303

Besides the use of known relationships, this example illustrates two other features of
Student. One is the use of an explicitly requested unit in the answer. Since the problem
asks

Student knows that the answer must be expressed in . Had there been no explicit
request for a particular unit, all the units that appear in phrases along with a number
would be eligible to appear in the answer: , , and . Student might
then blithely inform us that

If 1 span is 9 inches , and 1 fathom is 6 feet , howm spans is 1 fathom ?

The simple sentences are

1 span is 9 inches .

1 fathom is 6 feet .

Howm spans is 1 fathom ?

The equations to be solved are

Equal [product 1 [spans]] [product 9 [inches]]

Equal [product 1 [fathoms]] [product 6 [feet]]

Equal g2 [product 1 [fathoms]]

The equations were insufficient to find a solution.

Using the following known relationships

Equal [product 1 [yards]] [product 3 [feet]]

Equal [product 1 [feet]] [product 12 [inches]]

1 fathom is 8 spans

The problem is solved.

How many spans is 1 fathom?

1 fathom is 1 fathom

The problem is solved.

Optional Substitutions

unit,

always

optional

304 Chapter 6 Artificial Intelligence

[product 1 [fathoms]]

[equal g2 [product 1 [fathoms]]

[equal g3 [marked price]]

[Fathoms]

g2

2 times twice perless percent
less than

tryidiom

the perimeter of the rectangle

twice the sum of the length and width of the
rectangle

The other new feature demonstrated by this example is the use of a generated symbol
to represent the desired answer. In the statement of this problem, there is no explicit
variable representing the unknown. is a not a variable for which a value
could be found. The problem asks for the value of the expression

in terms of spans. Student generates a variable name () to represent the unknown
and produces an equation

to add to the list of equations. A generated symbol will be needed whenever the “Find”
or “What is” sentence asks for an expression rather than a simple variable name. For
example, an age problem that asks “What is the sum of their ages” would require the
use of a generated symbol. (The original Student used a generated symbol for
the unknowns, even if there was already a single variable in the problem representing an
unknown. It therefore had equations like

in its list, declaring one variable equal to another. I chose to check for this case and
avoid the use of a generated symbol because the time spent in the actual solution of the
equations increases quadratically with the number of equations.)

We have seen many cases in which Student replaces a phrase in the statement of a problem
with a different word or phrase that fits better with the later stages of processing, like
the substitution of for or a special keyword like for

. Student also has a few cases of substitutions that may or may not be
made ().

There are two ways in which optional substitutions can happen. One is exemplified by
the phrase . Student first attempts the problem
without any special processing of this phrase. If a solution is not found, Student
then replaces the phrase with

and processes the resulting new problem from the beginning. Unlike
the use of known relationships or similarity of variable names, which Student handles
by adding to the already-determined equations, this optional substitution requires the

student :sumtwo

Optional Substitutions 305

twice
2 times

two
numbers

one of
the numbers and the other number one number and the other number

entire translation process to begin again. For example, the word that begins the
replacement phrase will be further translated to .

The second category of optional substitution is triggered by the phrase
. This phrase must always be translated to something, because it indicates

that two different variables are needed. But the precise translation depends on the
wording of the rest of the problem. Student tries two alternative translations:

and .
Here is an example in which the necessary translation is the one Student tries second:

?

The problem to be solved is

The sum of two numbers is 96, and one number is 16 larger than the other
number. Find the two numbers.

The problem with an idiomatic substitution is

The sum of one of the numbers and the other number is 96 , and one
number is16 larger than the other number . Find the one of the numbers
and the other number .

With mandatory substitutions the problem is

sum one numof the numbers and the other number is 96 , and one number
is 16 plus the other number . Find the one numof the numbers and the
other number .

The simple sentences are

Sum one numof the numbers and the other number is 96 .

One number is 16 plus the other number .

Find the one numof the numbers and the other number .

The equations to be solved are

Equal [sum [one of numbers] [other number]] 96

Equal [one number] [sum 16 [other number]]

The equations were insufficient to find a solution.

idiom

306 Chapter 6 Artificial Intelligence

There is no essential reason why Student uses one mechanism rather than another
to deal with a particular problematic situation. The difficulties about perimeters and
about the phrase “two numbers” might have been solved using mechanisms other than
this optional substitution one. For example, the equation

might have been added to the library of known relationships. The difficulty about
alternate phrasings for “two numbers” could be solved by adding

to the list of idiomatic substitutions in .

Not all the mechanisms are equivalent, however. The “two numbers” problem
couldn’t be solved by adding equations to the library of known relationships, because

The problem with an idiomatic substitution is

The sum of one number and the other number is 96 , and one number is 16
larger than the other number . Find the one number and the other number .

With mandatory substitutions the problem is

sum one number and the other number is 96 , and one number is 16 plus the
other number . Find the one number and the other number .

The simple sentences are

Sum one number and the other number is 96 .

One number is 16 plus the other number .

Find the one number and the other number .

The equations to be solved are

Equal [sum [one number] [other number]] 96

Equal [one number] [sum 16 [other number]]

The one number is 56

The other number is 40

The problem is solved.

[equal [perimeter] [product 2 [sum [length] [width]]]]

[[one of the !word:pluralp] ["one singular :word]]

student :ship

If All Else Fails

If All Else Fails 307

something something else

sum
sum the sum of

and tst.sum

student2

that phrase appears as part of a larger phrase like “the sum of two numbers,” and
Student’s understanding of the word doesn’t allow it to be part of a variable name.
The word only makes sense to Student in the context of a phrase like

. (See procedure .)

Sometimes Student fails to solve a problem because the problem is beyond either its
linguistic capability or its algebraic capability. For example, Student doesn’t know how to
solve quadratic equations. But sometimes a problem that Student could solve in principle
stumps it because it happens to lack a particular piece of common knowledge. When a
situation like that arises, Student is capable of asking the user for help ().

?

The problem to be solved is

The gross weight of a ship is 20000 tons. If its net weight is 15000
tons, what is the weight of the ships cargo?

With mandatory substitutions the problem is

The gross weight numof a ship is 20000 tons . If its net weight is 15000
tons , what is the weight numof the ships cargo ?

The simple sentences are

The gross weight numof a ship is 20000 tons .

Its net weight is 15000 tons .

What is the weight numof the ships cargo ?

The equations to be solved are

Equal [gross weight of ship] [product 20000 [tons]]

Equal [its net weight] [product 15000 [tons]]

The equations were insufficient to find a solution.

Do you know any more relationships among these variables?

Weight of ships cargo

Limitations of Pattern Matching

308 Chapter 6 Artificial Intelligence

The weight of a ships cargo is the gross weight minus the net weight

and

and

suppose
suppose you the russians

suppose
how many

jelly beans
Tom give each

Its net weight

Tons

Gross weight of ship

Assuming that
[net weight] is equal to [its net weight]

Assuming that
[gross weight] is equal to [gross weight of ship]

The weight of the ships cargo is 5000 tons

The problem is solved.

Suppose you have 14 jelly beans. You give 2 each to Tom, Dick, and
Harry. How many do you have left?

You give 2 each to Tom , Dick .

Harry .

Student relies on certain stereotyped forms of sentences in the problems it solves. It’s
easy to make up problems that will completely bewilder it:

The first mistake Student makes is that it thinks the word following a comma
separates two clauses; it generates simple sentences

This is quite a fundamental problem; Student’s understanding of the difference between
a phrase and a clause is extremely primitive and prone to error. Adding another pattern
won’t solve this one; the trouble is that Student pays no attention to the words in between
the key words like .

There are several other difficulties with this problem, some worse than others.
Student doesn’t recognize the word as having a special function in the sentence,
so it makes up a noun phrase just like . This could be
fixed with an idiomatic substitution that just ignored . Another relatively small
problem is that the sentence starting doesn’t say how many of what; Student
needs a way to understand that the relevant noun phrase is and not, for
example, . The words (representing subtraction) and (representing

1 4

START

2 3

what is

are
any any

dlm

[^ what !:in [is are] #one !:dlm]

is

dlm

any

Limitations of Pattern Matching 309

percent less
the number of

jelly beans you have

@
student

dlm

counting a set and then multiplying) have special mathematical meanings comparable
to . A much more subtle problem in knowledge representation is that
in this problem there are two different quantities that could be called

: the number you have at the beginning of the problem and the
number you have at the end. Student has a limited understanding of this passage-of-time
difficulty when it’s doing an age problem, but not in general.

How many more difficulties can you find in this problem? For how many of them
can you invent improvements to Student to get around them?

Some difficulties seem to require a “more of the same” strategy: adding some new
patterns to Student that are similar to the ones already there. Other difficulties seem
to require a more fundamental redesign. Can that redesign be done using a pattern
matcher as the central tool, or are more powerful tools needed? How powerful pattern
matching, anyway?

Answering questions like these is the job of automata theory. From that point of
view, the answer is that it depends exactly what you mean by “pattern matching.” The
pattern matcher used in Student is equivalent to a finite-state machine. The important
thing to note about the patterns used in Student is that they only apply predicates to one
word at a time, not to groups of words. In other words, they don’t use the quantifier.
Here is a typical pattern:

For the purposes of this discussion, you can ignore the fact that the pattern matcher can
set variables to remember which words matched each part of the pattern. In comparing
a pattern matcher to a finite-state machine, the question we’re asking is what categories
of strings can the pattern matcher accept. This particular pattern is equivalent to the
following machine:

The arrow that I’ve labeled is actually several arrows connecting the same states,
one for each symbol that the predicate accepts, i.e., period, question mark, and
semicolon. Similarly, the arrows labeled are followed for any symbol at all. This
machine is nondeterministic, but you’ll recall that that doesn’t matter; we can turn it into
a deterministic one if necessary.

@

@

Context-Free Languages

embedding

context-free

isn’t

310 Chapter 6 Artificial Intelligence

[I see !:in [the a an] ?:numberp &:adjective !:noun #:adverb]

this := that

abc
aabbcc
aaabbbccc
aaaabbbbcccc

To be sure you understand the equivalence of patterns and finite-state machines, see
if you can draw a machine equivalent to this pattern:

This pattern uses all the quantifiers that test words one at a time.

If these patterns are equivalent to finite-state machines, you’d expect them to have
trouble recognizing sentences that involve of clauses within clauses, since these
pose the same problem as keeping track of balancing of parentheses. For example, a
sentence like “The book that the boy whom I saw yesterday was reading is interesting”
would strain the capabilities of a finite-state machine. (As in the case of parentheses,
we could design a FSM that could handle such sentences up to some fixed depth of
embedding, but not one that could handle arbitrarily deep embedding.)

If we allow the use of the quantifier in patterns, and if the predicates used to test
substrings of the sentences are true functions without side effects, then the pattern
matcher is equivalent to an RTN or a production rule grammar. What makes an RTN
different from a finite-state machine is that the former can include arrows that match
several symbols against another (or the same) RTN. Equivalently, the quantifier
matches several symbols against another (or the same) pattern.

A language that can be represented by an RTN is called a language. The
reason for the name is that in such a language a given string consistently matches or
doesn’t match a given predicate regardless of the rest of the sentence. That’s the point
of what I said just above about side effects; the output from a test predicate can’t depend
on anything other than its input. Pascal is a context-free language because

is always an assignment statement regardless of what other statements might be in the
program with it.

What a context-free language? The classic example in automata theory is the
language consisting of the strings

a b
c

a b

var

Augmented Transition Networks

assignment : identifier := expression

any

all

Augmented Transition Networks 311

and so on, with the requirement that the number of s be equal to the number of s
and also equal to the number of s. That language can’t be represented as RTNs or
production rules. (Try it. Don’t confuse it with the language that accepts any number
of s followed by any number of s and so on; even a finite-state machine can represent
that one. The equal number requirement is important.)

The classic formal system that can represent language for which there are precise
rules is the Turing machine. Its advantage over the RTN is precisely that it can “jump
around” in its memory, looking at one part while making decisions about another part.

There is a sharp theoretical boundary between context-free and context-sensitive
languages, but in practice the boundary is sometimes fuzzy. Consider again the case
of Pascal and that assignment statement. I said that it’s recognizably an assignment
statement because it matches a production rule like

(along with a bunch of other rules that determine what qualifies as an expression).
But that production rule doesn’t really express the requirements for a legal Pascal
assignment statement. For example, the identifier and the expression must be of the
same type. The actual Pascal compiler (any Pascal compiler, not just mine) includes
instructions that represent the formal grammar plus extra instructions that represent the
additional requirements.

The type agreement rule is an example of context sensitivity. The types of the
relevant identifiers were determined in declarations earlier in the program; those
declarations are part of what determines whether the given string of symbols is a legal
assignment.

One could create a clean formal description of Pascal, type agreement rules and all, by
designing a Turing machine to accept Pascal programs. However, Turing machines aren’t
easy to work with for any practical problem. It’s much easier to set up a context-free
grammar for Pascal and then throw in a few side effects to handle the context-sensitive
aspects of the language.

Much the same is true of English. It’s possible to set up an RTN (or a production
rule grammar) for noun phrases, for example, and another one for verb phrases. It’s
tempting then to set up an RTN for a sentence like this:

1 3

START

2

se nte nce_

nounphrase verbphrase

3 n

number
number

agreement run runs

augmented transition network

conditions
actions

Language as a Cognitive Process, Volume 1: Syntax

O n O

312 Chapter 6 Artificial Intelligence

This machine captures some, but not all, of the rules of English. It’s true that a sentence
requires a noun phrase (the subject) and a verb phrase (the predicate). But there
are rules for person and number (I but he) analogous to the type
agreement rules of Pascal.

Some artificial intelligence researchers, understanding all this, parse English sen-
tences using a formal description called an (ATN). An ATN is
just like an RTN except that each transition arrow can have associated with it not only the
name of a symbol or another RTN but also some that must be met in order to
follow the arrow and some that the program should take if the arrow is followed.
For example, we could turn the RTN just above into an ATN by adding an action to
the first arrow saying “store the number (singular or plural) of the noun phrase in the
variable ” and adding a condition to the second arrow saying “the number of the
verb phrase must be equal to the variable .”

Subject-predicate agreement is not the only rule in English grammar best expressed
as a side effect in a transition network. On the next page is an ATN for noun phrases
taken from by Terry Winograd (page 598).
I’m not going to attempt to explain the notation or the detailed rules here, but just to
give one example, the condition labeled “h16p” says that the transition for apostrophe-s
can be followed if the head of the phrase is an ordinary noun (“the book’s”) but not if
it’s a pronoun (“you’s”).

The ATN is equivalent in power to a Turing machine; there is no known mechanism
that is more flexible in carrying out algorithms. The flexibility has a cost, though. The
time required to parse a string with an ATN is not bounded by a polynomial function.
(Remember, the time for an RTN is ().) It can easily be exponential, (2). One
reason is that a context-sensitive procedure can’t be subject to memoization. If two
invocations of the same procedure with the same inputs can give different results because
of side effects, it does no good to remember what result we got the last time. Turning an
ATN into a practical program is often possible, but not a trivial task.

In thinking about ATNs we’ve brought together most of the topics in this book:
formal systems, algorithms, language parsing, and artificial intelligence. Perhaps that’s a
good place to stop.

Augmented Transition Networks 313

Program Listing

314 Chapter 6 Artificial Intelligence

to student :prob [:orgprob :prob]
say [The problem to be solved is] :prob
make "prob map.se [depunct ?] :prob
student1 :prob [[[the perimeter of ! rectangle]

[twice the sum of the length and width of the rectangle]]
[[two numbers] [one of the numbers and the other number]]
[[two numbers] [one number and the other number]]]

end

to student1 :prob :idioms
local [simsen shelf aunits units wanted ans var lasteqn

ref eqt1 beg end idiom reply]
make "prob idioms :prob
if match [^ two numbers #] :prob ~

[make "idiom find [match (sentence "^beg first ? "#end) :orgprob] :idioms ~
tryidiom stop]

while [match [^beg the the #end] :prob] [make "prob (sentence :beg "the :end)]
say [With mandatory substitutions the problem is] :prob
ifelse match [# @:in [[as old as] [age] [years old]] #] :prob ~

[ageprob] [make "simsen bracket :prob]
lsay [The simple sentences are] :simsen
foreach [aunits wanted ans var lasteqn ref units] [make ? []]
make "shelf filter [not emptyp ?] map.se [senform ?] :simsen
lsay [The equations to be solved are] :shelf make "units remdup :units
if trysolve :shelf :wanted :units :aunits [print [The problem is solved.] stop]
make "eqt1 remdup geteqns :var
if not emptyp :eqt1 [lsay [Using the following known relationships] :eqt1]
student2 :eqt1
end

to student2 :eqt1
make "var remdup sentence (map.se [varterms ?] :eqt1) :var
make "eqt1 sentence :eqt1 vartest :var
if not emptyp :eqt1 ~

[if trysolve (sentence :shelf :eqt1) :wanted :units :aunits
[print [The problem is solved.] stop]]

make "idiom find [match (sentence "^beg first ? "#end) :orgprob] :idioms
if not emptyp :idiom [tryidiom stop]
lsay [Do you know any more relationships among these variables?] :var
make "reply map.se [depunct ?] readlist
if equalp :reply [yes] [print [Tell me.] make "reply readlist]
if equalp :reply [no] [print [] print [I can’t solve this problem.] stop]
if dlm last :reply [make "reply butlast :reply]
if not match [^beg is #end] :reply [print [I don’t understand that.] stop]
make "shelf sentence :shelf :eqt1
student2 (list (list "equal opform :beg opform :end))
end

Program Listing 315

;; Mandatory substitutions

to depunct :word
if emptyp :word [output []]
if equalp first :word "$ [output sentence "$ depunct butfirst :word]
if equalp last :word "% [output sentence depunct butlast :word "percent]
if memberp last :word [. ? |;| ,] ~

[output sentence depunct butlast :word last :word]
if emptyp butfirst :word [output :word]
if equalp last2 :word "’s [output sentence depunct butlast butlast :word "s]
output :word
end

to idioms :sent
local "number
output changes :sent ~

[[[the sum of] ["sum]] [[square of] ["square]] [[of] ["numof]]
[[how old] ["what]] [[is equal to] ["is]]
[[years younger than] [[less than]]] [[years older than] ["plus]]
[[percent less than] ["perless]] [[less than] ["lessthan]]
[[these] ["the]] [[more than] ["plus]]
[[first two numbers] [[the first number and the second number]]]
[[three numbers]
[[the first number and the second number and the third number]]]

[[one half] [0.5]] [[twice] [[2 times]]]
[[$!number] [sentence :number "dollars]] [[consecutive to] [[1 plus]]]
[[larger than] ["plus]] [[per cent] ["percent]] [[how many] ["howm]]
[[is multiplied by] ["ismulby]] [[is divided by] ["isdivby]]
[[multiplied by] ["times]] [[divided by] ["divby]]]

end

to last2 :word
output word (last butlast :word) (last :word)
end

to changes :sent :list
localmake "keywords map.se [findkey first ?] :list
output changes1 :sent :list :keywords
end

to findkey :pattern
if equalp first :pattern "!:in [output first butfirst :pattern]
if equalp first :pattern "?:in ~

[output sentence (item 2 :pattern) (item 3 :pattern)]
output first :pattern
end

316 Chapter 6 Artificial Intelligence

to changes1 :sent :list :keywords
if emptyp :sent [output []]
if memberp first :sent :keywords [output changes2 :sent :list :keywords]
output fput first :sent changes1 butfirst :sent :list :keywords
end

to changes2 :sent :list :keywords
changes3 :list :list
output fput first :sent changes1 butfirst :sent :list :keywords
end

to changes3 :biglist :nowlist
if emptyp :nowlist [stop]
if changeone first :nowlist [changes3 :biglist :biglist stop]
changes3 :biglist butfirst :nowlist
end

to changeone :change
local "end
if not match (sentence first :change [#end]) :sent [output "false]
make "sent run (sentence "sentence last :change ":end)
output "true
end

;; Division into simple sentences

to bracket :prob
output bkt1 finddelim :prob
end

to finddelim :sent
output finddelim1 :sent [] []
end

to finddelim1 :in :out :simples
if emptyp :in ~

[ifelse emptyp :out [output :simples]
[output lput (sentence :out ".) :simples]]

if dlm first :in ~
[output finddelim1 (nocap butfirst :in) []

(lput (sentence :out first :in) :simples)]
output finddelim1 (butfirst :in) (sentence :out first :in) :simples
end

to nocap :words
if emptyp :words [output []]
if personp first :words [output :words]
output sentence (lowercase first :words) butfirst :words
end

Program Listing 317

to bkt1 :problist
local [first word rest]
if emptyp :problist [output []]
if not memberp ", first :problist ~

[output fput first :problist bkt1 butfirst :problist]
if match [if ^first , !word:qword #rest] first :problist ~

[output bkt1 fput (sentence :first ".)
fput (sentence :word :rest) butfirst :problist]

if match [^first , and #rest] first :problist ~
[output fput (sentence :first ".) (bkt1 fput :rest butfirst :problist)]

output fput first :problist bkt1 butfirst :problist
end

;; Age problems

to ageprob
local [beg end sym who num subj ages]
while [match [^beg as old as #end] :prob] [make "prob sentence :beg :end]
while [match [^beg years old #end] :prob] [make "prob sentence :beg :end]
while [match [^beg will be when #end] :prob] ~

[make "sym gensym
make "prob (sentence :beg "in :sym [years . in] :sym "years :end)]

while [match [^beg was when #end] :prob] ~
[make "sym gensym
make "prob (sentence :beg :sym [years ago .] :sym [years ago] :end)]

while [match [^beg !who:personp will be in !num years #end] :prob] ~
[make "prob (sentence :beg :who [s age in] :num "years #end)]

while [match [^beg was #end] :prob] [make "prob (sentence :beg "is :end)]
while [match [^beg will be #end] :prob] [make "prob (sentence :beg "is :end)]
while [match [^beg !who:personp is now #end] :prob] ~

[make "prob (sentence :beg :who [s age now] :end)]
while [match [^beg !num years from now #end] :prob] ~

[make "prob (sentence :beg "in :num "years :end)]
make "prob ageify :prob
ifelse match [^ !who:personp ^end s age #] :prob ~

[make "subj sentence :who :end] [make "subj "someone]
make "prob agepron :prob
make "end :prob
make "ages []
while [match [^ !who:personp ^beg age #end] :end] ~

[push "ages (sentence "and :who :beg "age)]
make "ages butfirst reduce "sentence remdup :ages
while [match [^beg their ages #end] :prob] [make "prob (sentence :beg :ages :end)]
make "simsen map [agesen ?] bracket :prob
end

318 Chapter 6 Artificial Intelligence

to ageify :sent
if emptyp :sent [output []]
if not personp first :sent [output fput first :sent ageify butfirst :sent]
catch "error [if equalp first butfirst :sent "s

[output fput first :sent ageify butfirst :sent]]
output (sentence first :sent [s age] ageify butfirst :sent)
end

to agepron :sent
if emptyp :sent [output []]
if not pronoun first :sent [output fput first :sent agepron butfirst :sent]
if posspro first :sent [output (sentence :subj "s agepron butfirst :sent)]
output (sentence :subj [s age] agepron butfirst :sent)
end

to agesen :sent
local [when rest num]
make "when []
if match [in !num years #rest] :sent ~

[make "when sentence "pluss :num make "sent :rest]
if match [!num years ago #rest] :sent ~

[make "when sentence "minuss :num make "sent :rest]
output agewhen :sent
end

to agewhen :sent
if emptyp :sent [output []]
if not equalp first :sent "age [output fput first :sent agewhen butfirst :sent]
if match [in !num years #rest] butfirst :sent ~

[output (sentence [age pluss] :num agewhen :rest)]
if match [!num years ago #rest] butfirst :sent ~

[output (sentence [age minuss] :num agewhen :rest)]
if equalp "now first butfirst :sent ~

[output sentence "age agewhen butfirst butfirst :sent]
output (sentence "age :when agewhen butfirst :sent)
end

;; Translation from sentences into equations

to senform :sent
make "lasteqn senform1 :sent
output :lasteqn
end

Program Listing 319

to senform1 :sent
local [one two verb1 verb2 stuff1 stuff2 factor]
if emptyp :sent [output []]
if match [^ what are ^one and ^two !:dlm] :sent ~

[output fput (qset :one) (senform (sentence [what are] :two "?))]
if match [^ what !:in [is are] #one !:dlm] :sent ~

[output (list qset :one)]
if match [^ howm !one is #two !:dlm] :sent ~

[push "aunits (list :one) output (list qset :two)]
if match [^ howm ^one do ^two have !:dlm] :sent ~

[output (list qset (sentence [the number of] :one :two "have))]
if match [^ howm ^one does ^two have !:dlm] :sent ~

[output (list qset (sentence [the number of] :one :two "has))]
if match [^ find ^one and #two] :sent ~

[output fput (qset :one) (senform sentence "find :two)]
if match [^ find #one !:dlm] :sent [output (list qset :one)]
make "sent filter [not article ?] :sent
if match [^one ismulby #two] :sent ~

[push "ref (list "product opform :one opform :two) output []]
if match [^one isdivby #two] :sent ~

[push "ref (list "quotient opform :one opform :two) output []]
if match [^one is increased by #two] :sent ~

[push "ref (list "sum opform :one opform :two) output []]
if match [^one is #two] :sent ~

[output (list (list "equal opform :one opform :two))]
if match [^one !verb1:verb ^factor as many ^stuff1 as

^two !verb2:verb ^stuff2 !:dlm] ~
:sent ~

[if emptyp :stuff2 [make "stuff2 :stuff1]
output (list (list "equal ~

opform (sentence [the number of] :stuff1 :one :verb1) ~
opform (sentence :factor [the number of]

:stuff2 :two :verb2)))]
if match [^one !verb1:verb !factor:numberp #stuff1 !:dlm] :sent ~

[output (list (list "equal ~
opform (sentence [the number of] :stuff1 :one :verb1) ~
opform (list :factor)))]

say [This sentence form is not recognized:] :sent
throw "error
end

to qset :sent
localmake "opform opform filter [not article ?] :sent
if not operatorp first :opform ~

[queue "wanted :opform queue "ans list :opform oprem :sent output []]
localmake "gensym gensym
queue "wanted :gensym
queue "ans list :gensym oprem :sent
output (list "equal :gensym opform (filter [not article ?] :sent))
end

320 Chapter 6 Artificial Intelligence

to oprem :sent
output map [ifelse equalp ? "numof ["of] [?]] :sent
end

to opform :expr
local [left right op]
if match [^left !op:op2 #right] :expr [output optest :op :left :right]
if match [^left !op:op1 #right] :expr [output optest :op :left :right]
if match [^left !op:op0 #right] :expr [output optest :op :left :right]
if match [#left !:dlm] :expr [make "expr :left]
output nmtest filter [not article ?] :expr
end

to optest :op :left :right
output run (list (word "tst. :op) :left :right)
end

to tst.numof :left :right
if numberp last :left [output (list "product opform :left opform :right)]
output opform (sentence :left "of :right)
end

to tst.divby :left :right
output (list "quotient opform :left opform :right)
end

to tst.tothepower :left :right
output (list "expt opform :left opform :right)
end

to expt :num :pow
if :pow < 1 [output 1]
output :num * expt :num :pow - 1
end

to tst.per :left :right
output (list "quotient ~

opform :left ~
opform (ifelse numberp first :right [:right] [fput 1 :right]))

end

to tst.lessthan :left :right
output opdiff opform :right opform :left
end

to opdiff :left :right
output (list "sum :left (list "minus :right))
end

Program Listing 321

to tst.minus :left :right
if emptyp :left [output list "minus opform :right]
output opdiff opform :left opform :right
end

to tst.minuss :left :right
output tst.minus :left :right
end

to tst.sum :left :right
local [one two three]
if match [^one and ^two and #three] :right ~

[output (list "sum opform :one opform (sentence "sum :two "and :three))]
if match [^one and #two] :right ~

[output (list "sum opform :one opform :two)]
say [sum used wrong:] :right throw "error
end

to tst.squared :left :right
output list "square opform :left
end

to tst.difference :left :right
local [one two]
if match [between ^one and #two] :right [output opdiff opform :one opform :two]
say [Incorrect use of difference:] :right throw "error
end

to tst.plus :left :right
output (list "sum opform :left opform :right)
end

to tst.pluss :left :right
output tst.plus :left :right
end

to square :x
output :x * :x
end

to tst.square :left :right
output list "square opform :right
end

to tst.percent :left :right
if not numberp last :left ~

[say [Incorrect use of percent:] :left throw "error]
output opform (sentence butlast :left ((last :left) / 100) :right)
end

322 Chapter 6 Artificial Intelligence

to tst.perless :left :right
if not numberp last :left ~

[say [Incorrect use of percent:] :left throw "error]
output (list "product ~

(opform sentence butlast :left ((100 - (last :left)) / 100)) ~
opform :right)

end

to tst.times :left :right
if emptyp :left [say [Incorrect use of times:] :right throw "error]
output (list "product opform :left opform :right)
end

to nmtest :expr
if match [& !:numberp #] :expr [say [argument error:] :expr throw "error]
if and (equalp first :expr 1) (1 < count :expr) ~

[make "expr (sentence 1 plural (first butfirst :expr)
(butfirst butfirst :expr))]

if and (numberp first :expr) (1 < count :expr) ~
[push "units (list first butfirst :expr) ~
output (list "product (first :expr) (opform butfirst :expr))]

if numberp first :expr [output first :expr]
if memberp "this :expr [output this :expr]
if not memberp :expr :var [push "var :expr]
output :expr
end

to this :expr
if not emptyp :ref [output pop "ref]
if not emptyp :lasteqn [output first butfirst last :lasteqn]
if equalp first :expr "this [make "expr butfirst :expr]
push "var :expr
output :expr
end

;; Solving the equations

to trysolve :shelf :wanted :units :aunits
local "solution
make "solution solve :wanted :shelf (ifelse emptyp :aunits [:units] [:aunits])
output pranswers :ans :solution
end

to solve :wanted :eqt :terms
output solve.reduce solver :wanted :terms [] [] "insufficient
end

Program Listing 323

to solve.reduce :soln
if emptyp :soln [output []]
if wordp :soln [output :soln]
if emptyp butfirst :soln [output :soln]
localmake "part solve.reduce butfirst :soln
output fput (list (first first :soln) (subord last first :soln :part)) :part
end

to solver :wanted :terms :alis :failed :err
local [one result restwant]
if emptyp :wanted [output :err]
make "one solve1 (first :wanted) ~

(sentence butfirst :wanted :failed :terms) ~
:alis :eqt [] "insufficient

if wordp :one ~
[output solver (butfirst :wanted) :terms :alis

(fput first :wanted :failed) :one]
make "restwant (sentence :failed butfirst :wanted)
if emptyp :restwant [output :one]
make "result solver :restwant :terms :one [] "insufficient
if listp :result [output :result]
output solver (butfirst :wanted) :terms :alis (fput first :wanted :failed) :one
end

to solve1 :x :terms :alis :eqns :failed :err
local [thiseq vars extras xterms others result]
if emptyp :eqns [output :err]
make "thiseq subord (first :eqns) :alis
make "vars varterms :thiseq
if not memberp :x :vars ~

[output solve1 :x :terms :alis (butfirst :eqns)
(fput first :eqns :failed) :err]

make "xterms fput :x :terms
make "extras setminus :vars :xterms
make "eqt remove (first :eqns) :eqt
if not emptyp :extras ~

[make "others solver :extras :xterms :alis [] "insufficient
ifelse wordp :others

[make "eqt sentence :failed :eqns
output solve1 :x :terms :alis (butfirst :eqns)

(fput first :eqns :failed) :others]
[make "alis :others
make "thiseq subord (first :eqns) :alis]]

make "result solveq :x :thiseq
if listp :result [output lput :result :alis]
make "eqt sentence :failed :eqns
output solve1 :x :terms :alis (butfirst :eqns) (fput first :eqns :failed) :result
end

324 Chapter 6 Artificial Intelligence

to solveq :var :eqn
localmake "left first butfirst :eqn
ifelse occvar :var :left [localmake "right last :eqn] ~

[localmake "right :left make "left last :eqn]
output solveq1 :left :right "true
end

to solveq1 :left :right :bothtest
if :bothtest [if occvar :var :right [output solveqboth :left :right]]
if equalp :left :var [output list :var :right]
if wordp :left [output "unsolvable]
localmake "oper first :left
if memberp :oper [sum product minus quotient] ~

[output run (list word "solveq. :oper)]
output "unsolvable
end

to solveqboth :left :right
if not equalp first :right "sum [output solveq1 (subterm :left :right) 0 "false]
output solveq.rplus :left butfirst :right []
end

to solveq.rplus :left :right :newright
if emptyp :right [output solveq1 :left (simone "sum :newright) "false]
if occvar :var first :right ~

[output solveq.rplus (subterm :left first :right) butfirst :right :newright]
output solveq.rplus :left butfirst :right (fput first :right :newright)
end

to solveq.sum
if emptyp butfirst butfirst :left ~

[output solveq1 first butfirst :left :right "true]
output solveq.sum1 butfirst :left :right []
end

to solveq.sum1 :left :right :newleft
if emptyp :left [output solveq.sum2]
if occvar :var first :left ~

[output solveq.sum1 butfirst :left :right fput first :left :newleft]
output solveq.sum1 butfirst :left (subterm :right first :left) :newleft
end

to solveq.sum2
if emptyp butfirst :newleft [output solveq1 first :newleft :right "true]
localmake "factor factor :newleft :var
if equalp first :factor "unknown [output "unsolvable]
if equalp last :factor 0 [output "unsolvable]
output solveq1 first :factor (divterm :right last :factor) "true
end

Program Listing 325

to solveq.minus
output solveq1 (first butfirst :left) (minusin :right) "false
end

to solveq.product
output solveq.product1 :left :right
end

to solveq.product1 :left :right
if emptyp butfirst butfirst :left ~

[output solveq1 (first butfirst :left) :right "true]
if not occvar :var first butfirst :left ~

[output solveq.product1 (fput "product butfirst butfirst :left)
(divterm :right first butfirst :left)]

localmake "rest simone "product butfirst butfirst :left
if occvar :var :rest [output "unsolvable]
output solveq1 (first butfirst :left) (divterm :right :rest) "false
end

to solveq.quotient
if occvar :var first butfirst :left ~

[output solveq1 (first butfirst :left) (simtimes list :right last :left) "true]
output solveq1 (simtimes list :right last :left) (first butfirst :left) "true
end

to denom :fract :addends
make "addends simplus :addends
localmake "den last :fract
if not equalp first :addends "quotient ~

[output simdiv list (simone "sum
(remop "sum

list (distribtimes (list :addends) :den)
first butfirst :fract))

:den]
if equalp :den last :addends ~

[output simdiv (simplus list (first butfirst :fract) (first butfirst :addends))
:den]

localmake "lowterms simdiv list :den last :addends
output simdiv list (simplus (simtimes list first butfirst :fract last :lowterms)

(simtimes list first butfirst :addends
first butfirst :lowterms)) ~

(simtimes list first butfirst :lowterms last :addends)
end

to distribtimes :trms :multiplier
output simplus map [simtimes (list ? :multiplier)] :trms
end

326 Chapter 6 Artificial Intelligence

to distribx :expr
local [oper args]
if emptyp :expr [output :expr]
make "oper first :expr
if not operatorp :oper [output :expr]
make "args map [distribx ?] butfirst :expr
if reduce "and map [numberp ?] :args [output run (sentence [(] :oper :args [)])]
if equalp :oper "sum [output simplus :args]
if equalp :oper "minus [output minusin first :args]
if equalp :oper "product [output simtimes :args]
if equalp :oper "quotient [output simdiv :args]
output fput :oper :args
end

to divterm :dividend :divisor
if equalp :dividend 0 [output 0]
output simdiv list :dividend :divisor
end

to factor :exprs :var
localmake "trms map [factor1 :var ?] :exprs
if memberp "unknown :trms [output fput "unknown :exprs]
output list :var simplus :trms
end

to factor1 :var :expr
localmake "negvar minusin :var
if equalp :var :expr [output 1]
if equalp :negvar :expr [output -1]
if emptyp :expr [output "unknown]
if equalp first :expr "product [output factor2 butfirst :expr]
if not equalp first :expr "quotient [output "unknown]
localmake "dividend first butfirst :expr
if equalp :var :dividend [output (list "quotient 1 last :expr)]
if not equalp first :dividend "product [output "unknown]
localmake "result factor2 butfirst :dividend
if equalp :result "unknown [output "unknown]
output (list "quotient :result last :expr)
end

to factor2 :trms
if memberp :var :trms [output simone "product (remove :var :trms)]
if memberp :negvar :trms [output minusin simone "product (remove :negvar :trms)]
output "unknown
end

to maybeadd :num :rest
if equalp :num 0 [output :rest]
output fput :num :rest
end

Program Listing 327

to maybemul :num :rest
if equalp :num 1 [output :rest]
output fput :num :rest
end

to minusin :expr
if emptyp :expr [output -1]
if equalp first :expr "sum [output fput "sum map [minusin ?] butfirst :expr]
if equalp first :expr "minus [output last :expr]
if memberp first :expr [product quotient] ~

[output fput first :expr
(fput (minusin first butfirst :expr) butfirst butfirst :expr)]

if numberp :expr [output minus :expr]
output list "minus :expr
end

to occvar :var :expr
if emptyp :expr [output "false]
if wordp :expr [output equalp :var :expr]
if operatorp first :expr [output not emptyp find [occvar :var ?] butfirst :expr]
output equalp :var :expr
end

to remfactor :num :den
foreach butfirst :num [remfactor1 ?]
output (list "quotient (simone "product butfirst :num)

(simone "product butfirst :den))
end

to remfactor1 :expr
local "neg
if memberp :expr :den ~

[make "num remove :expr :num make "den remove :expr :den stop]
make "neg minusin :expr
if not memberp :neg :den [stop]
make "num remove :expr :num
make "den minusin remove :neg :den
end

to remop :oper :exprs
output map.se [ifelse equalp first ? :oper [butfirst ?] [(list ?)]] :exprs
end

328 Chapter 6 Artificial Intelligence

to simdiv :list
local [num den numop denop]
make "num first :list
make "den last :list
if equalp :num :den [output 1]
if numberp :den [output simtimes (list (quotient 1 :den) :num)]
make "numop first :num
make "denop first :den
if equalp :numop "quotient ~

[output simdiv list (first butfirst :num) (simtimes list last :num :den)]
if equalp :denop "quotient ~

[output simdiv list (simtimes list :num last :den) (first butfirst :den)]
if and equalp :numop "product equalp :denop "product [output remfactor :num :den]
if and equalp :numop "product memberp :den :num [output remove :den :num]
output fput "quotient :list
end

to simone :oper :trms
if emptyp :trms [output ifelse equalp :oper "product [1] [0]]
if emptyp butfirst :trms [output first :trms]
output fput :oper :trms
end

to simplus :exprs
make "exprs remop "sum :exprs
localmake "factor [unknown]
catch "simplus ~

[foreach :terms ~
[make "factor (factor :exprs ?) ~
if not equalp first :factor "unknown [throw "simplus]]]

if not equalp first :factor "unknown [output fput "product remop "product :factor]
localmake "nums 0
localmake "nonnums []
localmake "quick []
catch "simplus [simplus1 :exprs]
if not emptyp :quick [output :quick]
if not equalp :nums 0 [push "nonnums :nums]
output simone "sum :nonnums
end

to simplus1 :exprs
if emptyp :exprs [stop]
simplus2 first :exprs
simplus1 butfirst :exprs
end

Program Listing 329

to simplus2 :pos
localmake "neg minusin :pos
if numberp :pos [make "nums sum :pos :nums stop]
if memberp :neg butfirst :exprs [make "exprs remove :neg :exprs stop]
if equalp first :pos "quotient ~

[make "quick (denom :pos (maybeadd :nums sentence :nonnums butfirst :exprs)) ~
throw "simplus]

push "nonnums :pos
end

to simtimes :exprs
local [nums nonnums quick]
make "nums 1
make "nonnums []
make "quick []
catch "simtimes [foreach remop "product :exprs [simtimes1 ?]]
if not emptyp :quick [output :quick]
if equalp :nums 0 [output 0]
if not equalp :nums 1 [push "nonnums :nums]
output simone "product :nonnums
end

to simtimes1 :expr
if equalp :expr 0 [make "nums 0 throw "simtimes]
if numberp :expr [make "nums product :expr :nums stop]
if equalp first :expr "sum ~

[make "quick
distribtimes (butfirst :expr)

(simone "product maybemul :nums sentence :nonnums ?rest)
throw "simtimes]

if equalp first :expr "quotient ~
[make "quick

simdiv (list (simtimes (list (first butfirst :expr)
(simone "product

maybemul :nums
sentence :nonnums ?rest)))

(last :expr))
throw "simtimes]

push "nonnums :expr
end

to subord :expr :alist
output distribx subord1 :expr :alist
end

to subord1 :expr :alist
if emptyp :alist [output :expr]
output subord (substop (last first :alist) (first first :alist) :expr) ~

(butfirst :alist)
end

330 Chapter 6 Artificial Intelligence

to substop :val :var :expr
if emptyp :expr [output []]
if equalp :expr :var [output :val]
if not operatorp first :expr [output :expr]
output fput first :expr map [substop :val :var ?] butfirst :expr
end

to subterm :minuend :subtrahend
if equalp :minuend 0 [output minusin :subtrahend]
if equalp :minuend :subtrahend [output 0]
output simplus (list :minuend minusin :subtrahend)
end

to varterms :expr
if emptyp :expr [output []]
if numberp :expr [output []]
if wordp :expr [output (list :expr)]
if operatorp first :expr [output map.se [varterms ?] butfirst :expr]
output (list :expr)
end

;; Printing the solutions

to pranswers :ans :solution
print []
if equalp :solution "unsolvable ~

[print [Unable to solve this set of equations.] output "false]
if equalp :solution "insufficient ~

[print [The equations were insufficient to find a solution.] output "false]
localmake "gotall "true
foreach :ans [if prans ? :solution [make "gotall "false]]
if not :gotall [print [] print [Unable to solve this set of equations.]]
output :gotall
end

to prans :ans :solution
localmake "result find [equalp first ? first :ans] :solution
if emptyp :result [output "true]
print (sentence cap last :ans "is unitstring last :result)
print []
output "false
end

Program Listing 331

to unitstring :expr
if numberp :expr [output roundoff :expr]
if equalp first :expr "product ~

[output sentence (unitstring first butfirst :expr)
(reduce "sentence butfirst butfirst :expr)]

if (and (listp :expr)
(not numberp first :expr)
(not operatorp first :expr)) ~

[output (sentence 1 (singular first :expr) (butfirst :expr))]
output :expr
end

to roundoff :num
if (abs (:num - round :num)) < 0.0001 [output round :num]
output :num
end

to abs :num
output ifelse (:num < 0) [-:num] [:num]
end

;; Using known relationships

to geteqns :vars
output map.se [gprop varkey ? "eqns] :vars
end

to varkey :var
local "word
if match [number of !word #] :var [output :word]
output first :var
end

;; Assuming equality of similar variables

to vartest :vars
if emptyp :vars [output []]
local [var beg end]
make "var first :vars
output (sentence (ifelse match [^beg !:pronoun #end] :var

[vartest1 :var (sentence :beg "& :end) butfirst :vars]
[[]])

(vartest1 :var (sentence "# :var "#) butfirst :vars)
(vartest butfirst :vars))

end

to vartest1 :target :pat :vars
output map [varequal :target ?] filter [match :pat ?] :vars
end

332 Chapter 6 Artificial Intelligence

to varequal :target :var
print []
print [Assuming that]
print (sentence (list :target) [is equal to] (list :var))
output (list "equal :target :var)
end

;; Optional substitutions

to tryidiom
make "prob (sentence :beg last :idiom :end)
while [match (sentence "^beg first :idiom "#end) :prob] ~

[make "prob (sentence :beg last :idiom :end)]
say [The problem with an idiomatic substitution is] :prob
student1 :prob (remove :idiom :idioms)
end

;; Utility procedures

to qword :word
output memberp :word [find what howm how]
end

to dlm :word to article :word
output memberp :word [. ? |;|] output memberp :word [a an the]
end end

to verb :word
output memberp :word [have has get gets weigh weighs]
end

to personp :word
output memberp :word [Mary Ann Bill Tom Sally Frank father uncle]
end

to pronoun :word
output memberp :word [he she it him her they them his her its]
end

to posspro :word
output memberp :word [his her its]
end

to op0 :word
output memberp :word [pluss minuss squared tothepower per sum difference numof]
end

to op1 :word
output memberp :word [times divby square]
end

Program Listing 333

to op2 :word
output memberp :word [plus minus lessthan percent perless]
end

to operatorp :word
output memberp :word [sum minus product quotient expt square equal]
end

to plural :word
localmake "plural gprop :word "plural
if not emptyp :plural [output :plural]
if not emptyp gprop :word "sing [output :word]
if equalp last :word "s [output :word]
output word :word "s
end

to singular :word
localmake "sing gprop :word "sing
if not emptyp :sing [output :sing]
if not emptyp gprop :word "plural [output :word]
if equalp last :word "s [output butlast :word]
output :word
end

to setminus :big :little
output filter [not memberp ? :little] :big
end

to say :herald :text to lsay :herald :text
print [] print []
print :herald print :herald
print [] print []
print :text foreach :text [print cap ? print []]
print [] end
end

to cap :sent
if emptyp :sent [output []]
output sentence (word uppercase first first :sent butfirst first :sent) ~

butfirst :sent
end

;; The pattern matcher

to match :pat :sen
if prematch :pat :sen [output rmatch :pat :sen]
output "false
end

334 Chapter 6 Artificial Intelligence

to prematch :pat :sen
if emptyp :pat [output "true]
if listp first :pat [output prematch butfirst :pat :sen]
if memberp first first :pat [! @ # ^ & ?] [output prematch butfirst :pat :sen]
if emptyp :sen [output "false]
localmake "rest member first :pat :sen
if not emptyp :rest [output prematch butfirst :pat :rest]
output "false
end

to rmatch :pat :sen
local [special.var special.pred special.buffer in.list]
if or wordp :pat wordp :sen [output "false]
if emptyp :pat [output emptyp :sen]
if listp first :pat [output special fput "!: :pat :sen]
if memberp first first :pat [? # ! & @ ^] [output special :pat :sen]
if emptyp :sen [output "false]
if equalp first :pat first :sen [output rmatch butfirst :pat butfirst :sen]
output "false
end

to special :pat :sen
set.special parse.special butfirst first :pat "
output run word "match first first :pat
end

to parse.special :word :var
if emptyp :word [output list :var "always]
if equalp first :word ": [output list :var butfirst :word]
output parse.special butfirst :word word :var first :word
end

to set.special :list
make "special.var first :list
make "special.pred last :list
if emptyp :special.var [make "special.var "special.buffer]
if memberp :special.pred [in anyof] [set.in]
if not emptyp :special.pred [stop]
make "special.pred first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

to set.in
make "in.list first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

Program Listing 335

to match!
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var first :sen
output rmatch butfirst :pat butfirst :sen
end

to match?
make :special.var []
if emptyp :sen [output rmatch butfirst :pat :sen]
if not try.pred [output rmatch butfirst :pat :sen]
make :special.var first :sen
if rmatch butfirst :pat butfirst :sen [output "true]
make :special.var []
output rmatch butfirst :pat :sen
end

to match#
make :special.var []
output #test #gather :sen
end

to #gather :sen
if emptyp :sen [output :sen]
if not try.pred [output :sen]
make :special.var lput first :sen thing :special.var
output #gather butfirst :sen
end

to #test :sen
if rmatch butfirst :pat :sen [output "true]
if emptyp thing :special.var [output "false]
output #test2 fput last thing :special.var :sen
end

to #test2 :sen
make :special.var butlast thing :special.var
output #test :sen
end

to match&
output &test match#
end

to &test :tf
if emptyp thing :special.var [output "false]
output :tf
end

336 Chapter 6 Artificial Intelligence

to match^
make :special.var [] output ^test :sen
end

to ^test :sen
if rmatch butfirst :pat :sen [output "true]
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var lput first :sen thing :special.var
output ^test butfirst :sen
end

to match@
make :special.var :sen output @test []
end

to @test :sen
if @try.pred [if rmatch butfirst :pat :sen [output "true]]
if emptyp thing :special.var [output "false]
output @test2 fput last thing :special.var :sen
end

to @test2 :sen
make :special.var butlast thing :special.var
output @test :sen
end

to try.pred
if listp :special.pred [output rmatch :special.pred first :sen]
output run list :special.pred quoted first :sen
end

to quoted :thing
ifelse listp :thing [output :thing] [output word "" :thing]
end

to @try.pred
if listp :special.pred [output rmatch :special.pred thing :special.var]
output run list :special.pred thing :special.var
end

to anyof :sen to always :x
output anyof1 :sen :in.list output "true
end end

to anyof1 :sen :pats to in :word
if emptyp :pats [output "false] output memberp :word :in.list
if rmatch first :pats :sen [output "true] end
output anyof1 :sen butfirst :pats
end

Program Listing 337

;; Sample word problems

make "ann [Mary is twice as old as Ann was when Mary was as old as Ann is now.
If Mary is 24 years old, how old is Ann?]

make "guns [The number of soldiers the Russians have is
one half of the number of guns they have. They have 7000 guns.
How many soldiers do they have?]

make "jet [The distance from New York to Los Angeles is 3000 miles.
If the average speed of a jet plane is 600 miles per hour,
find the time it takes to travel from New York to Los Angeles by jet.]

make "nums [A number is multiplied by 6 . This product is increased by 44 .
This result is 68 . Find the number.]

make "radio [The price of a radio is $69.70.
If this price is 15 percent less than the marked price, find the marked price.]

make "sally [The sum of Sally’s share of some money and Frank’s share is $4.50.
Sally’s share is twice Frank’s. Find Frank’s and Sally’s share.]

make "ship [The gross weight of a ship is 20000 tons.
If its net weight is 15000 tons, what is the weight of the ships cargo?]

make "span [If 1 span is 9 inches, and 1 fathom is 6 feet,
how many spans is 1 fathom?]

make "sumtwo [The sum of two numbers is 96,
and one number is 16 larger than the other number. Find the two numbers.]

make "tom [If the number of customers Tom gets is
twice the square of 20 per cent of the number of advertisements he runs,
and the number of advertisements he runs is 45,
what is the number of customers Tom gets?]

make "uncle [Bill’s father’s uncle is twice as old as Bill’s father.
2 years from now Bill’s father will be 3 times as old as Bill.
The sum of their ages is 92 . Find Bill’s age.]

;; Initial data base

pprop "distance "eqns ~
[[equal [distance] [product [speed] [time]]]
[equal [distance] [product [gas consumtion] [number of gallons of gas used]]]]

pprop "feet "eqns ~
[[equal [product 1 [feet]] [product 12 [inches]]]
[equal [product 1 [yards]] [product 3 [feet]]]]

pprop "feet "sing "foot
pprop "foot "plural "feet
pprop "gallons "eqns ~
[[equal [distance] [product [gas consumtion] [number of gallons of gas used]]]]

pprop "gas "eqns ~
[[equal [distance] [product [gas consumtion] [number of gallons of gas used]]]]

pprop "inch "plural "inches
pprop "inches "eqns [[equal [product 1 [feet]] [product 12 [inches]]]]
pprop "people "sing "person
pprop "person "plural "people
pprop "speed "eqns [[equal [distance] [product [speed] [time]]]]
pprop "time "eqns [[equal [distance] [product [speed] [time]]]]
pprop "yards "eqns [[equal [product 1 [yards]] [product 3 [feet]]]]

