
pascal

begin
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program test;

procedure doit(n:integer);
begin

writeln(n,n*n)
end;

begin
doit(3)

end.

Program file for this chapter:

We are now ready to turn from the questions of language design to those of compiler
implementation. A Pascal compiler is a much larger programming project than most
of the ones we’ve explored so far. You might well ask, “where do we in writing a
compiler?” My goal in this chapter is to show some of the parts that go into a compiler
design.

A compiler translates programs from a language like Pascal into the machine
language of some particular computer model. My compiler translates into a simplified,
simulated machine language; the compiled programs are actually carried out by another
Logo program, the simulator, rather than directly by the computer hardware. The
advantage of using this simulated machine language is that this compiler will work
no matter what kind of computer you have; also, the simplifications in this simulated
machine allow me to leave out many confusing details of a practical compiler. Our
machine language is, however, realistic enough to give you a good sense of what
compiling into a real machine language would be like; it’s loosely based on the MIPS
microprocessor design. You’ll see in a moment that most of the structure of the compiler
is independent of the target language, anyway.

Here is a short, uninteresting Pascal program:



compile

%test

add 3 0 0

jump
g1

assembler

label
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[ [add 3 0 0]
[add 4 0 0]
[addi 2 0 36]
[jump "g1]

%doit [store 1 0(4)]
[jump "g2]

g2 [rload 7 36(4)]
[putint 10 7]
[rload 7 36(4)]
[rload 8 36(4)]
[mul 7 7 8]
[putint 10 7]
[newline]
[rload 1 0(4)]
[add 2 4 0]
[rload 4 3(2)]
[jr 1]

g1 [store 5 1(2)]
[add 5 2 0]
[addi 2 2 37]
[store 4 3(5)]
[store 4 2(5)]
[addi 7 0 3]
[store 7 36(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%doit]
[exit]

]

If you type this program into a disk file and then compile it using as described
in Chapter 4, the compiler will translate the program into this sequence of instructions,
contained in a list in the variable named :

I’ve displayed this list of instructions with some extra spacing thrown in to make it look
somewhat like a typical listing. (An assembler is a program that translates a
notation like into a binary number, the form in which the machine hardware
actually recognizes these instructions.) A real assembler listing wouldn’t have the square
brackets that Logo uses to mark each sublist, but would instead depend on the convention
that each instruction occupies one line.

The first three instructions carry out initialization that would be the same for any
compiled Pascal program; the fourth is a instruction that tells the (simulated)
computer to skip to the instruction following the that appears later in the
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program. (A word that isn’t part of a sublist is a label.) In Pascal, the body of the main
program comes after the declarations of procedures; this instruction allows the
compiler to translate the parts of the program in the order in which they appear.

(Two instructions later, you’ll notice a to a label that comes right after the
jump instruction! The compiler issues this useless instruction just in case some internal
procedures were declared within the procedure . A better compiler would include
an that would go through the compiled program looking for ways to eliminate
unnecessary instructions such as this one. The optimizer is the most important thing
that I’ve left out of my compiler.)

We’re not ready yet to talk in detail about how the compiled instructions represent
the Pascal program, but you might be able to guess certain things. For example, the
variable in procedure seems to be represented as in the compiled program;
you can see where is printed and then multiplied by itself, although it may not yet
be clear to you what the numbers and have to do with anything. Before we get into
those details, I want to give a broader overview of the organization of the compiler.

The compilation process is divided into three main pieces. First and simplest is
The compiler initially sees the source program as a string of characters: ,

then , and so on, including spaces and line separators. The first step in compilation
is to turn these characters into symbols, so that the later stages of compilation can deal
with the word as a unit. The second piece of the compiler is the the part
that recognizes certain patterns of symbols as representing meaningful units. “Oh,” says
the parser, “I’ve just seen the word so what comes next must be a procedure
header and then a – block for the body of the procedure.” Finally, there is the
process of in which each unit that was recognized by the parser is actually
translated into the equivalent machine language instructions.

(I don’t mean that parsing and code generation happen separately, one after the
other, in the compiler’s algorithm. In fact each meaningful unit is translated as it’s
encountered, and the translation of a large unit like a procedure includes, recursively,
the translation of smaller units like statements. But parsing and code generation are
conceptually two different tasks, and we’ll talk about them separately.)

One common starting place is to develop a formal definition for the language we’re
trying to compile. The regular expressions of Chapter 1 are an example of what I mean
by a formal definition. A regular expression tells us unambiguously that certain strings
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* The component is an optional list of names of files, part of Pascal’s input/output
capability; my compiler doesn’t handle file input or output, so it ignores this list if there is one.

program identifier filenames block

filenames idlist

idlist identifier idlist identifier

block varpart procpart compound

varpart varlist

procpart procpart procedure procpart function

compound statements

statements statement statements statement

procedure identifier args block

function identifier args type block

filenames

of characters are accepted as members of the category defined by the expression, while
other strings aren’t. A language like Pascal is too complicated to be described by a regular
expression, but other kinds of formal definition can be used.

The formal systems of Chapter 1 just gave a yes-or-no decision for any input string: Is
it, or is it not, accepted in the language under discussion? That’s not quite good enough
for a compiler. We don’t just want to know whether a Pascal program is syntactically
correct; we want a translation of the program into some executable form. Nevertheless, it
turns out to be worthwhile to begin by designing a formal acceptor for Pascal. That part of
the compiler—the part that determines the syntactic structure of the source program—is
called the Later we’ll add provisions for the translation of each
syntactic unit of the source program into a piece of (executable) program that
carries out the meaning (the ) of that unit.

One common form in which programming languages are described is the
notation mentioned briefly in Chapter 1. For example, here is part of a specification

for Pascal:

A program consists of six components. Some of these components are particular words
(like ) or punctuation marks; other components are defined in terms of even
smaller units by other rules.*
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: integer | real | char | boolean | array of integer |
packed array of integer | array of real |
...

: | array of |
packed array of

: integer | real | char | boolean

A vertical bar ( ) in a rule separates alternatives; an idlist (identifier list) is either a
single identifier or a smaller idlist followed by a comma and another identifier. Sometimes
one of the alternatives in a rule is empty; for example, a varpart can be empty because a
block need not declare any local variables.

The goal in designing a formal specification is to capture the syntactic hierarchy of
the language you’re describing. For example, you could define a Pascal type as

but it’s better to say

Try completing the syntactic description of my subset of Pascal along these lines.
You might also try a similar syntactic description of Logo. Which is easier?

Another kind of formal description is the (RTN). An RTN
is like a finite-state machine except that instead of each arrow representing a single
symbol in the machine’s alphabet, an arrow can be labeled with the name of another
RTN; such an arrow represents any string of symbols accepted by that RTN.

On this page and the next I show two RTNs, one for a program and one for
a sequence of statements (the body of a compound statement). In the former, the
transition from state 5 to state 6 is followed if what comes next in the Pascal program is
a string of symbols accepted by the RTN named “block.” In these diagrams, a word in

style like represents a single symbol, as in a finite-state machine
diagram, while a word in like represents any string accepted by the RTN of
that name. The RTN is recursive; one path through the network involves a
transition that requires parsing a smaller unit.
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program

program tower
2 + 3 prog ram

tower

program tower ; procedure hanoi ( number

readlist

In both the production rules and the RTNs I’ve treated words like as a single
symbol of the “alphabet” of the language. It would be possible, of course, to use single
characters as the alphabetic symbols and describe the language in this form:

Extending the formal description down to that level, though, makes it hard to see
the forest for the trees; the important structural patterns get lost in details about,
for instance, where spaces are required between words (as in ), where
they’re optional (as in ), and where they’re not allowed at all ( ). A similar
complication is that a comment in braces can be inserted anywhere in the program; it
would be enormously complicated if every state of every RTN had to have a transition for
a left brace beginning a comment.

Most language processors therefore group the characters of the source program into
used as the alphabet for the formal grammar. A token may be a single character,

such as a punctuation mark, or a group of characters, such as a word or a number. Spaces
do not ordinarily form part of tokens, although in the Pascal compiler one kind of token
is a quoted character string that can include spaces. Comments are also removed during
tokenization. Here’s what the program from Chapter 4 looks like in token form:

. . .

Tokenization is what the Logo operation does when it uses spaces and brackets
to turn the string of characters you type into a sequence of words and lists.
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token

program
token

tower tower Token t

t

token
tower

token
token

token
tower

Getchar token
getchar readchar

to getchar
local "char
if namep "peekchar

[make "char :peekchar
ern "peekchar
output :char]

output readchar
end

Tokenization is also called This term has nothing to do with lexical
scope; the word “lexical” is used not to remind us of a dictionary but because the root
“lex” means and lexical analysis divides the source program into words.

I’ve been talking as if the Pascal compiler first went through the entire source file
tokenizing it and then went back and parsed the result. That’s not actually how it works;
instead, the parser just calls a procedure named whenever it wants to see the
next token in the source file. I’ve already mentioned that Pascal was designed to allow
the compiler to read straight through the source program without jumping around and
re-reading parts of it.

Consider the situation when the parser has recognized the first token ( ) as the
beginning of a program and it invokes to read the second token, the program
name. In the program, the desired token is . reads the letter ;
since it’s a letter, it must be the beginning of an identifier. Any number of letters or digits
following the will be part of the identifier, but the first non-alphanumeric character
ends the token. (In this case, the character that ends the token will be a semicolon.)

What this means is that has to read one character too many in order to find
the end of the word . The semicolon isn’t part of that token; it’s part of the

token. (In fact it’s the entire following token, but in other situations that need
not be true.) Ordinarily begins its work by reading a character from the source
file, but the next time we call it has to deal with the character it’s already read.
It would simplify things enormously if could “un-read” the semicolon that ends
the token . It’s possible to allow something like un-reading by using a technique
called

is the procedure that calls to read the next character from the
source file. Ordinarily just invokes the primitive to read a character
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* I’m lying. The real is slightly more complicated because it checks for an unexpected
end of file and because it prints the characters that it reads onto the screen. The program listing
at the end of the chapter tells the whole story.

from the file.* But if there is a variable named , then just outputs
whatever is in that variable without looking at the file. can now un-read a character
by saying

This technique only allows to un-read a single character at a time. It would be
possible to replace with a of pre-read characters to be recycled. But in fact
one is enough. When a program “peeks at” characters before they’re read “for real,” the
technique is called uses because
only stores a single character.

It turns out that, for similar reasons, the Pascal parser will occasionally find it
convenient to peek at a and re-read it later. therefore provides for one-
lookahead using a similar mechanism:

make "peekchar :char

to token
local [token char]
if namep "peektoken [make "token :peektoken

ern "peektoken output :token]
make "char getchar
if equalp :char "|{| [skipcomment output token]
if equalp :char char 32 [output token]
if equalp :char char 13 [output token]
if equalp :char char 10 [output token]
if equalp :char "’ [output string "’]
if memberp :char [+ - * / = ( , ) |[| |]| |;|] [output :char]
if equalp :char "|<| [output twochar "|<| [= >]]
if equalp :char "|>| [output twochar "|>| [=]]
if equalp :char ". [output twochar ". [.]]
if equalp :char ": [output twochar ": [=]]
if numberp :char [output number :char]
if letterp ascii :char [output token1 lowercase :char]
(throw "error sentence [unrecognized character:] :char)
end

getchar
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token Char 32 char 13
char 10 Skipcomment

String

Number
1.10 1..10

twochar
<

<= <> Twochar

token
compile

to twochar :old :ok
localmake "char getchar
if memberp :char :ok [output word :old :char]
make "peekchar :char
output :old
end

As you can see, is mainly a selection of special cases. is a space;
or is the end-of-line character. skips over characters until it
sees a right brace. accumulates characters up to and including a single quote
(apostrophe), except that two single quotes in a row become one single quote inside the
string and don’t end the string. is a little tricky because of decimal points (the
string of characters is a single token, but the string is three tokens!) and
exponent notation. I’m not showing you all the details because the compiler is a very
large program and we’ll never get through it if I annotate every procedure. But I did
want to show you because it’s a good, simple example of character lookahead
at work. If the character is seen in the source program, it may be a token by itself or
it may be part of the two-character tokens or . takes a peek at the next
character in the file to decide.

If the character that reads isn’t part of any recognizable token, the procedure
generates an error. (The error is caught by the toplevel procedure so that it can
close the source file.) This extremely primitive error handling is one of the most serious
deficiencies in my compiler; it would be better if the compilation process continued,
despite the error, so that any other errors in the program could also be discovered. In a
real compiler, more than half of the parsing effort goes into error handling; it’s relatively
trivial to parse a correct source program.

There are general techniques for turning a formal language specification, such as a
set of production rules, into an algorithm for parsing the language so specified. These
techniques are analogous to the program in Chapter 1 that translates a regular expression
into a finite-state machine. A program that turns a formal specification into a parser is
called a

The trouble is that the techniques that work for set of rules are quite slow. The
time required to parse a sequence of length is ( ) if the grammar is unambiguous
or ( ) if it’s ambiguous. A grammar is if the same input sequence can be
parsed correctly in more than one way. For example, if the production rule
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idlist identifier idlist identifier

idlist identifier idlist idlist

is applied to the string

then the only possible application of the rule to accept the string produces this left-to-right
grouping:

However, if the rule were

this new rule would accept the same strings, but would allow alternative groupings like

The former rule could be part of an unambiguous grammar; the new rule makes the
grammar that contains it ambiguous.
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if

if
if x > 0 then writeln(’positive’)

if := 87
if

:=

var procedure function

* A parser generator is also called a because it treats the formal specification as
a kind of source program and produces a compiler as the object program. But the name isn’t quite
accurate because, as you know, there’s more to a compiler than the parser.

It’s usually not hard to devise an unambiguous grammar for any practical program-
ming language, but even a quadratic algorithm is too slow. Luckily, most programming
languages have which is a condition even stricter than being un-
ambiguous. It means that a parser can read a program from left to right, and can figure
out what to do with the next token using only a fixed amount of lookahead. A parser for
a deterministic grammar can run in linear time, which is a lot better than quadratic.

When I said “figure out what to do with the next token,” I was being deliberately
vague. A deterministic parser doesn’t necessarily know exactly how a token will fit into the
complete program—which production rules will be branch nodes in a parse tree having
this token as a leaf node—as soon as it reads the token. As a somewhat silly example,
pretend that the word is not a “reserved word” in Pascal; suppose it could be the
name of a variable. Then, when the parser is expecting the beginning of a new statement
and the next token is the word , the parser doesn’t know whether it is seeing the
beginning of a conditional statement such as
or the beginning of an assignment statement such as . But the parser could
still be deterministic. Upon seeing the word , it would enter a state (as in a finite
state machine) from which there are two exits. If the next token turned out to be the

assignment operator, the parser would follow one transition; if the next token was a
variable or constant value, the parser would choose a different next state.

The real Pascal, though, contains no such syntactic cliffhangers. A Pascal compiler
can always tell which production rule the next token requires. That’s why the language
includes keywords like , , and . For the most part, you could
figure out which kind of declaration you’re reading without those keywords by looking
for clues like whether or not there are parentheses after the identifier being declared.
(If so, it’s a procedure or a function.) But the keywords let you know from the beginning
what to expect next. That means we can write what’s called a for Pascal,
even simpler to implement than a deterministic one.

There are general algorithms for parsing deterministic languages, and there are
parser generators using these algorithms. One widely used example is the YACC (Yet
Another Compiler Compiler) program that translates production rules into a parser in
the C programming language.* But because Pascal’s grammar is so simple I found it just
as easy to do the translation by hand. For each production rule in a formal description
of Pascal, the compiler includes a Logo procedure that parses each component part of
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the production rule. A parser written in this way is called a Here’s
a sample:

Many of the details of have to do with code generation, but never mind those parts
now. For the moment, my concern is with the parsing aspect of these procedures: how
they decide what to accept.

is an important part of the parser; it is invoked whenever a Pascal
statement is expected. It begins by checking the next token from the source file. If
that token is , , , , or then we’re finished with the token
and turns to a subprocedure to handle the syntax of whatever structured

to statement
local [token type]
ifbe "begin [compound stop]
ifbe "for [pfor stop]
ifbe "if [pif stop]
ifbe "while [pwhile stop]
ifbe "repeat [prepeat stop]
ifbe "write [pwrite stop]
ifbe "writeln [pwriteln stop]
make "token token
make "peektoken :token
if memberp :token [|;| end until] [stop]
make "type gettype :token
if emptyp :type [(throw "error sentence :token [can’t begin statement])]
if equalp :type "procedure [pproccall stop]
if equalp :type "function [pfunset stop]
passign
end

to pif
local [cond elsetag endtag]
make "cond pboolean pexpr
make "elsetag gensym
make "endtag gensym
mustbe "then
code (list "jumpf :cond (word "" :elsetag))
regfree :cond
statement
code (list "jump (word "" :endtag))
code :elsetag
ifbe "else [statement]
code :endtag
end
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ifstatement boolean statement
boolean statement statement

end until

statement
Gettype

real procedure function
gettype

pif if p

if

pif if statement
Pexpr

Pboolean
boolean

then

pif mustbe

mustbe pif statement

else

: if then |
if then else

mustbe "then

to mustbe :wanted
localmake "token token
if equalp :token :wanted [stop]
(throw "error (sentence "expected :wanted "got :token))
end

ifbe "else [statement]

statement type we’ve found. If the token isn’t one of those, then the statement has to be
a simple statement and the token has to be an identifier, i.e., the name of a procedure, a
function, or a variable. (One other trivial possibility is that this is an statement, if
we’re already up to the semicolon, , or that marks the end of a statement.)
In any of these cases, the token we’ve just read is important to the parsing procedure
that will handle the simple statement, so un-reads it before deciding what
to do next. outputs the type of the identifier, either a variable type like

or else or . (The compiler data structures that underlie
the work of will be discussed later.) If the token is a procedure name, then
this is a procedure call statement. If the token is a function name, then this is the
special kind of assignment inside a function definition that provides the return value
for the function. Otherwise, the token must be a variable name and this is an ordinary
assignment statement.

The procedure parses statements. (The letter in its name stands for
“Pascal”; many procedures in the compiler have such names to avoid conflicts with Logo
procedures with similar purposes.) The syntax of Pascal is

When begins, the token has just been read by . So the first thing
that’s required is a boolean expression. parses an expression; that task is relatively
complicated and will be discussed in more detail later. ensures that the
expression just parsed does indeed produce a value of type .

The next token in the source file be the word . The instruction

in ensures that. Here’s :

If returns successfully, then invokes recursively to parse the
true branch of the conditional. The production rule tells us that there is then an
false branch, signaled by the reserved word . The instruction
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ifbe

ifbeelse
Ifbeelse

output stop
ifbe statement

pif

.macro ifbe :wanted :action
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output []
end

.macro ifbeelse :wanted :action :else
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output :else
end

to pif
pboolean pexpr
mustbe "then
statement
ifbe "else [statement]
end

handles that possibility. If the next token matches the first input to then the second
input, an instruction list, is carried out. Otherwise the token is un-read. There is also an

that takes a third input, an instruction list to be carried out if the next token
isn’t equal to the first input. ( still un-reads the token in that case, before
it runs the third input.) These must be macros so that the instruction list inputs can
include or instructions (as discussed in Volume 2), as in the invocations of

in seen a moment ago.

If there were no code generation involved, would be written this way:

This simplified procedure is a straightforward translation of the RTN

The need to generate object code complicates the parser. But don’t let that distract you;
in general you can see the formal structure of Pascal syntax reflected in the sequence of
instructions used to parse that syntax.
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* It’s unfortunate that the word “binary” is used in computer science both for base-2 numbers
and for two-input operations. Kenneth Iverson, in his documentation for the language APL, used

The procedures that handle other structured statements, such as and ,
are a lot like . Procedure and function declarations (procedures ,

, and in the compiler) also use the same straightforward parsing
technique, but are a little more complicated because of the need to keep track of
type declarations for each procedure’s parameters and local variables. Ironically, the
hardest thing to compile is the “simple” assignment statement, partly because of operator
precedence (multiplication before addition) in expressions (procedure in the
compiler) and partly because of the need to deal with the complexity of variables,
including special cases such as assignments to parameters and array elements.

I haven’t yet showed you because you have to understand how the
compiler handles expressions first. But it’s worth noticing that Pascal can check

whether or not an expression is going to produce a value even though the
program hasn’t been run yet and the variables in the expression don’t have values yet.
It’s the strict variable typing of Pascal that makes this compile-time checking possible. If
we were writing a Logo compiler, the checking would have to be postponed until run
time because you can’t, in general, know what type of datum will be computed by a Logo
expression until it’s actually evaluated.

Arithmetic or boolean expressions appear not only on the right side of assignment
statements but also as actual parameters, array index values, and as “phrases” in structured
statements. One of the classic problems in compiler construction is the translation of these
expressions to executable form. The interesting difficulty concerns —
the rule that in a string of alternating operators and operands, multiplications are done
before additions, so

means

Pascal has four levels of operator precedence. The highest level, number 4, is the
operators , , and . (The first two can be used as unary operators ( ) or
ones ( ); it’s only in the unary case that they have this precedence.)* Then
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the words and instead of unary and binary to avoid that ambiguity. But those terms
haven’t caught on.

expression term expression term expression term
term factor term factor term factor
factor variable number expression

monadic dyadic

: | + | -
: | * | /
: | | ( )

to expression
local [left op right]
make "left expression
ifbe "+
[make "op "+
make "right term]
[ifbe "-

[make "op "-
make "right term]

[make "op []] ]
...

comes multiplication, division, and logical at level 3. Level 2 has binary addition,
subtraction, and . And level 1 includes the relational operators like .

The formalization of precedence could be done using the mechanisms we’ve already
seen. For example, here is a production rule grammar for expressions using only the
four basic arithmetic operations.

This grammar also introduces into the discussion the fact that the precedence of
operations can be changed by using parentheses.

This grammar, although formally correct, is not so easy to use in a recursive descent
parser. One subtle but important problem is that it’s Some of the alternative
forms for an start with an . If we tried to translate this into a
Logo procedure it would naturally start out

But this procedure will never get past the first ; it’s an infinite loop. It will never
actually read a token from the source file; instead it keeps invoking itself recursively.

Left association is a problem for automatic compiler compilers, too. There are
ways to solve the problem but I don’t want to get into that because in fact arithmetic
expressions are generally handled by an entirely different scheme, which I’ll show you in
a moment. The problem wouldn’t come up if the order of the operands were reversed,
so the rules said
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expression term term expression term expression

and so on. Unfortunately this changes the meaning, and the rules of Pascal say that
equal-precedence operations are performed left to right.

In any case, the formalization of precedence with production rules gets more
complicated as the number of levels of precedence increases. I showed you a grammar
with two levels. Pascal, with four levels, might reasonably be done in a similar way, but
think about the C programming language, which has 15 levels of precedence!

What we’re after is an algorithm that will allow the compiler to read an expression once,
left to right, and group operators and operands correctly. The algorithm involves the use
of two stacks, one for operations and one for data. For each operation we need to know
whether it’s unary or binary and what its precedence level is. I’ll use the notation “ ”
to represent binary at precedence level 3. So the expression

will be represented in this algorithm as

– –

The symbols – and – aren’t really part of the source expression; they’re imaginary
markers for the beginning and end of the expression. When we read a token that doesn’t
make sense as part of an expression, we can un-read that token and pretend we read a –
instead. These markers are given precedence level zero because they form a boundary
for operators inside them, just as a low-precedence operator like is a boundary for
the operands of a higher-precedence operator like . (For the same reason, you’ll see
that parentheses are considered precedence zero.)

The two minus signs in this expression have two different meanings. As you read
the following algorithm description, you’ll see how the algorithm knows whether an
operation symbol is unary or binary.

We initialize the two stacks this way:

–



|

|

|

|

0

0

2,2

2,2 0 2,2

2,3

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.
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+ a*b+c

* a+b*c
c

a+b

1 [ ] [ ]
2 [ a ] a
3 +
4 +
6 [ + ] +
2 [ b a ] b
3 *
4 *

We are now expecting a datum, such as a variable. Read a token. If it’s an
operation, it must be unary; subscript it accordingly and go to step 4. If it’s a datum, push
it onto the data stack. (If it’s neither an operation nor a datum, something’s wrong.)

We are now expecting a binary operation. Read a token. If it’s an operation,
subscript it as binary and go to step 4. If not, we’ve reached the end of the expression.
Un-read the token, and go to step 4 with the token – .

We have an operation in hand at this point and we know its precedence
level and how many arguments it needs. Compare its precedence level with that of the
topmost (most recently pushed) operation on the stack. If the precedence of the new
operation is less than or equal to that of the one on the stack, go to step 5. If it’s greater,
go to step 6.

The topmost operation on the stack has higher precedence than the one we
just read, so we should do it right away. (For example, we’ve just read the in ;
the multiplication operation and both of its operands are ready on the stacks.) Pop
the operation off the stack, pop either one or two items off the data stack depending
on the first subscript of the popped operation, then compile machine instructions to
perform the indicated computation. Push the result on the data stack as a single quantity.
However, if the operation we popped is –, then we’re finished. There should be only one
thing on the data stack, and it’s the completely compiled expression. Otherwise, we still
have the new operation waiting to be processed, so return to step 4.

The topmost operation on the stack has lower precedence than the one we
just read, so we can’t do it yet because we’re still reading its right operand. (For example,
we’ve just read the in ; we’re not ready to do either operation until we read the

later.) Push the new operation onto the operation stack, then return to step 2.

Here’s how this algorithm works out with the sample expression above. In the data
stack, a boxed entry like means the result from translating that subexpression into
the object language.

step operation stack data stack token

–

–



|

|

|

|

|

|

|

|

| |

|

[sub 2 2]

[minus 1 4]

does
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2,3 2,2 0 2,3

1,4

1,4 2,3 2,2 0 1,4

2,2

2,3 2,2 0 2,2

2,2

2,2 0 2,2

2,2

0 2,2

2,2

2,2 0 2,2

0

0 0

0

0

6 [ * + ] *
2 -
4 -
6 [ - * + ] -
2 [ c b a ] c
3 -
4 -
5 [ * + ] [ -c b a ] -
4 -

5 [ + ] [ b* -c a ] -
4 -

5 [ ] [ a+ b* -c ] -

4 -
6 [ - ] -

2 [ d a+ b* -c ] d
3
4

5 [ ] [ a+ b* -c -d ]

5 [ ] [ a+ b* -c -d ]

(

Pgetunary
pgetbinary

-

–

–

–

–

–

–

–
–

– –

–

The final value on the data stack is the translation of the entire expression.

The algorithm so far does not deal with parentheses. They’re handled somewhat like
operations, but with slightly different rules. A left parenthesis is stored on the operation
stack as , like the special marker at the beginning of the expression, but it does not
invoke step 5 of the algorithm before being pushed on the stack. A right parenthesis

invoke step 5, but only as far down the stack as the first matching left parenthesis; if
it were an ordinary operation of precedence zero it would pop everything off the stack.
You might try to express precisely how to modify the algorithm to allow for parentheses.

Here are the procedures that embody this algorithm in the compiler.
and output a list like

for binary or



step 1

step 2

step 3
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unary binary
op.prec

ppopop

Pexpr1 pdata
Pdata

pexpr

to pexpr
local [opstack datastack parenlevel]
make "opstack [[popen 1 0]]
make "datastack []
make "parenlevel 0
output pexpr1
end

to pexpr1
local [token op]
make "token token
while [equalp :token "|(|] [popen make "token token]
make "op pgetunary :token
if not emptyp :op [output pexprop :op]
push "datastack pdata :token
make "token token
while [and (:parenlevel > 0) (equalp :token "|)| )]

[pclose make "token token]
make "op pgetbinary :token
if not emptyp :op [output pexprop :op]
make "peektoken :token
pclose
if not emptyp :opstack [(throw "error [too many operators])]
if not emptyp butfirst :datastack [(throw "error [too many operands])]
output pop "datastack
end

for unary minus. (I’m leaving out some complications having to do with type checking.)
They work by looking for a or property on the property list of the
operation symbol. Procedures with names like are selectors for the members
of these lists.

In this algorithm, only step 5 actually generates any instructions in the object
program. This is the step in which an operation is removed from the operation stack
and actually performed. Step 5 is carried out by the procedure (Pascal pop
operation); most of that procedure deals with code generation, but I’ve omitted that part
of the procedure in the following listing because right now we’re concerned with the
parsing algorithm. We’ll return to code generation shortly.

invokes when it expects to read an operand, which could be a
number, a variable, or a function call. , which I’m not showing here, generates
code to make the operand available and outputs the location of the result in the simulated
computer, in a form that can be used by .
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step 4

step 6

step 5

... code generation omitted ...

to pexprop :op
while [(op.prec :op) < (1 + op.prec first :opstack)] [ppopop]
push "opstack :op
output pexpr1
end

to ppopop
local [op function args left right type reg]
make "op pop "opstack
make "function op.instr :op
if equalp :function "plus [stop]
make "args op.nargs :op
make "right pop "datastack
make "left (ifelse equalp :args 2 [pop "datastack] [[[] []]])
make "type pnewtype :op exp.type :left exp.type :right

push "datastack (list :type "register :reg)
end

to popen
push "opstack [popen 1 0]
make "parenlevel :parenlevel+1
end

to pclose
while [(op.prec first :opstack) > 0] [ppopop]
ignore pop "opstack
make "parenlevel :parenlevel - 1
end

We’re ready to move from parsing to code generation, but first you must understand
what a computer’s native language is like. Most computer models in use today have a
very similar structure, although there are differences in details. My simulated computer
design makes these detail choices in favor of simplicity rather than efficiency. (It wouldn’t
be very efficient no matter what, compared to real computers. This “computer” is actually
an interpreter, written in Logo, which is itself an interpreter. So we have two levels of
interpretation involved in each simulated instruction, whereas on a real computer, each
instruction is carried out directly by the hardware. Our compiled Pascal programs, as
you’ve probably already noticed, run very slowly. That’s not Pascal’s fault, and it’s not even
primarily my compiler’s fault, even though the compiler doesn’t include optimization
techniques. The main slowdown is in the interpretation of the machine instructions.)
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rload 8 a
rload 9 b
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store 10 c
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* One current topic in computer architecture research is the development of computers
with many processors working together. In some of these designs, each processor includes its own
medium-size memory within the processor chip.

Every computer includes a which decodes instructions and carries out the
indicated arithmetic operations, and a in which information (such as the values
of variables) is stored. In modern computers, the processor is generally a single

nicknamed a which is a rectangular black plastic housing one or two inches
on a side that contains thousands or even millions of tiny components made of silicon.
The memory is usually a containing several memory chips. Computers also
include circuitry to connect with input and output devices, but we’re not going to have
to think about those. What makes one computer model different from another is mainly
the processor. If you have a PC, its processor is probably an Intel design with a name like
80486 or Pentium; if you have a Macintosh, the processor might be a Motorola 68040 or
a Power PC chip.

It turns out that the wiring connecting the processor to the memory is often the
main limiting factor on the speed of a computer. Things happen at great speed within
the processor, and within the memory, but only one value at a time can travel from one
to the other. Computer designers have invented several ways to get around this problem,
but the important one for our purposes is that every modern processor includes a little
bit of memory within the processor chip itself. By “a little bit” I mean that a typical
processor has enough memory in it to hold 32 values, compared to several million values
that can be stored in the computer’s main memory. The 32 memory slots within the
processor are called *

Whenever you want to perform an arithmetic operation, the operands must already
be within the processor, in registers. So, for example, the Pascal instruction

isn’t compiled into a single machine instruction. First we must the values of and
from memory into registers, then add the two registers, then the result back into

memory:



bits

load

load

load

as-
sembly language assembler

address.
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rload a
add

c

add 0023 add
0023100809

opsetup

add
sub mul div quo rem land

* Really I should have called this instruction , but my machine simulator uses Logo
procedures to carry out the machine instructions, and I had to pick a name that wouldn’t conflict
with the Logo primitive.

** This, too, is a simplification. In real computers, different data types require different amounts
of memory. A character value, for example, fits into eight (binary digits) of memory, whereas
an integer requires 32 bits in most current computers. Instead of a single instruction, a real
computer has a separate one for each datum size.

The first instruction loads the value from memory location into register 8.* The
instruction adds the numbers in registers 8 and 9, putting the result into register 10.

(In practice, you’ll see that the compiler would be more likely to conserve registers by
reusing one of the operand registers for the result, but for this first example I wanted to
keep things simple.) Finally we store the result into the variable in memory.

The instructions above are actually not machine language instructions, but rather
instructions, a kind of shorthand. A program called an translates

assembly language into machine language, in which each instruction is represented as a
number. For example, if the instruction code for is , then the instruction
above might be translated into , with four digits for the instruction code
and two digits for each of the three register numbers. (In reality the encoding would use
binary numbers rather than the decimal numbers I’ve shown in this example.) Since a
machine language instruction is just a number, the instructions that make up a computer
program are stored in memory along with the program’s data values. But one of the
simplifications I’ve made in my simulated computer is that the simulator deals directly
with assembly language instructions, and those instructions are stored in a Logo list,
separate from the program’s data memory.

The simulated computer has 32 processor registers plus 3000 locations of main
memory; it’s a very small computer, but big enough for my sample Pascal programs. (You
can change these sizes by editing procedure in the compiler.) The registers are
numbered from 0 to 31, and the memory locations are numbered from 0 to 2999. The
number of a memory location is called its Each memory location can hold one
numeric value.** A Pascal array will be represented by a contiguous block of memory
locations, one for each member of the array. Each register, too, can hold one numeric
value. In this machine, as in some real computers, register number 0 is special; it always
contains the value zero.

The simulated computer understands 50 instruction codes, fewer than most real
computers. The first group we’ll consider are the 14 binary arithmetic instructions: ,

, , (real quotient), (integer quotient), (remainder), (logical



add 10 8 9

addi 10 8 9

y := x - 5

add

system call
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lor eql neq less
gtr leq geq

0 1
lnot sint

sround srandom

eql lnot
neq

sint sround srandom

s

i addi subi

* One important simplification is that in the simulated computer, the same instructions are used
for all kinds of numbers. A typical computer has three instructions: one for integers, one for
short reals (32 bits), and one for long reals (64 bits).

and), (logical or), (compare two operands for equality), (not equal), ,
(greater than), (less than or equal), and (greater than or equal). The result

of each of the six comparison operators is for false or for true. The machine also
has four unary arithmetic instructions: (logical not), (truncate to integer),

(round to integer), and . Each of these 18 arithmetic instructions
takes its operands from registers and puts its result into a register.

All but the last three of these are typical instructions of real computers.* (Not every
computer has all of them; for example, if a computer has and , then it doesn’t
really need a instruction because the same value can be computed by a sequence
of two instructions.) The operations , , and are less likely to be
machine instructions on actual computers. On the other hand, most real computers
have a mechanism, which is a machine instruction that switches the computer
from the user’s program to a part of the operating system that performs some task on
behalf of the user. System calls are used mainly for input and output, but we can pretend
that there are system calls to compute these Pascal library functions. (The letter in the
instruction names stands for “system call” to remind us.)

The simulated computer also has another set of 18 instructions, with the
letter added to the instruction name: , , and so on. In these instructions, the
rightmost operand in the instruction is the actual value desired, rather than the number
of a register containing the operand. For example,

means, “add the number in register 8 and the number in register 9, putting the result
into register 10.” But

means, “add the number in register 8 to the value 9, putting the result in register 10.”

It’s only the right operand that can be made immediate. So, for example, the Pascal
assignment
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newline

putch puttf
putint putreal

putstr

rload 8 x
subi 8 8 5
store 8 y

y := 5 - x

addi 8 0 5
rload 9 x
sub 8 8 9
store 8 y

putint 10 8

putstr 1 [The shuffled deck:]

can be translated into

but the Pascal assignment

must be translated as

This example illustrates one situation in which it’s useful to have register 0 guaranteed to
contain the value 0.

Our simulated machine has six more system call instructions having to do with
printing results. One of them, , uses no operands and simply prints a newline
character, moving to the beginning of a new line on the screen. Four more are for
printing the value in a register; the instruction used depends on the data type of the
value in the register. The instructions are for a character, for a boolean
(true or false) value, for an integer, and for a real number. Each takes
two operands; the first, an immediate value, gives the minimum width in which to print
the value, and the second is a register number. So the instruction

means, “print the integer value in register 8, using at least 10 character positions on the
line.” The sixth printing instruction, , is used only for constant character strings
in the Pascal program; its first operand is a width, as for the others, but its second is a
Logo list containing the string to print:

This is, of course, unrealistic; in a real computer the second operand would have to be
the memory address of the beginning of the array of characters to print. But the way I
handle printing isn’t very realistic in any case; I wanted to do the simplest possible thing,
because worrying about printing really doesn’t add anything to your understanding of
the process of compilation, which is the point of this chapter.
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rload store

label

234 Chapter 5 Programming Language Implementation

* In a real computer, each instruction is stored in a particular memory location, so the address
of an instruction is the address of the memory location in which it’s stored. In this simulated
computer, I keep the program in the form of a Logo list, and so I cheat and put the sublist starting
at the next instruction into the register. This isn’t quite as much of a cheat as it may seem, though,
since you know from Chapter 3 that Logo represents a list with the memory address of the first pair
of the list.

The next group of instructions has to do with the flow of control in the computer
program. Ordinarily the computer carries out its instructions in sequence, that is, in
the order in which they appear in the program. But in order to implement conditionals
(such as ), loops (such as ), and procedure calls, we must be able to jump out of
sequence. The instruction takes a single operand, a that appears somewhere
in the program. When the computer carries out a jump instruction, it looks for the
specified label and starts reading instructions just after where that label appears in the
program. (We saw an example of labels at the beginning of this chapter.)

The instruction is used for unconditional jumps. In order to implement
conditionals and loops, we need a way to jump if some condition is true. The instruction

(jump if true) has two operands, a register number and a label. It jumps to the
specified label if and only if the given register contains a true value. (Since registers hold
only numbers, we use the value 1 to represent true, and 0 to represent false.) Similarly,

jumps if the value in the given register is false.

For procedure and function calls, we need a different mechanism. The jump is
unconditional, but the computer must remember where it came from, so that it can
continue where it left off once the called procedure or function returns. The instruction

(jump and link) takes two operands, a register and a label. It puts into the register
the address of the instruction following the instruction.* Then it jumps to the
specified label. To return from the called procedure, we use the (jump register)
instruction. It has one operand, a register number; it jumps to the instruction whose
address is in the register.

One final instruction that affects the flow of control is the system call. It
requires no operands; it terminates the running of the program. In this simulated
computer, it returns to a Logo prompt; in a real computer, the operating system would
start running another user program.

The only remaining instructions are and . You already know what
these do, but I’ve been showing them in oversimplified form so far. The second operand
can’t just be a variable name, because that variable might not be in the same place
in memory every time the procedure is called. Think, for example, about a recursive
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procedure. Several invocations may be in progress at once, all of them carrying out the
same compiled instructions, but each referring to a separate set of local variables. The
solution to this problem is that the compiler arranges to load into a register the address
of a block of memory containing all the local variables for a given procedure call. If the
variable , for example, is in the sixth memory location of that block, an instruction to
load or store that variable must be able to say “the memory location whose address is the
contents of register 4 (let’s say) plus five.” So each load and store instruction contains an

in parentheses following an to be added to the contents of that register.
We’d say

to store the contents of register 8 into the variable , provided that register 4 points to
the correct procedure invocation’s local variables and that is in the sixth position in the
block. (The first position in the block would have offset 0, and so on.)

The first step in invoking a procedure or function is to set aside, or a block of
memory locations for use by that invocation. This block will include the procedure’s
local variables, its arguments, and room to save the values of registers as needed.
The compiler’s data structures include, for each procedure, how much memory that
procedure needs when it’s invoked. That block of memory is called a

In most programming languages, including Pascal and Logo (but not, as it turns
out, Lisp), the frame allocated when a procedure invocation begins can be released, or

when that invocation returns to its caller. In other words, the procedure’s local
variables no longer exist once the invocation is finished. In these languages, the frames
for all the active procedure invocations can be viewed as a a data structure to which
new elements are added by a Push operation, and elements are removed using a Pop
operation that removes the most recently pushed element. (In this case, the elements
are the frames.) That is, suppose that procedure A invokes B, which invokes C, which
invokes D. For each of these invocations a new frame is pushed onto the stack. Which
procedure finishes first? It has to be D, the last one invoked. When D returns, its frame
can be popped off the stack. Procedure C returns next, and its frame is popped, and so
on. The phrase is used to refer to frames that behave like elements of a stack.

My Pascal compiler allocates memory starting at location 0 and working upward. At
the beginning of the program, a is allocated to hold the program’s global
variables. Register 3, the always contains the address of the beginning of
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the global frame, so that every procedure can easily make use of global variables. (Since
the global frame is the first thing in memory, its address is always zero, so the value in
register 3 is always 0. But in a more realistic implementation the program itself would
appear in memory before the global frame, so its address would be greater than zero.)

At any point in the program, register 4, the contains the address of
the beginning of the current frame, that is, the frame that was created for the current
procedure invocation. Register 2, the contains the address of the first
currently unused location in memory.

My compiler is a little unusual in that when a procedure is called, the stack frame
for the new invocation is allocated by the caller, not by the called procedure. This
simplifies things because the procedure’s arguments can be stored in its own frame; if
each procedure allocates its own frame, then the caller must store argument values in its
(the caller’s) frame, because the callee’s frame doesn’t exist yet. So, in my compiler, the
first step in a procedure call is to set register 5, the to point to the first
free memory location, and change the stack pointer to allocate the needed space. If
memory locations are needed for the new frame, the calling procedure will contain the
following instructions:

The first instruction copies the value from register 2 (the first free memory location) into
register 5; the second adds to register 2. (I’ve left out a complication, which is that
the old value in register 5 must be saved somewhere before putting this new value into it.
You can read the code generation instructions at the beginning of , in the
program listing at the end of the chapter, for all the details.) The current frame pointer
is also saved in location 3 of the new frame:

The compiler uses data abstraction to refer to these register numbers and frame slots; for
example, the procedure takes no arguments and always outputs 4, while

outputs 3.

The next step is to put the argument values into the new frame. During this process,
the calling procedure must use register 4 to refer to its own variables, and register 5 to
refer to the callee’s variables. The final step, just before calling the procedure, is to make
the frame pointer (register 4) point to the new frame:



procedure B

procedure C

procedure A

main program

proc1
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jal 1 "proclabel

store 1 0(4)

rload 1 0(4)
add 2 4 0
rload 4 3(2)
jr 1

Once the caller has set up the new frame and saved the necessary registers, it can
call the desired procedure, putting the return address in register 1:

The first step in the called procedure is to save the return address in location zero of its
frame:

The procedure then carries out the instructions in its body. When it’s ready to
return, it must load the saved return address back into register 1, then restore the old
stack pointer and frame pointer to deallocate its frame, and finally return to the caller:

(Procedure in the compiler generates these instructions for each procedure.)

One final complication about stack frames comes from Pascal’s block structure.
Suppose we have a program with internal procedures arranged in this structure:

Then suppose that the main program calls procedure A, which calls B, which calls C,
which calls itself recursively. The current (inner) invocation of C has access to its own
variables, those of procedure A, and the global variables, but not to procedure B’s
variables. How does procedure C know where procedure A’s stack frame is located? The
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* If procedures used the previous-frame pointers to make variable references, we would be
compiling a dynamically scoped language! In this example, because Pascal is lexically scoped,
procedure C can’t refer to procedure B’s variables, even though B called C.

answer is that every frame, in addition to saving a pointer to the previous frame, must
include a pointer to the frame. The calling procedure sets this up; it
can do this because it knows its own lexical depth and that of the called procedure. For
example, when procedure B calls procedure C, C’s lexically enclosing frame will be the
same as B’s (namely, the frame for the invocation of A), because B and C are at the same
lexical depth. (They are both declared inside A.) But when procedure A calls procedure
B, which is declared within itself, A must store its own frame pointer as B’s lexically
enclosing frame. Here is a picture of what’s where in memory:

If all these pointers between frames confuse you, it might help to keep in mind that
the two kinds of pointers have very different purposes. The pointer to the previous frame
is used only when a procedure returns, to help in putting everything back the way it was
before the procedure was called (in particular, restoring the old value of register 4). The
pointer to the lexically enclosing frame is used while the procedure is running, whenever
the procedure makes reference to a variable that belongs to some outer procedure (for
example, a reference in procedure B or C to a variable that belongs to procedure A).*
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[myproc procedure %myproc [2 46]]

:idlist

program
procedure function

doit
g14

symbol

%symbol

In this section I’ll describe the main data structures used during compilation (abstract
data types for identifiers and for expressions) and during the running of the program
(registers and frames).

The main body of information that the compiler must maintain is the list of Pascal
identifiers (variable, procedure, and function names). Since Pascal is lexically scoped,
some attention is necessary to ensure that each compiled Pascal procedure has access to
precisely the variables that it should. At any point during the compilation, the value of

is a list of just those identifiers that may be used in the part of the program
being compiled. We’ll see in a moment how that’s accomplished.

There are two main categories of identifier: procedure names (including the main
program and functions in this category) and variable names. The information maintained
for a procedure name looks like this example:

The first member of this list is the Pascal name of the program, procedure, or function.
The second member is the type indicator, which will be one of the words ,

, or . The third member is the procedure’s “Logo name,” the
unique name used within the compiler to represent this program or procedure. The
program’s Logo name is used as the variable name whose value will be the compiled
program; the Logo names for procedures and functions are used as the labels in the
compiled program at which each procedure or function begins. The fourth member of
the list contains the frame information for the procedure; it’s a list of two numbers, the
lexical depth and the frame size. The lexical depth is 0 for the main program, 1 for a
procedure declared inside the main program, 2 for a procedure declared inside a depth-1
procedure, and so on. The frame size indicates how many memory locations must be
allocated for each invocation of the procedure. (For the main program, the frame size
indicates the size of the global frame.)

Because of the Pascal scope rules, there can be two procedures with the same name,
each declared within a different region of the program. But there is no scoping of labels
in the compiled program; each label must be unique. The simplest solution would be
to use a distinct program-generated name for every Pascal procedure; the Pascal
would become the Logo . In fact I chose to modify this approach somewhat. When an
identifier is declared in the source program, the compiler looks to see whether
another identifier with the same name has appeared anywhere in the program. If not,
the Logo name is used; if so, a generated symbol is used. This rule makes the
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%symbol
newlname

id.type id.lname id.frame

getid

true var false

i

array [0..5, 5..7] of integer

[3..7] [3 5]

41(4)

id.type id.pointer id.varp

idlist

Idlist program procedure
function

compiled program a little easier to read, while preserving the rule that all Logo names
must be unique. The percent sign in ensures that this Logo name doesn’t
conflict with any names used in the compiler itself. Procedure in the compiler
takes a Pascal identifier as input and generates a new Logo name to correspond.

The selectors , , and are used for the second through
fourth members of these lists. There’s no selector for the first member, the Pascal name,
because the compiler never extracts this information explicitly. Instead, the Pascal name
is used by procedure , which takes a Pascal name as its input and returns the
corresponding identifier list.

For variable names, the identifier information looks a little different:

The first two members of this list are the Pascal name and the type, the same as for
a procedure. The third member is the information for the variable: its lexical
depth and the offset within a frame where it should be kept. The compiler will use this
information to issue instructions to load or store the value of the variable. The fourth
member of the list is if this variable is a (call by reference) parameter,
otherwise.

The variable above has a scalar type, so its type indicator is a word. Had it been an
array, the type indicator would be a list such as

for a variable declared as .

For each dimension of the array, the first number in the list is the smallest possible index,
while the second number is the number of possible index values in this dimension. That
is, the range is represented by the list because there are five possible
values starting from 3. Notice that there is no “Logo name” for a variable; in the compiled
program, a variable is represented as an offset and an index register, such as .

For variables, the selectors used are , , and .

The information about currently accessible identifiers is kept in the list .
This variable holds a list of lists; each Pascal identifier is represented by a list as indicated
above. is a local variable in the compiler procedures , ,
and . That is, there is a separate version for each block of the Pascal source
program. Each local version starts out with the same value as the higher-level version;
identifiers declared within a block are added to the local version but not to the outer



the dynamic environment at compile time reflects the lexical environment at run
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invokes invokes
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idlist

idlist
idlist

idlist

tower tower hanoi
movedisk program tower

procedure hanoi procedure
movedisk

push idlist
idlist

Proc1
idlist

to procedure
proc1 "procedure framesize.proc
end

to function
proc1 "function framesize.fun
end

to proc1 :proctype :framesize
localmake "procname token
localmake "lexical.depth :lexical.depth+1
localmake "frame (list :lexical.depth 0)
push "idlist (list :procname :proctype (newlname :procname) :frame)
localmake "idlist :idlist
...
end

localmake "idlist :idlist

one. When the compiler finishes a block, the (Logo) procedure in charge of that block
stops and the outer becomes current again.

This arrangement may or may not seem strange to you. Recall that we had to invent
this mechanism because Pascal’s lexical scope is different from Logo’s dynamic
scope. The reason we have these different versions of is to keep track of which
identifiers are lexically available to which blocks. And yet we are using Logo’s dynamic
scope to determine which is available at any point in the compilation. The reason
this works is that

For example, in the program, the fact that , which
in turn contains , is reflected in the fact that (compiling )

(compiling ), which in turn recursively
(compiling ). Earlier I said that lexical scope is easier for a compiler than
dynamic scope; this paragraph may help you see why that’s true. Even dynamically scoped
Logo naturally falls into providing lexical scope for a Pascal compiler.

Here is how procedure and function declarations are compiled:

(I’m leaving out the code generation part for now.) What I want to be sure you understand
is that the instruction adds the new procedure name to the ; after
that, it creates a new whose initial value is the same as the old one. It’s very
important that the instruction

comes where it does and not at the beginning of the procedure. needs access to
the outer when it starts, and then later it “shadows” that variable with its own
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local
var

Getid
idlist

program
procedure function

compileprocedure

getid idlist
procedure function

statement procedure function
program

idlist

pexpr

local version. This example shows that Logo’s command really is an executable
command and not a declaration like Pascal’s declaration. In Pascal it would be
unthinkable to declare a new local variable in the middle of a block.

depends on Logo’s dynamic scope to give it access to the right version of
. Think about writing a Pascal compiler in Pascal. There would be a large

block for with many other procedures inside it. Two of those inner procedures
would be the ones for and . (Of course they couldn’t have those
names, because they’re Pascal reserved words. They’d be called
or some such thing. But I think this will be easier to follow if I stick with the names
used in the Logo version of the compiler.) Those two procedures should be at the same
level of block structure; neither should be lexically within the other. That’s because
a Pascal procedure block can include a function definition or vice versa. Now, where
in the lexical structure does belong? It needs access to the local of
either or , whichever is currently active. Similarly, things like

need to be lexically within both and , and actually
also within because the outermost program block has statements too. It would
theoretically be possible to solve the problem by writing three identical versions of each
of these subprocedures, but that solution is too horrible to contemplate. Instead a
more common technique is to have only one variable, a global one, and write
the compiler so that it explicitly maintains a stack of old values of that variable. The
Pascal programmer has to do the work that the programming language should be doing
automatically. This is an example in which dynamic scope, while not absolutely essential,
makes the program much easier to write and more straightforward to understand.

For every procedure or function in the Pascal source program, the compiler creates
a global Logo variable with the same name as the corresponding label—that is, either a
percent-prefix name or a generated symbol. The value of this variable is a list of types,
one for each argument to the procedure or function. (For a function, the first member
of the list is the type of the function itself; the butfirst is the list of types of its arguments.)
The compiler examines this “type signature” variable when a procedure or function is
invoked, to make sure that the types of the actual arguments match the types of the
formal parameters.

The other important compile-time data structure is the one that represents a
compiled expression. When the compiler calls , its job is to parse an expression
from the Pascal source program and generate code to compute (when the compiled
program runs!) the value of the expression. The generated code leaves the computed
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pexpr

register

15 pexpr

pexpr

x

a

exp.type
exp.mode register immediate exp.value

+

Passign

[real register 8]

[integer immediate 15]

x := 15

addi 7 0 15
store 7 48(4)

x := a+15

rload 7 53(4)
addi 7 7 15
store 7 48(4)

value in some register. What returns to its caller is a data structure indicating
which register and what type the expression has, like this:

The first member of this list is the type of the expression. Most of the time, the second
member is the word and the third member is the register number in which
the expression’s value can be found. The only exception is for a constant expression; if
the expression is, for example, then will output

For the most part, these immediate expressions are useful only within recursive calls to
. In compiling the Pascal assignment

we’re going to have to get the value 15 into a register anyway in order to be able to store
it into ; the generated code will be something like

An immediate expression is most useful in compiling something like

in which we can avoid loading the value 15 into a register, but can directly add it to the
register containing :

The members of an expression list are examined using the selectors ,
(the word or ), and (the register number

or immediate value).

In this compiler an “expression” is always a type; although the formal definition
of Pascal allows for array expressions, there are no operations that act on arrays the way
operations like act on scalars, and so an array expression can only be the name of
an array variable. ( of arrays can, of course, be part of a scalar expression.)

, the compiler procedure that handles assignment statements, first checks for



x := f(3)+f(4)
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pexpr

reg.zero
reg.retaddr
reg.stackptr
reg.globalptr
reg.frameptr
reg.newfp
reg.retval
reg.firstfree

newregister

regfree newregister

frame.retaddr
frame.save.newfp
frame.outerframe
frame.prevframe
frame.regsave
frame.retval

the special case of an array assignment and then, only if the left side of the assignment is
a scalar, invokes to parse a scalar expression.

In order to understand the code generated by the compiler, you should also know
about the data structures used by compiled programs. First, certain registers are
reserved for special purposes:

number name purpose

0 always contains zero
1 return address from procedure call
2 first free memory address
3 address of global frame
4 address of current frame
5 address of frame being made for procedure call
6 return value from function
7 first register available for expressions

We’ve already seen most of these while discussing stack frames. A Pascal function returns
its result in register 6; the caller immediately copies the return value into some other
register so that it won’t be lost if the program calls another function, for a case like

Whenever a register is needed to hold some computed value, the compiler calls the
Logo procedure , which finds the first register number starting from 7
that isn’t currently in use. When the value in a register is no longer needed, the compiler
calls to indicate that that register can be reassigned by .

The other noteworthy runtime data structure is the use of slots within each frame
for special purposes:

number name purpose

0 address from which this procedure was called
1 saved register 3 while filling this new frame
2 the frame lexically enclosing this one
3 the frame from which this one was called

4–35 space for saving registers
36 function return value

Why is there both a register and a frame slot for a function’s return value? Remember
that the way you indicate the return value in a Pascal function is by assigning to the
function’s name as if it were a variable. Such an assignment is not necessarily the last
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rload 6 36(4)

to pif
local [cond elsetag endtag]
make "cond pboolean pexpr
make "elsetag gensym
make "endtag gensym
mustbe "then
code (list "jumpf :cond (word "" :elsetag))
regfree :cond
statement
code (list "jump (word "" :endtag))
code :elsetag
ifbe "else [statement]
code :endtag
end

instruction in the function; it may do more work after computing the return value. The
compiler notices as assignment to the function name and generates code to save the
computed value in slot 36 of the current frame. Then, when the function actually returns,
the compiler generates the instruction

to copy the return value into register 6. The function’s frame is about to be freed, so the
caller can’t look there for the return value; that’s why a register is used.

Each frame includes a block of space for saving registers when another procedure is
called. That’s because each procedure allocates register numbers independently; each
starts with register 7 as the first free one. So if the registers weren’t saved before a
procedure call and restored after the call, the values in the registers would be lost.
(Although the frame has enough room to save all 32 registers, to make things simple, not
all 32 are actually saved. The compiler knows which registers contain active expression
values at the moment of the procedure call, and it generates code to save and restore
only the necessary ones.)

You might think it would be easier to have each procedure use a separate set of
registers, so saving wouldn’t be necessary. But this doesn’t work for two reasons. First,
there are only a few registers, and in a large program we’d run out. Even more important,
the compiled code for a procedure is going to use the same registers in each
invocation, so we certainly can’t avoid saving registers in that situation.

Let’s look again at how the compiler handles a Pascal statement:
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if

if
if pif

if
boolean

pexpr
pboolean

pboolean
pif

if

condition statement
condition statement statement

cond
cond

... get condition into register ...

... code for statement ...

... code for statement ...

if then
if then else

make "cond pboolean pexpr

to pboolean :expr [:pval noimmediate :expr]
if equalp exp.type :pval "boolean [output exp.value :pval]
(throw "error sentence exp.type :pval [not true or false])
end

to noimmediate :value
if equalp exp.mode :value "immediate ~

[localmake "reg newregister
code (list "addi :reg reg.zero exp.value :value)
output (list exp.type :value "register :reg)]

output :value
end

jumpf "g5
then

jump "g6
g5

else
g6

I showed you this procedure while talking about parsing, asking you to ignore the
parts about code generation. Now we’ll come back to that part of the process.

The format of the statement is either of these:

(There is probably a semicolon after the statement, but it’s not officially part of the ;
it’s part of the compound statement that contains the .) When we get to , the
compiler has already read the token ; the next thing to read is an expression, which
must be of type , providing the condition part of the statement.

In the instruction

the call to generates code for the expression and returns an expression list, in the
format shown earlier. The procedure does three things: First, it checks the
mode of the expression; if it’s immediate, the value is loaded into a register. Second, it
checks the type of the expression to ensure that it really is boolean. Third,
returns just the register number, which will be used in code generated by .

Overall, the code compiled for the statement will look like this:
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make "elsetag gensym
make "endtag gensym

code (list "jumpf :cond (word "" :elsetag))
regfree :cond

sub 8 8 9

g5 g6

pif pexpr
jumpf

jumpf
:cond regfree

for while repeat

ppopop

ppopop

Ppopop

minus

pproccall1

procargs

passign

The labels and in this example are generated symbols; they’ll be different each
time. The labels are generated by the instructions

in . After we call to generate the code for the conditional expression, we
explicitly generate the instruction:

Notice that once we’ve generated the instruction, we no longer need the value in
register , and we call to say so. The rest of this code generation process
should be easy to work out. All of the structured statements ( , , and )
are similarly simple.

The code generation for expressions is all in . Most of the complexity of
dealing with expressions is in the parsing, not in the code generation; by the time we get
to , we know that we want to carry out a single operation on two values, both of
which are either in registers or immediate values. The simple case is that both are in
registers; suppose, for example, that we are given the subtraction operation and the two
operands are in registers 8 and 9. Then we just generate the instruction

and declare register 9 free. is a little long, because it has to check for special
cases such as immediate operands. Also, a unary minus is turned into a subtraction from
register zero, since there is no unary operation in our simulated machine.

Ironically, it’s the “simple” statements that are hardest to compile: assignment and
procedure calling. For procedure (or function) calling, the difficulty is in matching
actual argument expressions with formal parameters. Procedure generates
the instructions to manipulate frame pointers, as described earlier, and procedure

fills the newly-created frame with the actual argument values. (If an argument
is an array passed by value, each member of the array must be copied into the new
frame.) Assignment, handled by procedure in the compiler, is similar to
argument passing; a value must be computed and then stored into a frame. I wouldn’t
be too upset if you decide to stop here and take code generation for memory references
on faith.

Suppose we are compiling the assignment
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Passign x getid
passign

passign1
passign

pfunset

pexpr Check.type
pboolean

codestore

var

make "name token

make "id getid :name
make "pointer id.pointer :id
make "type id.type :id

make "value check.type :type pexpr
codestore :value (id.pointer :id) (id.varp :id) :index

x :=

to passign
local [name id type index value pointer target]

make "index []
ifbe "|[| [make "index commalist [pexpr] mustbe "|]|]
mustbe "|:=|

passign1
end

to passign1
if and (listp :type) (emptyp :index) [parrayassign :id stop]
setindex "false

regfree :value
end

reads the name and uses to find the information associated with that
name. If the assignment is to an array member, then must also read the array
indices, but let’s say that we are assigning to a scalar variable, to keep it simple.

Procedure contains the steps that are in common between ordinary
assignment (handled by ) and assignment to the name of the current function,
to set the return value (handled by , which you can read in the complete listing
at the end of the chapter).

We call to generate the code to compute the expression. is like
, which you saw earlier, except that it takes the desired type as an argument. It

returns the number of the register that contains the expression value.

The real work is done by , which takes four inputs. The first is the
register number whose value should be stored; the other three inputs indicate where in
memory the value should go. First comes the pointer from the identifier list; this, you’ll
recall, tells us the lexical depth at which the variable was declared and the offset within
its frame where the variable is kept. Next is a true or false value indicating whether or
not this variable is a parameter; if so, then its value is a pointer to the variable whose
value we want to change. Finally, the input will be zero for a scalar variable,
or the number of a register containing the array index for an array member. (Procedure
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lindex

codeload
Codestore memsetup

rload store
41(4) memsetup

[41 4] targetaddr

Memsetup

var

frame.outerframe frame.outerframe

var

tower

to codestore :reg :pointer :varflag :index
localmake "target memsetup :pointer :varflag :index
code (list "store :reg targetaddr)
regfree last :target
end

, whose name stands for “linear index,” has been called to generate code to
convert the possible multi-dimensional indices, with possibly varying starting values, into
a single number indicating the position within the array, starting from zero for the first
member.)

(There is a similar procedure used to generate the code to load a variable’s
value into a register.) invokes a subprocedure whose job is to
work out an appropriate operand for an or machine instruction. That
operand must be an offset and an index register, such as . What
returns is a list of the two numbers, in this case . Procedure turns
that into the right notation for use in the instruction.

is the most complicated procedure in the compiler, because there are so
many special cases. I’ll describe the easy cases here. Suppose that we are dealing with
a scalar variable that isn’t a parameter. Then there are three cases. If the lexical
depth of that variable is equal to the current lexical depth, then this variable is declared
in the same block that we’re compiling. In that case, we use register 4 (the current
frame pointer) as the index register, and the variable’s frame slot as the offset. If the
variable’s lexical depth is zero, then it’s a global variable. In that case, we use register
3 (the global frame pointer) as the index register, and the variable’s frame slot as the
offset. If the variable’s depth is something other than zero or the current depth, then
we have to find a pointer to the variable’s own frame by looking in the current frame’s

slot, and perhaps in frame’s slot, as
many times as the difference between the current depth and the variable’s depth.

If the variable is a parameter, then we go through the same cases just described,
and then load the value of that variable (which is a pointer to the variable we really want)
into a register. We use that new register as the index register, and zero as the offset.

If the variable is an array member, then we must add the linear index (which is
already in a register) to the offset as computed so far.

Perhaps an example will help sort this out. Here is the compiled version of the
program, with annotations:
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set up initial pointers

jump to main program

save return value
jump to body of

body of

reload return address
free stack frame

return to caller

[ [add 3 0 0]
[add 4 0 0]
[addi 2 0 36]
[jump "g1]

%hanoi [store 1 0(4)]
[jump "g2] hanoi

%movedisk [store 1 0(4)]
[jump "g3]

g3 [putstr 1 [Move disk ]] movedisk
[rload 7 36(4)]
[putint 1 7] write(number:1)
[putstr 1 [ from ]]
[rload 7 37(4)]
[putch 1 7] write(from:1)
[putstr 1 [ to ]]
[rload 7 38(4)]
[putch 1 7] write(to:1)
[newline]
[rload 1 0(4)]
[add 2 4 0]
[rload 4 3(2)]
[jr 1]
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body of

allocate new frame

set previous frame

set enclosing frame

first arg is

next arg is

next arg is

next arg is
switch to new frame

recursive call

set up for

note different enclosing frame

copy args

call

g2 [rload 7 36(4)] hanoi
[neqi 7 7 0] if number <> 0
[jumpf 7 "g4]
[store 5 1(2)]
[add 5 2 0]
[addi 2 2 40]
[store 4 3(5)]
[rload 7 2(4)]
[store 7 2(5)]
[rload 7 36(4)]
[subi 7 7 1]
[store 7 36(5)] number-1
[rload 7 37(4)]
[store 7 37(5)] from
[rload 7 39(4)]
[store 7 38(5)] other
[rload 7 38(4)]
[store 7 39(5)] onto
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%hanoi]

[store 5 1(2)] movedisk
[add 5 2 0]
[addi 2 2 39]
[store 4 3(5)]
[store 4 2(5)]
[rload 7 36(4)]
[store 7 36(5)]
[rload 7 37(4)]
[store 7 37(5)]
[rload 7 38(4)]
[store 7 38(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%movedisk] movedisk
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second recursive call

end of ...

return to caller

body of main program
prepare to call

constant argument

ASCII code for

ASCII code for

ASCII code for

call

[store 5 1(2)]
[add 5 2 0]
[addi 2 2 40]
[store 4 3(5)]
[rload 7 2(4)]
[store 7 2(5)]
[rload 7 36(4)]
[subi 7 7 1]
[store 7 36(5)]
[rload 7 39(4)]
[store 7 37(5)]
[rload 7 38(4)]
[store 7 38(5)]
[rload 7 37(4)]
[store 7 39(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%hanoi]
[jump "g5] if then

g4
g5 [rload 1 0(4)]

[add 2 4 0]
[rload 4 3(2)]
[jr 1]

g1 [store 5 1(2)]
[add 5 2 0] hanoi
[addi 2 2 40]
[store 4 3(5)]
[store 4 2(5)]
[addi 7 0 5] 5
[store 7 36(5)]
[addi 7 0 97] ’a’
[store 7 37(5)]
[addi 7 0 98] ’b’
[store 7 38(5)]
[addi 7 0 99] ’c’
[store 7 39(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%hanoi] hanoi
[exit]

]
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to compile :file
if namep "peekchar [ern "peekchar]
if namep "peektoken [ern "peektoken]
if not namep "idlist [opsetup]
if not emptyp :file [openread :file]
setread :file
ignore error
catch "error [program]
localmake "error error
if not emptyp :error [print first butfirst :error]
setread []
if not emptyp :file [close :file]
end

;; Global setup

to opsetup
make "numregs 32
make "memsize 3000
pprop "|=| "binary [eql 2 [boolean []] 1]
pprop "|<>| "binary [neq 2 [boolean []] 1]
pprop "|<| "binary [less 2 [boolean []] 1]
pprop "|>| "binary [gtr 2 [boolean []] 1]
pprop "|<=| "binary [leq 2 [boolean []] 1]
pprop "|>=| "binary [geq 2 [boolean []] 1]
pprop "|+| "binary [add 2 [[] []] 2]
pprop "|-| "binary [sub 2 [[] []] 2]
pprop "or "binary [lor 2 [boolean boolean] 2]
pprop "|*| "binary [mul 2 [[] []] 3]
pprop "|/| "binary [quo 2 [real []] 3]
pprop "div "binary [div 2 [integer integer] 3]
pprop "mod "binary [rem 2 [integer integer] 3]
pprop "and "binary [land 2 [boolean boolean] 3]
pprop "|+| "unary [plus 1 [[] []] 4]
pprop "|-| "unary [minus 1 [[] []] 4]
pprop "not "unary [lnot 1 [boolean boolean] 4]
make "idlist ‘[[trunc function int [1 ,[framesize.fun+1]]]

[round function round [1 ,[framesize.fun+1]]]
[random function random [1 ,[framesize.fun+1]]]]

make "int [integer real]
make "round [integer real]
make "random [integer integer]
end
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;; Block structure

to program
mustbe "program
localmake "progname token
ifbe "|(| [ignore commalist [id] mustbe "|)|]
mustbe "|;|
localmake "lexical.depth 0
localmake "namesused []
localmake "needint "false
localmake "needround "false
localmake "needrandom "false
localmake "idlist :idlist
localmake "frame [0 0]
localmake "id (list :progname "program (newlname :progname) :frame)
push "idlist :id
localmake "codeinto word "% :progname
make :codeinto []
localmake "framesize framesize.proc
program1
mustbe ".
code [exit]
foreach [int round random] "plibrary
make :codeinto reverse thing :codeinto
end

to program1
localmake "regsused (array :numregs 0)
for [i reg.firstfree :numregs-1] [setitem :i :regsused "false]
ifbe "var [varpart]
.setfirst butfirst :frame :framesize
if :lexical.depth = 0 [code (list "add reg.globalptr reg.zero reg.zero)

code (list "add reg.frameptr reg.zero reg.zero)
code (list "addi reg.stackptr reg.zero :framesize)]

localmake "bodytag gensym
code (list "jump (word "" :bodytag))
tryprocpart
code :bodytag
mustbe "begin
blockbody "end
end

to plibrary :func
if not thing (word "need :func) [stop]
code :func
code (list "rload reg.firstfree (memaddr framesize.fun reg.frameptr))
code (list (word "s :func) reg.retval reg.firstfree)
code (list "add reg.stackptr reg.frameptr reg.zero)
code (list "rload reg.frameptr (memaddr frame.prevframe reg.stackptr))
code (list "jr reg.retaddr)
end
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;; Variable declarations

to varpart
local [token namelist type]
make "token token
make "peektoken :token
if reservedp :token [stop]
vargroup
foreach :namelist [newvar ? :type]
mustbe "|;|
varpart
end

to vargroup
make "namelist commalist [id]
mustbe ":
ifbe "packed []
make "type token
ifelse equalp :type "array [make "type arraytype] [typecheck :type]
end

to id
localmake "token token
if letterp ascii first :token [output :token]
make "peektoken :token
output []
end

to arraytype
local [ranges type]
mustbe "|[|
make "ranges commalist [range]
mustbe "|]|
mustbe "of
make "type token
typecheck :type
output list :type :ranges
end

to range
local [first last]
make "first range1
mustbe "..
make "last range1
if :first > :last ~

[(throw "error (sentence [array bounds not increasing:]
:first ".. :last))]

output list :first (1 + :last - :first)
end
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to range1
localmake "bound token
if equalp first :bound "’ [output ascii first butfirst :bound]
if equalp :bound "|-| [make "bound minus token]
if equalp :bound int :bound [output :bound]
(throw "error sentence [array bound not ordinal:] :bound)
end

to typecheck :type
if memberp :type [real integer char boolean] [stop]
(throw "error sentence [undefined type] :type)
end

to newvar :pname :type
if reservedp :pname [(throw "error sentence :pname [reserved word])]
push "idlist (list :pname :type (list :lexical.depth :framesize) "false)
make "framesize :framesize + ifelse listp :type [arraysize :type] [1]
end

to arraysize :type
output reduce "product map [last ?] last :type
end

;; Procedure and function declarations

to tryprocpart
ifbeelse "procedure ~

[procedure tryprocpart] ~
[ifbe "function [function tryprocpart]]

end

to procedure
proc1 "procedure framesize.proc
end

to function
proc1 "function framesize.fun
end
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to proc1 :proctype :framesize
localmake "procname token
localmake "lexical.depth :lexical.depth+1
localmake "frame (list :lexical.depth 0)
push "idlist (list :procname :proctype (newlname :procname) :frame)
localmake "idlist :idlist
make lname :procname []
ifbe "|(| [arglist]
if equalp :proctype "function ~

[mustbe ":
localmake "type token
typecheck :type
make lname :procname fput :type thing lname :procname]

mustbe "|;|
code lname :procname
code (list "store reg.retaddr (memaddr frame.retaddr reg.frameptr))
program1
if equalp :proctype "function ~

[code (list "rload reg.retval (memaddr frame.retval reg.frameptr))]
code (list "rload reg.retaddr (memaddr frame.retaddr reg.frameptr))
code (list "add reg.stackptr reg.frameptr reg.zero)
code (list "rload reg.frameptr (memaddr frame.prevframe reg.stackptr))
code (list "jr reg.retaddr)
mustbe "|;|
end

to arglist
local [token namelist type varflag]
make "varflag "false
ifbe "var [make "varflag "true]
vargroup
foreach :namelist [newarg ? :type :varflag]
ifbeelse "|;| [arglist] [mustbe "|)|]
end

to newarg :pname :type :varflag
if reservedp :pname [(throw "error sentence :pname [reserved word])]
localmake "pointer (list :lexical.depth :framesize)
push "idlist (list :pname :type :pointer :varflag)
make "framesize :framesize + ifelse (and listp :type not :varflag) ~

[arraysize :type] [1]
queue lname :procname ifelse :varflag [list "var :type] [:type]
end

;; Statement part

to blockbody :endword
statement
ifbeelse "|;| [blockbody :endword] [mustbe :endword]
end
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to statement
local [token type]
ifbe "begin [compound stop]
ifbe "for [pfor stop]
ifbe "if [pif stop]
ifbe "while [pwhile stop]
ifbe "repeat [prepeat stop]
ifbe "write [pwrite stop]
ifbe "writeln [pwriteln stop]
make "token token
make "peektoken :token
if memberp :token [|;| end until] [stop]
make "type gettype :token
if emptyp :type [(throw "error sentence :token [can’t begin statement])]
if equalp :type "procedure [pproccall stop]
if equalp :type "function [pfunset stop]
passign
end

;; Compound statement

to compound
blockbody "end
end

;; Structured statements

to pif
local [cond elsetag endtag]
make "cond pboolean pexpr
make "elsetag gensym
make "endtag gensym
mustbe "then
code (list "jumpf :cond (word "" :elsetag))
regfree :cond
statement
code (list "jump (word "" :endtag))
code :elsetag
ifbe "else [statement]
code :endtag
end

to prepeat
local [cond looptag]
make "looptag gensym
code :looptag
blockbody "until
make "cond pboolean pexpr
code (list "jumpf :cond (word "" :looptag))
regfree :cond
end
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to pfor
local [var init step final looptag endtag testreg]
make "var token
mustbe "|:=|
make "init pinteger pexpr
make "step 1
ifbeelse "downto [make "step -1] [mustbe "to]
make "final pinteger pexpr
mustbe "do
make "looptag gensym
make "endtag gensym
code :looptag
localmake "id getid :var
codestore :init (id.pointer :id) (id.varp :id) 0
make "testreg newregister
code (list (ifelse :step<0 ["less] ["gtr]) :testreg :init :final)
code (list "jumpt :testreg (word "" :endtag))
regfree :testreg
statement
code (list "addi :init :init :step)
code (list "jump (word "" :looptag))
code :endtag
regfree :init
regfree :final
end

to pwhile
local [cond looptag endtag]
make "looptag gensym
make "endtag gensym
code :looptag
make "cond pboolean pexpr
code (list "jumpf :cond (word "" :endtag))
regfree :cond
mustbe "do
statement
code (list "jump (word "" :looptag))
code :endtag
end

;; Simple statements: procedure call

to pproccall
localmake "pname token
localmake "id getid :pname
localmake "lname id.lname :id
localmake "vartypes thing :lname
pproccall1 framesize.proc
end
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to pproccall1 :offset
code (list "store reg.newfp (memaddr frame.save.newfp reg.stackptr))
code (list "add reg.newfp reg.stackptr reg.zero)
code (list "addi reg.stackptr reg.stackptr (last id.frame :id))
code (list "store reg.frameptr (memaddr frame.prevframe reg.newfp))
localmake "newdepth first id.frame :id
ifelse :newdepth > :lexical.depth ~

[code (list "store reg.frameptr
(memaddr frame.outerframe reg.newfp))] ~

[localmake "tempreg newregister
code (list "rload :tempreg (memaddr frame.outerframe reg.frameptr))
repeat (:lexical.depth - :newdepth)

[code (list "rload :tempreg
(memaddr frame.outerframe :tempreg))]

code (list "store :tempreg (memaddr frame.outerframe reg.newfp))
regfree :tempreg]

if not emptyp :vartypes [mustbe "|(| procargs :vartypes :offset]
for [i reg.firstfree :numregs-1] ~

[if item :i :regsused
[code (list "store :i (memaddr frame.regsave+:i reg.frameptr))]]

code (list "add reg.frameptr reg.newfp reg.zero)
code (list "rload reg.newfp (memaddr frame.save.newfp reg.frameptr))
code (list "jal reg.retaddr (word "" :lname))
for [i reg.firstfree :numregs-1] ~

[if item :i :regsused
[code (list "rload :i (memaddr frame.regsave+:i reg.frameptr))]]

end

to procargs :types :offset
if emptyp :types [mustbe "|)| stop]
localmake "next procarg first :types :offset
if not emptyp butfirst :types [mustbe ",]
procargs butfirst :types :offset+:next
end

to procarg :type :offset
if equalp first :type "var [output procvararg last :type]
if listp :type [output procarrayarg :type]
localmake "result check.type :type pexpr
code (list "store :result (memaddr :offset reg.newfp))
regfree :result
output 1
end
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to procvararg :ftype
local [pname id type index]
make "pname token
make "id getid :pname
make "type id.type :id
ifelse wordp :ftype ~

[setindex "true] ~
[make "index 0]

if not equalp :type :ftype ~
[(throw "error sentence :pname [arg wrong type])]

localmake "target memsetup (id.pointer :id) (id.varp :id) :index
localmake "tempreg newregister
code (list "addi :tempreg (last :target) (first :target))
code (list "store :tempreg (memaddr :offset reg.newfp))
regfree last :target
regfree :tempreg
output 1
end

to procarrayarg :type
localmake "pname token
localmake "id getid :pname
if not equalp :type (id.type :id) ~

[(throw "error (sentence "array :pname [wrong type for arg]))]
localmake "size arraysize :type
localmake "rtarget memsetup (id.pointer :id) (id.varp :id) 0
localmake "pointreg newregister
code (list "addi :pointreg reg.newfp :offset)
localmake "ltarget (list 0 :pointreg)
copyarray
output :size
end

;; Simple statements: write and writeln

to pwrite
mustbe "|(|
pwrite1
end

to pwrite1
pwrite2
ifbe "|)| [stop]
ifbeelse ", [pwrite1] [(throw "error [missing comma])]
end
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to pwrite2
localmake "result pwrite3
ifbe ": [.setfirst (butfirst :result) token]
code :result
if not equalp first :result "putstr [regfree last :result]
end

to pwrite3
localmake "token token
if equalp first :token "’ ~

[output (list "putstr 1 (list butlast butfirst :token))]
make "peektoken :token
localmake "result pexpr
if equalp first :result "char [output (list "putch 1 pchar :result)]
if equalp first :result "boolean [output (list "puttf 1 pboolean :result)]
if equalp first :result "integer [output (list "putint 10 pinteger :result)]
output (list "putreal 20 preal :result)
end

to pwriteln
ifbe "|(| [pwrite1]
code [newline]
end

;; Simple statements: assignment statement (including function value)

to passign
local [name id type index value pointer target]
make "name token
make "index []
ifbe "|[| [make "index commalist [pexpr] mustbe "|]|]
mustbe "|:=|
make "id getid :name
make "pointer id.pointer :id
make "type id.type :id
passign1
end

to pfunset
local [name id type index value pointer target]
make "name token
make "index []
if not equalp :name :procname ~

[(throw "error sentence [assign to wrong function] :name)]
mustbe "|:=|
make "pointer (list :lexical.depth frame.retval)
make "type first thing lname :name
make "id (list :name :type :pointer "false)
passign1
end
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to passign1
if and (listp :type) (emptyp :index) [parrayassign :id stop]
setindex "false
make "value check.type :type pexpr
codestore :value (id.pointer :id) (id.varp :id) :index
regfree :value
end

to noimmediate :value
if not equalp exp.mode :value "immediate [output :value]
localmake "reg newregister
code (list "addi :reg reg.zero exp.value :value)
output (list exp.type :value "register :reg)
end

to check.type :type :result
if equalp :type "real [output preal :result]
if equalp :type "integer [output pinteger :result]
if equalp :type "char [output pchar :result]
if equalp :type "boolean [output pboolean :result]
end

to preal :expr [:pval noimmediate :expr]
if equalp exp.type :pval "real [output exp.value :pval]
output pinteger :pval
end

to pinteger :expr [:pval noimmediate :expr]
localmake "type exp.type :pval
if memberp :type [integer boolean char] [output exp.value :pval]
(throw "error sentence exp.type :pval [isn’t ordinal])
end

to pchar :expr [:pval noimmediate :expr]
if equalp exp.type :pval "char [output exp.value :pval]
(throw "error sentence exp.type :pval [not character value])
end

to pboolean :expr [:pval noimmediate :expr]
if equalp exp.type :pval "boolean [output exp.value :pval]
(throw "error sentence exp.type :pval [not true or false])
end
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to parrayassign :id
localmake "right token
if equalp first :right "’ ~

[pstringassign :type (butlast butfirst :right) stop]
localmake "rid getid :right
if not equalp (id.type :id) (id.type :rid) ~

[(throw "error (sentence "arrays :name "and :right [unequal types]))]
localmake "size arraysize id.type :id
localmake "ltarget memsetup (id.pointer :id) (id.varp :id) 0
localmake "rtarget memsetup (id.pointer :rid) (id.varp :rid) 0
copyarray
end

to pstringassign :type :string
if not equalp first :type "char [stringlose]
if not emptyp butfirst last :type [stringlose]
if not equalp (last first last :type) (count :string) [stringlose]
localmake "ltarget memsetup (id.pointer :id) (id.varp :id) 0
pstringassign1 newregister (first :ltarget) (last :ltarget) :string
regfree last :ltarget
end

to pstringassign1 :tempreg :offset :reg :string
if emptyp :string [regfree :tempreg stop]
code (list "addi :tempreg reg.zero ascii first :string)
code (list "store :tempreg (memaddr :offset :reg))
pstringassign1 :tempreg :offset+1 :reg (butfirst :string)
end

to stringlose
(throw "error sentence :name [not string array or wrong size])
end

;; Multiple array indices to linear index computation

to setindex :parseflag
ifelse listp :type ~

[if :parseflag
[mustbe "|[| make "index commalist [pexpr] mustbe "|]| ]

make "index lindex last :type :index
make "type first :type] ~

[make "index 0]
end

to lindex :bounds :index
output lindex1 (offset pinteger noimmediate first :index

first first :bounds) ~
butfirst :bounds butfirst :index

end
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to lindex1 :sofar :bounds :index
if emptyp :bounds [output :sofar]
output lindex1 (nextindex :sofar

last first :bounds
pinteger noimmediate first :index
first first :bounds) ~

butfirst :bounds butfirst :index
end

to nextindex :old :factor :new :offset
code (list "muli :old :old :factor)
localmake "newreg offset :new :offset
code (list "add :old :old :newreg)
regfree :newreg
output :old
end

to offset :indexreg :lowbound
if not equalp :lowbound 0 [code (list "subi :indexreg :indexreg :lowbound)]
output :indexreg
end

;; Memory interface: load and store instructions

to codeload :reg :pointer :varflag :index
localmake "target memsetup :pointer :varflag :index
code (list "rload :reg targetaddr)
regfree last :target
end

to codestore :reg :pointer :varflag :index
localmake "target memsetup :pointer :varflag :index
code (list "store :reg targetaddr)
regfree last :target
end

to targetaddr
output memaddr (first :target) (last :target)
end

to memaddr :offset :index
output (word :offset "\( :index "\))
end
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to memsetup :pointer :varflag :index
localmake "depth first :pointer
localmake "offset last :pointer
local "newreg
ifelse equalp :depth 0 ~

[make "newreg reg.globalptr] ~
[ifelse equalp :depth :lexical.depth

[make "newreg reg.frameptr]
[make "newreg newregister
code (list "rload :newreg

(memaddr frame.outerframe reg.frameptr))
repeat (:lexical.depth - :depth) - 1

[code (list "rload :newreg
(memaddr frame.outerframe :newreg))]]]

if :varflag ~
[ifelse :newreg = reg.frameptr

[make "newreg newregister
code (list "rload :newreg (memaddr :offset reg.frameptr))]

[code (list "rload :newreg (memaddr :offset :newreg))]
make "offset 0]

if not equalp :index 0 ~
[code (list "add :index :index :newreg)
regfree :newreg
make "newreg :index]

output list :offset :newreg
end

to copyarray
localmake "looptag gensym
localmake "sizereg newregister
code (list "addi :sizereg reg.zero :size)
code :looptag
localmake "tempreg newregister
code (list "rload :tempreg (memaddr (first :rtarget) (last :rtarget)))
code (list "store :tempreg (memaddr (first :ltarget) (last :ltarget)))
code (list "addi (last :rtarget) (last :rtarget) 1)
code (list "addi (last :ltarget) (last :ltarget) 1)
code (list "subi :sizereg :sizereg 1)
code (list "gtr :tempreg :sizereg reg.zero)
code (list "jumpt :tempreg (word "" :looptag))
regfree :sizereg
regfree :tempreg
regfree last :ltarget
regfree last :rtarget
end
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;; Expressions

to pexpr
local [opstack datastack parenlevel]
make "opstack [[popen 1 0]]
make "datastack []
make "parenlevel 0
output pexpr1
end

to pexpr1
local [token op]
make "token token
while [equalp :token "|(|] [popen make "token token]
make "op pgetunary :token
if not emptyp :op [output pexprop :op]
push "datastack pdata :token
make "token token
while [and (:parenlevel > 0) (equalp :token "|)| )] ~

[pclose make "token token]
make "op pgetbinary :token
if not emptyp :op [output pexprop :op]
make "peektoken :token
pclose
if not emptyp :opstack [(throw "error [too many operators])]
if not emptyp butfirst :datastack [(throw "error [too many operands])]
output pop "datastack
end

to pexprop :op
while [(op.prec :op) < (1 + op.prec first :opstack)] [ppopop]
push "opstack :op
output pexpr1
end

to popen
push "opstack [popen 1 0]
make "parenlevel :parenlevel + 1
end

to pclose
while [(op.prec first :opstack) > 0] [ppopop]
ignore pop "opstack
make "parenlevel :parenlevel - 1
end

to pgetunary :token
output gprop :token "unary
end
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to pgetbinary :token
output gprop :token "binary
end

to ppopop
local [op function args left right type reg]
make "op pop "opstack
make "function op.instr :op
if equalp :function "plus [stop]
make "args op.nargs :op
make "right pop "datastack
make "left (ifelse equalp :args 2 [pop "datastack] [[[] []]])
make "type pnewtype :op exp.type :left exp.type :right
if equalp exp.mode :left "immediate ~

[localmake "leftreg newregister
code (list "addi :leftreg reg.zero exp.value :left)
make "left (list exp.type :left "register :leftreg)]

ifelse equalp exp.mode :left "register ~
[make "reg exp.value :left] ~
[ifelse equalp exp.mode :right "register

[make "reg exp.value :right]
[make "reg newregister]]

if equalp :function "minus ~
[make "left (list exp.type :right "register reg.zero)
make "function "sub
make "args 2]

if equalp exp.mode :right "immediate ~
[make "function word :function "i]

ifelse equalp :args 2 ~
[code (list :function :reg exp.value :left exp.value :right)] ~
[code (list :function :reg exp.value :right)]

if not equalp :reg exp.value :left [regfree exp.value :left]
if (and (equalp exp.mode :right "register)

(not equalp :reg exp.value :right)) ~
[regfree exp.value :right]

push "datastack (list :type "register :reg)
end

to pnewtype :op :ltype :rtype
localmake "type op.types :op
if emptyp :ltype [make "ltype :rtype]
if not emptyp last :type [pchecktype last :type :ltype :rtype]
if and (equalp :ltype "real) (equalp :rtype "integer) [make "rtype "real]
if and (equalp :ltype "integer) (equalp :rtype "real) [make "ltype "real]
if not equalp :ltype :rtype [(throw "error [type clash])]
if emptyp last :type ~

[if not memberp :rtype [integer real]
[(throw "error [nonarithmetic type])]]

if emptyp first :type [output :rtype]
output first :type
end
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to pchecktype :want :left :right
if not equalp :want :left [(throw "error (sentence :left "isn’t :want))]
if not equalp :want :right [(throw "error (sentence :right "isn’t :want))]
end

;; Expression elements

to pdata :token
if equalp :token "true [output [boolean immediate 1]]
if equalp :token "false [output [boolean immediate 0]]
if equalp first :token "’ [output pchardata :token]
if numberp :token [output (list numtype :token "immediate :token)]
localmake "id getid :token
if emptyp :id [(throw "error sentence [undefined symbol] :token)]
localmake "type id.type :id
if equalp :type "function [output pfuncall :token]
local "index
setindex "true
localmake "reg newregister
codeload :reg (id.pointer :id) (id.varp :id) :index
output (list :type "register :reg)
end

to pchardata :token
if not equalp count :token 3 ~

[(throw "error sentence :token [not single character])]
output (list "char "immediate ascii first butfirst :token)
end

to numtype :number
if memberp ". :number [output "real]
if memberp "e :number [output "real]
output "integer
end

to pfuncall :pname
localmake "id getid :pname
localmake "lname id.lname :id
if namep (word "need :lname) [make (word "need :lname) "true]
localmake "vartypes thing :lname
localmake "returntype first :vartypes
make "vartypes butfirst :vartypes
pproccall1 framesize.fun
localmake "reg newregister
code (list "add :reg reg.retval reg.zero)
output (list :returntype "register :reg)
end
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;; Parsing assistance

to code :stuff
if emptyp :stuff [stop]
push :codeinto :stuff
end

to commalist :test [:sofar []]
local [result token]
make "result run :test
if emptyp :result [output :sofar]
ifbe ", [output (commalist :test (lput :result :sofar))]
output lput :result :sofar
end

.macro ifbe :wanted :action
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output []
end

.macro ifbeelse :wanted :action :else
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output :else
end

to mustbe :wanted
localmake "token token
if equalp :token :wanted [stop]
(throw "error (sentence "expected :wanted "got :token))
end

to newregister
for [i reg.firstfree :numregs-1] ~

[if not item :i :regsused [setitem :i :regsused "true output :i]]
(throw "error [not enough registers available])
end

to regfree :reg
setitem :reg :regsused "false
end
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to reservedp :word
output memberp :word [and array begin case const div do downto else end ~

file for forward function goto if in label mod nil ~
not of packed procedure program record repeat set ~
then to type until var while with]

end

;; Lexical analysis

to token
local [token char]
if namep "peektoken [make "token :peektoken

ern "peektoken output :token]
make "char getchar
if equalp :char "|{| [skipcomment output token]
if equalp :char char 32 [output token]
if equalp :char char 13 [output token]
if equalp :char char 10 [output token]
if equalp :char "’ [output string "’]
if memberp :char [+ - * / = ( , ) |[| |]| |;|] [output :char]
if equalp :char "|<| [output twochar "|<| [= >]]
if equalp :char "|>| [output twochar "|>| [=]]
if equalp :char ". [output twochar ". [.]]
if equalp :char ": [output twochar ": [=]]
if numberp :char [output number :char]
if letterp ascii :char [output token1 lowercase :char]
(throw "error sentence [unrecognized character:] :char)
end

to skipcomment
if equalp getchar "|}| [stop]
skipcomment
end

to string :string
localmake "char getchar
if not equalp :char "’ [output string word :string :char]
make "char getchar
if equalp :char "’ [output string word :string :char]
make "peekchar :char
output word :string "’
end

to twochar :old :ok
localmake "char getchar
if memberp :char :ok [output word :old :char]
make "peekchar :char
output :old
end
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to number :num
localmake "char getchar
if equalp :char ". ~

[make "char getchar ~
ifelse equalp :char ". ~

[make "peektoken ".. output :num] ~
[make "peekchar :char output number word :num ".]]

if equalp :char "e [output number word :num twochar "e [+ -]]
if numberp :char [output number word :num :char]
make "peekchar :char output :num
end

to token1 :token
localmake "char getchar
if or letterp ascii :char numberp :char ~

[output token1 word :token lowercase :char]
make "peekchar :char output :token
end

to letterp :code
if and (:code > 64) (:code < 91) [output "true]
output and (:code > 96) (:code < 123)
end

to getchar
local "char
if namep "peekchar [make "char :peekchar ern "peekchar output :char]
ifelse eofp [output char 1] [output rc1]
end

to rc1
localmake "result readchar
type :result output :result
end

;; Data abstraction: ID List

to newlname :word
if memberp :word :namesused [output gensym]
if namep word "% :word [output gensym]
push "namesused :word
output word "% :word
end

to lname :word
localmake "result getid :word
if not emptyp :result [output item 3 :result]
(throw "error sentence [unrecognized identifier] :word)
end
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to gettype :word
localmake "result getid :word
if not emptyp :result [output item 2 :result]
(throw "error sentence [unrecognized identifier] :word)
end

to getid :word [:list :idlist]
if emptyp :list [output []]
if equalp :word first first :list [output first :list]
output (getid :word butfirst :list)
end

to id.type :id to id.varp :id
output item 2 :id output item 4 :id
end end

to id.pointer :id to id.frame :id
output item 3 :id output item 4 :id
end end

to id.lname :id
output item 3 :id
end

;; Data abstraction: Operators

to op.instr :op to op.types :op
output first :op output item 3 :op
end end

to op.nargs :op to op.prec :op
output first bf :op output last :op
end end

;; Data abstraction: Expressions

to exp.type :exp
output first :exp
end

to exp.mode :exp
output first butfirst :exp
end

to exp.value :exp
output last :exp
end
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;; Data abstraction: Frame slots

to frame.retaddr to frame.regsave
output 0 output 4
end end

to frame.save.newfp to framesize.proc
output 1 output 4+:numregs
end end

to frame.outerframe to frame.retval
output 2 output 4+:numregs
end end

to frame.prevframe to framesize.fun
output 3 output 5+:numregs
end end

;; Data abstraction: Registers

to reg.zero to reg.frameptr
output 0 output 4
end end

to reg.retaddr to reg.newfp
output 1 output 5
end end

to reg.stackptr to reg.retval
output 2 output 6
end end

to reg.globalptr to reg.firstfree
output 3 output 7
end end

;; Runtime (machine simulation)

to prun :progname
localmake "prog thing word "% :progname
localmake "regs (array :numregs 0)
local filter "wordp :prog
foreach :prog [if wordp ? [make ? ?rest]]
localmake "memory (array :memsize 0)
setitem 0 :regs 0
if not procedurep "add [runsetup]
prun1 :prog
end
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to prun1 :pc
if emptyp :pc [stop]
if listp first :pc [run first :pc]
prun1 butfirst :pc
end

to rload :reg :offset :index
setitem :reg :regs (item (item :index :regs)+:offset :memory)
end

to store :reg :offset :index
setitem (item :index :regs)+:offset :memory (item :reg :regs)
end

to runsetup
foreach [[add sum] [sub difference] [mul product] [quo quotient]

[div [int quotient]] [rem remainder] [land product]
[lor [tobool lessp 0 sum]] [eql [tobool equalp]]
[neq [tobool not equalp]] [less [tobool lessp]]
[gtr [tobool greaterp]] [leq [tobool not greaterp]]
[geq [tobool not lessp]]] ~

[define first ?
‘[[dest src1 src2]

[setitem :dest :regs ,@[last ?] (item :src1 :regs)
(item :src2 :regs)]]

define word first ? "i
‘[[dest src1 immed]

[setitem :dest :regs ,@[last ?] (item :src1 :regs)
:immed]]]

foreach [[lnot [difference 1]] [sint int] [sround round] [srandom random]] ~
[define first ?

‘[[dest src]
[setitem :dest :regs ,@[last ?] (item :src :regs)]]

define word first ? "i
‘[[dest immed]

[setitem :dest :regs ,@[last ?] :immed]]]
end

to tobool :tf
output ifelse :tf [1] [0]
end

to jump :label
make "pc fput :label thing :label
end

to jumpt :reg :label
if (item :reg :regs)=1 [jump :label]
end
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to jumpf :reg :label
if (item :reg :regs)=0 [jump :label]
end

to jr :reg
make "pc item :reg :regs
end

to jal :reg :label
setitem :reg :regs :pc
jump :label
end

to putch :width :reg
spaces :width 1
type char (item :reg :regs)
end

to putstr :width :string
spaces :width (count first :string)
type :string
end

to puttf :width :bool
spaces :width 1
type ifelse (item :bool :regs)=0 ["F] ["T]
end

to putint :width :reg
localmake "num (item :reg :regs)
spaces :width count :num
type :num
end

to putreal :width :reg
putint :width :reg
end

to spaces :width :count
if :width > :count [repeat :width - :count [type "| |]]
end

to newline
print []
end

to exit
make "pc [exit]
end


