
pascal

small subset

why

161

4 Programming Language Design

* The recent trend in computer science education has been a shift from Pascal to C or C++. I
haven’t followed that trend in this book because from my perspective C illuminates no new issues,
it has a more complicated syntax, and it leaves out one interesting Pascal feature: nested procedure
definitions (block structure). C++ does introduce the issue of object-oriented programming, but, I
think, not in a way that clarifies the issues; if you want to understand OOP you’d do better to learn
Object Logo.

Program file for this chapter:

This chapter and the next are about two related things: why different programming
languages are different and how a programming language is implemented. To make the
discussion concrete, I’ve chosen a specific language as an example: Pascal. That choice
seems appropriate partly because Pascal is very different from Logo and partly because it
is widely used as a vehicle for teaching introductory computer science, the same task I’m
attempting in this book using Logo.*

For the purposes of this book I’ve written a program that translates a
of Pascal into a simulated machine language. You can get a real Pascal compiler for
your computer that accepts the full language, and that’s what you should do if you want
to learn how to program in Pascal. I had two reasons for writing this subset compiler.
One is that some readers may not otherwise have access to a Pascal compiler, and mine,
despite its limitations, will enable you to explore the parts of the language I’m going to
be talking about. The other is that the next chapter is about how a compiler works, and
this compiler is accessible to examination because it’s written in Logo.

When you’re comparing two programming languages an obvious question to ask is
“which is better?” Please don’t use my partial Pascal compiler as the basis for an answer
to that question; it wouldn’t be fair. You already know my opinion, but my purpose in
this chapter is not to convince you of it. Instead I want you to understand each

•
•
•

:n

fact
*

for

Programming paradigms

programming paradigm

functional programming

sequential programming

162 Chapter 4 Programming Language Design

to fact :n
if :n=0 [output 1]
output :n * fact :n-1
end

to fact.seq :n
localmake "product 1
for [i 1 :n] [make "product (:product * :i)]
output :product
end

language is designed the way it is. For each of the language differences we’ll examine,
there are good reasons for either choice; the reasons that influence a language designer
will depend on the overall goals he or she has for this language.

Perhaps the most important aspect of the design of a programming language is the
that it encourages. A paradigm (it’s pronounced “para” as in

“parakeet” followed by “dime” as in ten cents) is an approach to organizing a complex
program: How do you combine the primitives of a language to accomplish harder tasks?
It’s an aspect of programming style, but when people say “style” they’re usually thinking
of smaller details, such as the use of comments in procedure definitions or choosing
sensible variable names. Perhaps an example of different paradigms will help.

Here’s how the factorial function is usually computed in Logo, using a recursive
operation:

The goal is to multiply several numbers together, the integers from 1 to . We do
this by carrying out one multiplication in each recursive invocation. This procedure is
written in the paradigm; the main tool for building up complexity
is composition of functions. In this example, the result of the recursive invocation
is composed with the primitive (multiplication) function.

Now consider this alternate approach:

This is an example of the paradigm, so called because the
instruction carries out a sequence of steps:

Multiply the accumulated product by 1.
Multiply the product by 2.
Multiply it by 3.

Programming paradigms 163

product

fact.seq
for

:=
make

* Even in Berkeley Logo, is a library procedure rather than a true primitive.

function fact(n:integer): integer;
begin
if n=0 then
fact := 1

else
fact := n * fact(n-1)

end;

function fact(n:integer): integer;
var product, i: integer;

begin
product := 1;
for i := 1 to n do
product := product * i;

fact := product
end;

for

... and so on. Instead of a composition of functions, we have a partial result stored in a
box, the variable . At each step, the old value is replaced with an updated value.

Although can be written in Logo, it’s not the most natural Logo style.
Most versions of Logo don’t even provide as a primitive command, although (as
we saw in Volume 2) it can be written in Logo.* As we’ve seen, Logo encourages the
functional programming paradigm, in which complicated computations are achieved by
means of function composition and recursion. Logo encourages functional programming
partly through its emphasis on recursion rather than on iterative control structures, and
partly because lists are used as the main data aggregation mechanism. As we saw in
Chapter 3, lists encourage an aggregate to be built up one member at a time (as recursive
functions do), and discourage mutation (which is crucial to the sequential approach).

In Pascal, the opposite is true. It’s possible to write a recursive factorial function in
Pascal:

but a habitual Pascal programmer would be much more likely to write this function in
sequential style:

(Don’t worry, I know the details of the notation are a mystery to you, but you should
still be able to see the relationship between each Pascal version and the corresponding
Logo version. The only crucial point about notation right now is that is the Pascal
assignment operator, like in Logo. We’ll go into the details of Pascal syntax later.)

⋅
−

∑
n

i
()1

=0

f

choose

f n

n
i

f i n >

n

f

f

164 Chapter 4 Programming Language Design

to simplex :buttons
output 2 * f :buttons
end

to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end

to simplex :buttons
output 2 * first (cascade :buttons

[fput (sumprods butfirst ?2 ?1) ?1] [1]
[fput 1 nextrow ?2] [1 1])

end

to sumprods :a :b
output reduce "sum (map "product :a :b)
end

to nextrow :combs
if emptyp butfirst :combs [output :combs]
output fput (sum first :combs first butfirst :combs) ~

nextrow butfirst :combs
end

Here’s a more complicated example, showing how data aggregates are used in the
two paradigms. In Chapter 2 we explored the Simplex lock problem by computing the
function

() =
(), if 0;

1, if = 0.

using these procedures:

Here, the mathematical definition of in terms of itself is reflected in the recursive
nature of the operation . In Chapter 3, we improved the efficiency of the procedure
by remembering smaller values of to avoid recomputing them; similarly, instead of
computing the function separately each time, we used old values to compute
new ones:

⋅ ⋅ ⋅

f

f f f f x
f

f f

f

f f

Programming paradigms 165

cascade
cascade

cascade map reduce

f
combs

f
combs for

for sumprods
simplex

to simplex.seq :buttons
localmake "f (array :buttons+1 0)
localmake "combs (array :buttons+1 0)
local [left right]
setitem 0 :f 1
setitem 0 :combs 1
for [i 1 :buttons] [
setitem :i :f 0
make "right 0
for [j 0 :i-1] [
make "left :right
make "right item :j :combs
setitem :j :combs :left+:right
setitem :i :f (item :i :f) + (item :j :f)*(item :j :combs)

]
setitem :i :combs 1

]
output 2 * item :buttons :f
end

The recursive nature of is less obvious in the second implementation, but the overall
technique is still composition of functions. (Recall that the job of is to invoke a
function repeatedly, in the pattern (((()))). In this case, is computing
two functions in parallel; one is a list of values of the Simplex function and the other
is a row of Pascal’s triangle.) The availability of higher order functions (in this program
I’ve used , , and) is another way in which Logo encourages the
functional paradigm.

In sequential style, the composition of functions is replaced by a sequence of steps
in which values are stored in boxes (members of arrays) and repeatedly replaced with
different values:

It may take some effort to convince yourself that this procedure really computes the
same results as the other versions! Within the procedure, the array contains the values
(0), (1), . . . as they are computed one by one; the array contains one row (at a

time) of Pascal’s triangle.

The procedure first puts (0) into the zeroth position of the array and the first
row of Pascal’s triangle (containing just one 1) in the array. Then comes a
loop that computes (1), then (2), and so on, until the desired value is reached. An
inner loop fills the same purpose as the function in the previous version
of : It computes the sum of several terms, not by function composition but by
adding each term into the sum separately. The instruction

f[i]

item setitem
for
begin end

for
for for

block structure:

166 Chapter 4 Programming Language Design

setitem :i :f (item :i :f) + (item :j :f)*(item :j :combs)

function simplex(buttons:integer): integer;
var left, right, i, j: integer;

f, combs: array [0..30] of integer;

begin
f[0] := 1;
combs[0] := 1;
for i := 1 to buttons do
begin
f[i] := 0;
right := 0;
for j := 0 to i-1 do
begin
left := right;
right := combs[j];
combs[j] := left+right;
f[i] := f[i] + (f[j] * combs[j])

end;
combs[i] := 1

end;
simplex := 2 * f[buttons]

end;

adds one additional term to the sum each time it’s carried out.

The sequential Simplex calculation looks bizarre in Logo, but it’s much more natural
in Pascal:

Pascal is well suited to this style of programming for several reasons. One is that the
notation for a member of an array is more compact and more readable than Logo’s use
of procedure invocations (calling to examine an array member and to
modify its value). Another, already mentioned, is that is built into Pascal. Perhaps
most important is Pascal’s the keywords and can be used to
group what would otherwise be separate instructions into one larger instruction. In
Logo, the instructions that are repeated in a loop must be part of a list, one of
the inputs to the procedure; in principle, the entire invocation is one Logo
instruction line.

Both Logo and Pascal are compromises between the functional paradigm and the
sequential paradigm. (In Logo, turtle graphics programs are most often done sequen-
tially, whereas the manipulation of words and sentences is generally done functionally.)
But Logo is much more of a functional language than Pascal, partly because it supports

map cascade

run apply
for while do.until

ifelse

make
setitem .setfirst

object-oriented programming.

methods,
variables,

message

Programming paradigms 167

* Today, we think of programming languages primarily as ways to express problems, rather than
as ways to model how computer hardware works. This shift in attitude has allowed the development
of non-sequential paradigms. We design languages that are well matched to the problems we want
to solve, rather than well matched to the hardware we’re using.

list processing (you can create lists in Pascal, but it’s painful), and even more importantly
because in Logo it’s easy to invent higher order functions such as and .
Pascal programmers can’t readily invent their own control structures because there’s
nothing like or in Pascal, and the built-in control structures are all sequential
ones. (In addition to , Pascal has equivalents to the and commands
in the Berkeley Logo library.) As another example, Logo’s primitive can be
used either as a command or as an operation, but the Pascal equivalent works only as a
command.

Not all programming languages compromise between paradigms. It’s rare these days
to see a purely sequential language, but it used to be common; both the original Fortran
language and the early microcomputer versions of BASIC lacked the ability to handle
recursive procedures. Purely functional languages are not widely used in industry, but
are of interest to many computer science researchers; the best known example is called
ML. In a purely functional language, there is no assignment operator (like in Logo)
and no mutators (like or).

There are other programming paradigms besides sequential and functional, al-
though those are the oldest. The sequential paradigm came first because the actual
digital computer hardware works sequentially; Fortran, which was the first higher level
programming language, was initially viewed as merely an abbreviation for the computer’s
hardware instruction sequences.* The functional paradigm was introduced with Lisp, the
second-oldest programming language still in use. Although Lisp is not a pure functional
language (it does have assignment and mutation), its design is firmly based on the idea
of functions as the way to express a computation.

Another paradigm that’s very popular today is In this
paradigm, we imagine that instead of having a single computer carrying out a single
program, the computational world includes many independent “objects,” each of which
can carry out programs on its own. Each object includes which are like local
procedures, and just like the variables we’ve used all along except that each
belongs to a particular object. If one object wants to know the value of another object’s
variable, the first object must send a to the second. A message is a request to
carry out a method, so the messages that each object accepts depends on the methods
that it knows.

forward

ask 7 [forward 100]

simulation

every

information hiding;

logic programming declarative
programming.

168 Chapter 4 Programming Language Design

Logo has had a sort of glimmer of the object paradigm for many years, because many
dialects of Logo include multiple turtles. To move a turtle, you send it a message, using
a notation something like

to send a message to turtle number 7. But this notation, even though it conveys some of
the flavor of object-oriented programming, is not truly representative of the paradigm. In
a real object system, it would be possible for specific turtles to have their own, specialized

methods. Turtle 7, for example, might be a special “dotted turtle” that draws
dotted lines instead of solid lines when it moves forward. One Logo dialect, called Object
Logo, does provide a genuine object capability.

Object-oriented programming fits naturally with the sort of problem in which the
computer is modeling or simulating a bunch of real-world objects; in fact, the paradigm
was invented for programs, used to try to answer questions such as “Will it
eliminate the traffic jams if we add another lane to this highway, or should we spend the
money on more frequent bus service instead?” The objects in the simulation program
are people, cars, buses, and lanes. Another example of a problem that lends itself to the
object paradigm is a window system, such as the one in Mac OS or in Microsoft Windows.
Each window is an object; when a window is displayed so as to hide part of another
window, the new window must send a message to the hidden one telling it not to display
the hidden region.

Some people argue that object-oriented programming should be used for pro-
gramming problem, not because the independent object metaphor is always appropriate
but because using objects helps with if every variable belongs to a
specific object, the program is less likely to have the kind of bug in which one part of a
program messes up a data structure that’s used in another part. This can be particularly
important, they say, in a large programming problem in which several programmers work
on different pieces of the program. When the different programmers’ procedures are
put together, conflicts can arise, but the object paradigm helps isolate each programmer’s
work from the others. Although this argument has some merit, I’m cautious about any
claim that one particular paradigm is best for all problems. I think programmers should
be familiar with all of the major paradigms and be able to pick one according to the
needs of each task.

Another important programming paradigm is called or
In this approach, the programmer doesn’t provide an algorithm at all, but

instead lists known facts about the problem and poses questions. It’s up to the language
implementation to search out all the possible solutions to a question. We saw a very

read write

Interactive and Non-interactive Languages

database

universal;

Then

Interactive and Non-interactive Languages 169

simplified version of this paradigm in the discussion of logic problems in Chapter 2. Logic
programming is especially well suited to problems, in which we pose questions
such as “Who are all the employees of this company who work in the data processing
division and have a salary above $40,000?” But, like all the paradigms I’ve mentioned,
logic programming is any problem that can be solved by a computer at all can
be expressed as a logic program. Logic programming is quite popular in Japan and in
Europe, but not so much in the United States, perhaps just because it wasn’t invented
here.

You use Logo by interacting with the language processor. You issue an instruction,
Logo does what you’ve told it and perhaps prints a result, and then you issue another
instruction. You can preserve a sequence of instructions by defining a procedure, in
which case that procedure can be invoked in later instructions. But you don’t have to
define procedures; young children generally start using Logo by issuing primitive turtle
motion commands one at a time. Defining procedures can be thought of as extending
the repertoire of things Logo knows how to do for future interaction.

By contrast, you write a Pascal program as a complete entity, “feed” the program to
the Pascal language processor all at once, and then wait for the results. Often, when
you type your program into the computer you aren’t dealing with the Pascal processor
at all; you use another program, a text editor, to let you enter your Pascal program into
the computer. you start up Pascal itself. (Most microcomputer versions of Pascal
include a simple text editor for program entry, just as Logo includes a procedure editor.)
Typically you store your Pascal program as a file on a disk and you give the file name as
input to the Pascal language processor.

Keep in mind that it’s the process of writing and entering a program that’s non-
interactive in Pascal. It’s perfectly possible to write a Pascal program that interacts with
the user once it’s running, alternating and statements. (However, user
input is one of the things I’ve left out of my Pascal subset, as you’ll see shortly.)

If you want to write your own Pascal programs for use with my compiler, you’ll need
a way to create a disk file containing your new program, using either Logo’s procedure
editor or some separate editing program. The sample Pascal programs in this chapter
are included along with the Logo program files that accompany this book.

Our first example of a complete Pascal program is a version of the Tower of Hanoi
puzzle. I described this problem in the first volume of this series. The Logo solution
consists of two procedures:

tower

... and so on.

hanoi 5 "a "b "c

program name;

170 Chapter 4 Programming Language Design

To use these procedures you issue an instruction like

Here is the corresponding Pascal program. This program is in the file . (As
you can see, Pascal programs begin with a in all of the examples in this
chapter the file name is the same as the program name, although that isn’t a requirement
of Pascal.) Never mind the program details for the moment; right now the point is to
make sure you know how to get the Pascal compiler to translate it into Logo.

to hanoi :number :from :to :other
if equalp :number 0 [stop]
hanoi :number-1 :from :other :to
movedisk :number :from :to
hanoi :number-1 :other :to :from
end

to movedisk :number :from :to
print (sentence [Move disk] :number "from :from "to :to)
end

?
Move disk 1 from a to b
Move disk 2 from a to c
Move disk 1 from b to c
Move disk 3 from a to b
Move disk 1 from a to c

program tower;
{This program solves the 5-disk tower of hanoi problem.}

procedure hanoi(number:integer;from,onto,other:char);
{Recursive procedure that solves a subproblem of the original problem,
moving some number of disks, not necessarily 5. To move n disks, it
must get the topmost n-1 out of the way, move the nth to the target
stack, then move the n-1 to the target stack.}

procedure movedisk(number:integer;from,onto:char);
{This procedure moves one single disk. It assumes that the move is
legal, i.e., the disk is at the top of its stack and the target stack
has no smaller disks already. Procedure hanoi is responsible for
making sure that’s all true.}

begin {movedisk}
writeln(’Move disk ’,number:1,’ from ’,from,’ to ’,onto)

end; {movedisk}

... and so on.

compile

prun
program

compile "tower

prun "tower

source file

workspace,

Interactive and Non-interactive Languages 171

begin {hanoi}
if number <> 0 then

begin
hanoi(number-1,from,other,onto);
movedisk(number,from,onto);
hanoi(number-1,other,onto,from)

end
end; {hanoi}

begin {main program}
hanoi(5,’a’,’b’,’c’)

end.

?

?
Move disk 1 from a to b
Move disk 2 from a to c
Move disk 1 from b to c
Move disk 3 from a to b
Move disk 1 from a to c

Once you have a Pascal program in a disk file, you compile it using the
command with the file name as input:

The compiler types out the program as it compiles it, partly to keep you from falling
asleep while it’s working but also so that if the compiler detects an error in the program
you’ll see where the error was found.

When the compiler has finished processing the (the file containing the
Pascal program) it stops and you see a Logo prompt. At this point the program has been
translated into a simulated machine language. To run the program, say

The input to the (Pascal run) command is the program name—the word that
comes after at the beginning of the source file.

The difference between an interactive and a non-interactive language is not just
an arbitrary choice of “user interface” style. This choice reflects a deeper distinction
between two different ways of thinking about what a computer program is. In Logo there
is really no such thing as a “program.” Each procedure is an entity on its own. You
may think of one particular procedure as the top-level one, but Logo doesn’t know that;
you could invoke any procedure directly by using an interactive instruction naming that
procedure. Logo does have the idea of a a collection of procedures stored

algs

program

Why

kinds

compiled interpreted
compilers:

machine language
simulated

interpreters:

172 Chapter 4 Programming Language Design

* I say “English” because I am writing for an English-speaking audience, but in fact Pascal was
designed by a largely European committee including native speakers of several languages; principal
designer Niklaus Wirth is Swiss. Their languages all have periods and semicolons, though.

** This is another case in which the same word has two unrelated technical meanings. The use
of “object” in describing the result of a compilation (object program, object language) has nothing
to do with object-oriented programming.

together in a file because they are related. But a workspace need not be a tree-structured
hierarchy with one top-level procedure and the others as subprocedures. It can be a
collection of utility procedures with no top-level umbrella, like the Berkeley Logo library.
It can be a group of projects that are conceptually related but with several independent
top-level procedures, like the two memoization examples, the two sorting algorithms, the
tree data base, and other projects in the workspace of Chapter 3.

By contrast, a Pascal program is considered a single entity. It always begins with
the word and ends with a period, by analogy with an English sentence. (The
subprocedures and the individual statements within the program are separated with
semicolons because they are analogous to English clauses.*) It makes no sense to give
the Pascal compiler a source file containing just procedures without a main program.

did Logo’s designers choose an interactive program development approach,
while Pascal’s designers chose a whole-program paradigm? Like all worthwhile questions,
this one has more than one answer. And like many questions in language design, this
one has two broad of answer: the answers based on the implementation strategy for
the language and the ones based on underlying programming goals.

The most obvious answer is that Pascal is a language and Logo is an
one. That is, most Pascal language processors are programs that translate a
program from one language into another, like translating a book from English into
Chinese. Most compilers translate from a source language like Pascal into the native

of whatever computer you’re using. (My Pascal compiler translates into
a machine language that’s actually processed by Logo procedures.) By contrast,
most Logo versions are programs that directly carry out the instructions in
your source program, without translating it to a different (“object”) language.**

To understand why interpreters tend to go with interactive languages, while compilers
usually imply “batch mode” program development, think about the “little person”
metaphor that’s often used in teaching Logo. If you think of the computer as being full
of little people who know how to carry out the various procedures you’ve written, the
one who’s really in charge is not the one who carries out your top-level procedure, but

run

hanoi

if for

intermediate

portable

why

Interactive and Non-interactive Languages 173

rather the one representing the Logo interpreter itself. If the procedure specialists are
like circus performers, the Logo interpreter is the ringmaster. The circus metaphor is
actually a pretty good one, because on the one hand each performer is an autonomous
person, but at the same time the performers have to cooperate in order to put on a
show. The relevance of the metaphor to this discussion is that in a compiled language
there is no “ringmaster.” The compiler is more closely analogous to a bird that hatches
an egg (your program) and then pushes the new bird out of the nest to fend for itself.
In a compiled language there is no provision for an interactive interface to which you
can give commands that control the running of your program, unless your program itself
includes such an interface.

Saying the same thing in a different way, the Logo interpreter is part of the
environment in which any Logo program operates. (That’s why Logo can provide a
facility like the command to allow your program to construct new Logo instructions
as it progresses.) But a Pascal compiler does its job, translating your program into
another form, and then disappears. Whatever mechanisms are available to control your
program have to be built into the program. For example, my Pascal version of the Tower
of Hanoi program includes the top-level instruction that starts up the solution for five
disks. In the Logo version, that instruction isn’t considered part of the program; instead,
you direct Logo interactively to invoke the procedure.

The distinction between compiled and interpreted languages is not as absolute as it
once was. There are versions of Logo in which each procedure is compiled as you define
it, but it’s still possible to give instructions interactively. (Some such versions include
both a compiler and an interpreter; in others, the “interpreter” just arranges to compile
each instruction you type as if it were a one-line program.) And many current Pascal
compilers don’t compile into the machine language of the host computer, but rather into
an language called “P-code” that is then interpreted by another program,
a P-code interpreter. P-code is called an intermediate language because the level of
detail in a P-code program is in between that of a language you’d want to use and that
of the underlying machine language. Its primitives are simple and quick, not complex
control structures like or . The advantage of a Pascal language processor based
on P-code is that the compiler is —it can work on any computer. All that’s needed
to start using Pascal on a new computer is a P-code interpreter, which is a relatively easy
programming project.

So far I’ve been explaining a language design decision (interactive or non-interactive
development) in terms of an implementation constraint (interpreted or compiled). But
it’s possible to look beyond that explanation to ask someone would choose to design
a compiler rather than an interpreter or vice versa.

incremental

never

program specification

inside

174 Chapter 4 Programming Language Design

The main advantage of a compiler is that the finished object program runs fast,
since it is directly executed in the native language of the host computer. (An interpreter,
too, ultimately carries out the program in the computer’s native language. But the
interpreter must decide which native language instructions to execute for a given source
language instruction each time that instruction is evaluated. In a compiled language
that translation process happens only once, producing an object program that requires
no further translation while it’s running.) The tradeoff is that the compilation process
itself is slow. If you’re writing a program that will be used every day forever, the compiled
language has the advantage because the development process only happens once and
then the program need not be recompiled. On the other hand, during program
development the compiled language may be at a disadvantage, because any little change
in one instruction requires that the entire program be recompiled. (For some languages
there are compilers that can keep track of what part of the program you’ve
changed and only recompile that part.)

A compiled language like Pascal (or Fortran or C), then, makes sense in a business
setting where a program is written for practical use, generally using well-understood
algorithms so that the development process should be straightforward. An interpreted
language like Logo (or Lisp or BASIC) makes more sense in a research facility where
new algorithms are being explored and the development process may be quite lengthy,
but the program may never be used in routine production. (In fact nobody uses BASIC
for research purposes, because of other weaknesses, but its interactive nature is a plus.)
Another environment in which interaction is important is education; a computer science
student writes programs that may actually be run except for testing. The program
is of interest only as long as it doesn’t work yet. For such programs the speed advantage
of a compiled program is irrelevant.

There are also reasons that have nothing to do with implementation issues. I’ve
spoken earlier of two conflicting views of computer science, which I’ve called the
software engineering view and the artificial intelligence view. In the former, the program
development process is seen as beginning with a clear, well-defined idea of what the
program should do. This idea is written down as a that forms the
basis for the actual programming. From that starting point, the program is developed
top-down; first the main program is written in terms of subprocedures that are planned
but not written yet; then the lower-level procedures are written to fill in the details. No
procedure is written until it’s clear how that procedure fits into a specific overall program.
Since Pascal’s developers are part of the software engineering camp, it’s not surprising
that a Pascal program takes the form of an integrated whole in which each procedure
must be a larger one, rather than a collection of more autonomous procedures.
By contrast, Logo is a product of the artificial intelligence camp, for whom program

Block Structure

do for

step

end

tower
begin

end
end end

begin
end end

do

integrated development
environment

debugger,

title line,
body

header

statement part

Block Structure 175

development is a more complicated process involving bottom-up as well as top-down
design. AI researchers recognize that they may begin a project with only a vague idea of
what the finished program will do or how it will be organized. It’s appropriate, then, to
start by writing program fragments that deal with whatever subtasks you understand,
then see how those pieces can fit together to complete the overall project. Development
isn’t a straight line from the abstract specification to the concrete subprocedures; it’s a
zigzag path in which the programmer gets an idea, tries it out, then uses the results as the
basis for more thinking about ideas.

Traditionally, an interpreter has been the primary tool to facilitate interactive
program development. Recently, though, software developers have brought a more
interactive flavor to compiled languages by inventing the idea of an

(IDE), in which a compiler is one piece of a package that also includes
a language-specific editor (one that knows about the syntax of the language and au-
tomatically provides, for example, the keyword that must follow a in Pascal),
online documentation, and a which is a program that permits you to follow the
execution of your program one step at a time, like the command in Berkeley Logo.
The idea is to have your cake and eat it too: You use the IDE tools during program
development, but once your program is debugged, you’re left with a fast compiled version
that can be run without the IDE.

So far we’ve been looking at how each language thinks about a program as a whole. We
turn now to the arrangement of pieces within a program or a procedure.

A Logo procedure starts with a followed by the instructions in the procedure
and then the line. The purpose of the title line is to give names to the procedure

itself and to its inputs.

The structure of a Pascal program is similar in some ways, but with some complica-
tions. The program starts with a line, very much analogous to the title line in Logo.
The word in the header line of our sample program is the name of the program.
Skipping over the middle part of the program for the moment, the part between
and in the last few lines is the of the program, just as in Logo. The word

in the Pascal program is not exactly analogous to the line in a Logo procedure;
it’s a kind of closing bracket, matching the before it. The period right after the
final is what corresponds to the Logo line.

What makes Pascal’s structure different from Logo’s is the part I’ve skipped over, the
declaration of procedures. In Logo, every procedure is a separate entity. In Pascal, the

hanoi tower

a b i j

hanoi tower

movedisk begin end

v p

movedisk
hanoi movedisk

program tower;
var a,b:real;

i,j:integer;
procedure hanoi(number:integer;from,onto,other:char);

part of

same

mean
local variable

formal parameters

actual arguments.

176 Chapter 4 Programming Language Design

* I’m misleading you a little bit by calling it a “header line.” Like any part of a Pascal program,
the header can extend over more than one line, or can be on the same line with other things. The
end of the header is marked with a semicolon. In Pascal a line break is just like a space between
words. However, there are conventions for properly formatting a Pascal program. Even though

declaration of the procedure , for example, is the program . This
particular program uses no global variables, but if it did, those variables would also have
to be declared within the program. If the program used global variables , , , and
then it might begin

In summary, a Pascal program consists of

1. the header line
2. the declaration part (variables and procedures)
3. the statement part
4. the final punctuation (period)

But notice that the procedure , declared inside , has the structure
as the entire program. It begins with a header line; its declaration part includes the
declaration of procedure ; it has a statement part between and ; its
final punctuation is a semicolon instead of a period.

What does it for one procedure to be declared inside another? You already
know what a means; if a variable belongs to a procedure then that
variable exists only while the procedure is running; at another point in the program
there might be a different variable with the same name. In Pascal, the same is true for
local procedures. In our example program, the procedure exists only while
procedure is running. It would be an error to try to invoke directly
from the main program.

The header line for a procedure can include names for its inputs, just as the title
line of a Logo procedure names its inputs. A useful bit of terminology is that the variable
names in the procedure header are called to distinguish them from the
expressions that provide particular input values when the procedure is actually invoked;
the latter are called The words “parameter” and “argument” are both
used for what we call an “input” in Logo.*

Statement Types

tower

begin end

to If
true false

true

statement statement statement

condition statement

block.
block structured

compound statements.

between

simple

Every

Statement Types 177

begin ; ; end

begin
hanoi(number-1,from,other,onto);
movedisk(number,from,onto);
hanoi(number-1,other,onto,from)

end

if then

the Pascal compiler doesn’t care about spacing and line breaks, people always do it as I’ve shown
you here, with subordinate parts of the program indented and each statement on a separate line.

The sequence of header, declarations, statements, and punctuation is called a
Pascal is called a language because of the way blocks can include smaller
blocks. Another aspect of block structure is Pascal’s use of A
sequence of the form

is called a compound statement. An example from the program is

(Notice that semicolons go statements within this sequence; none is needed after
the last statement of the group. This syntactic rule is based on the analogy between Pascal
statements and English clauses that I mentioned earlier.) For example, Pascal includes a
conditional statement whose form is

The “statement” part can be a single statement, like a procedure call, or it can
be a compound statement delimited by and . Because the general term
“block structured language” refers to any syntactic grouping of smaller units into a larger
one, including compound statements, you may hear the word “block” used to refer to a
compound statement even though that’s not the official Pascal meaning.

In Logo we don’t talk about different kinds of statements like compound, simple, and
so on. Logo instruction (well, all but) is a procedure invocation. , for
example, is a procedure whose first input is or and whose second input is a
list containing instructions to be carried out if the first input is . In Pascal there are
several different kinds of statements, each with its own syntax.

condition statement
statements condition

variable expression

structured

assignment

178 Chapter 4 Programming Language Design

if

while do.until While if
begin

end do repeat until
begin

end for

make

var
:= = equalp make

write type
writeln print

while do ;
repeat until

while x < 0 do
begin
increase(x);
writeln(x)

end;

repeat
increase(x);
writeln(x)

until x >= 0;

:=

slope := ychange/xchange

You know about compound statements. You’ve seen one example of , which is
one of several statements in Pascal. Other examples include

These are like the and tools in Berkeley Logo. , like ,
requires a single statement (which can be a compound statement between and

) after the . However, the words and implicitly delimit a compound
statement, so you can put more than one statement between them without using
and . Another example is , which you’ll see in use in a moment. Continuing the
analogy with English grammar, a compound statement is like a compound sentence with
several independent (or coordinate) clauses; a structured statement is like a complex
sentence, with a dependent (or subordinate) clause. (If you always hated grammar, you
can just ignore this analogy.)

There are basically only two kinds of simple statement: the procedure call, which
you’ve already seen, and the statement used to give a variable a new value.
This latter is Pascal’s version of in Logo; it takes the form

As I’ve already mentioned, the variable must have been declared either in a procedure
heading or in a declaration. (Assignment is represented with the two-character
symbol because by itself means rather than .)

I say there are “basically” only two kinds because each of these has some special
cases that look similar but follow different rules. For example, printing to the computer
screen is done by what looks like an invocation of (analogous to in Logo)
or (“write line,” analogous to). But these are not ordinary procedures.

before

Statement Types 179

movedisk tower
writeln

:1

movedisk :1

:x < 10 while
if If if

if true
false While

while true false

if while

number:1

writeln(1,2,3,4);
writeln(1000,2000,3000,4000);

1 2 3 4
1000 2000 3000 4000

if :x < 10 [increment "x]
while [:x < 10] [increment "x]

Not only do they take a variable number of arguments, but the arguments can take a
special form not ordinarily allowed. In the procedure in the program,
one of the arguments to is

The “ ” here means “using one print position unless more are needed to fit the number.”
Pascal print formatting is designed to emphasize the printing of numbers in columns, so
the default is to print each number with a fairly large number of characters, with spaces
at the left if the number doesn’t have enough digits. The exact number of characters
depends on the type of number and the dialect of Pascal, but 10 is a typical number for
integers. So

will give a result looking something like this:

In I had to say “ ” to avoid all that extra space.

What are the pros and cons of using a variety of syntax rules for different kinds
of statements? One reason for the Pascal approach is that differences in meaning can
be implicit in the definitions of different statement types instead of having to be made
explicit in a program. Don’t worry; you’re not expected to understand what that sentence
meant, but you will as soon as you see an example. In Logo we say

Why is the predicate expression in a quoted list in the case of but
not for ? wants the expression to be evaluated once, is invoked. The
actual input to is not that expression but the value of the expression, either or

. , on the other hand, wants to evaluate that expression repeatedly. If Logo
evaluated the expression ahead of time and gave an input of or it
wouldn’t be able to know when to stop repeating.

The fact that wants the condition evaluated once but wants to evaluate it
repeatedly has nothing to do with the syntax of Logo; the same is true in Pascal. But in
Pascal you say

if while

if while

make

make

x

"x :x

semantic
Syntax

semantics

name value

180 Chapter 4 Programming Language Design

if x<10 then increment(x);
while x<10 do increment(x);

make "new :old

new := old

x := x+1

make "x :x+1

In Logo the fact that ’s condition is evaluated in advance but ’s isn’t is made
explicit by the use of square brackets. In Pascal it’s just part of the definitions
of the and statements. (is the form in which something is represented;

is the meaning of that something.)

One more example: Beginning students of Logo often have trouble understanding
why you say

to assign the value of one variable to another variable. Why is the first quoted and the
second dotted? Of course you understand that it’s because the first input to is the

of the variable you want to set, while the second is the that you want to give
it. But in Pascal this distinction is implicit in the semantic definition of the assignment
statement; you just say

Since beginning Logo students have trouble with quotes and dots in , you might
think that the Pascal approach is better. But beginning Pascal students have a trouble of
their own; they tend to get thrown by statements like

This doesn’t look quite as bad as the BASIC or Fortran version in which the symbol for
assignment is just an equal sign, but it’s still easy to get confused because the symbol “ ”
means two very different things in its two appearances here. In the Logo version

the explicit difference in appearance between and works to our advantage.

Which way do you find it easier to learn something: Do you want to start with a
simple, perhaps partly inaccurate understanding and learn about the difficult special
cases later, or do you prefer to be told the whole truth from the beginning? I’ve posed the
question in a way that shows my own preference, I’m afraid, but there are many people
with the opposite view.

The issue about whether or not to make the semantics of some action implicit in the
syntax of the language is the most profound reason for the difference between Logo’s
single instruction syntax and Pascal’s collection of statement types, but there are other

condition statement

Shuffling a Deck Using Arrays

if

if while

while
run

cards

for

extensibility.

Shuffling a Deck Using Arrays 181

while(,)

program cards;
{Shuffle a deck of cards}

var ranks:array [0..51] of integer;
suits:array [0..51] of char;
i:integer;

procedure showdeck;
{Print the deck arrays}

begin {showdeck}
for i := 0 to 51 do
begin
if i mod 13 = 0 then writeln;
write(ranks[i]:3,suits[i]);

end;
writeln;
writeln

end; {showdeck}

implications as well. One virtue of the Pascal compound statement is that it makes
for short, manageable instruction lines. You’ve seen Logo procedures in these books
in which one “line” goes on for three or four printed lines on the page, e.g., when
the instruction list input to contains several instructions. It’s a particularly painful
problem in the versions of Logo that don’t allow continuation lines.

On the other hand, Logo’s syntactic uniformity contributes to its In the
example above, is a Logo primitive, whereas is a library procedure written in
Logo. But the difference isn’t obvious; the two are used in syntactically similar ways. You
can’t write control structures like in Pascal because there’s nothing analogous to

to allow a list of instructions to be an input to a procedure, but even if you could, it
would have to take the form

because that’s what a procedure call looks like. But it’s not what a built-in Pascal control
structure looks like.

It’s time for another sample Pascal program. Program is a Pascal version of the
problem of shuffling a deck of cards that we discussed in Chapter 3. It includes local
variables, assignment statements, and the structured statement. It also will lead us
into some additional language design issues.

182 Chapter 4 Programming Language Design

procedure deck;
{Create the deck in order}

var i,j:integer;
suitnames:packed array [0..3] of char;

begin {deck}
suitnames := ’HSDC’;
for i := 0 to 12 do
for j := 0 to 3 do
begin
ranks[13*j+i] := i+1;
suits[13*j+i] := suitnames[j]

end;
writeln(’The initial deck:’);
showdeck

end; {deck}

procedure shuffle;
{Shuffle the deck randomly}

var rank,i,j:integer;
suit:char;

begin {shuffle}
for i := 51 downto 1 do {For each card in the deck}
begin
j := random(i+1); {Pick a random card before it}
rank := ranks[i]; {Interchange ranks}
ranks[i] := ranks[j];
ranks[j] := rank;
suit := suits[i]; {Interchange suits}
suits[i] := suits[j];
suits[j] := suit

end;
writeln(’The shuffled deck:’);
showdeck

end; {shuffle}

begin {main program}
deck;
shuffle

end.

−

prun "cards

Lexical Scope

do

reserved word

invoked

Lexical Scope 183

for for

to downto
to

onto to

random

random

cards showdeck deck shuffle
showdeck

showdeck

?
The initial deck:

1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H
1S 2S 3S 4S 5S 6S 7S 8S 9S 10S 11S 12S 13S
1D 2D 3D 4D 5D 6D 7D 8D 9D 10D 11D 12D 13D
1C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C

The shuffled deck:

2D 11D 6S 9D 6C 10H 8D 11C 3D 4C 5H 4S 1D
5C 5D 6D 9S 4D 8C 13S 13D 10C 9H 10D 5S 12D

13H 9C 3C 1S 10S 4H 12S 11S 12H 11H 2H 3H 1H
13C 8H 7C 2C 1C 7S 6H 2S 7D 8S 12C 3S 7H

Experienced Pascal programmers will notice that this program isn’t written in the
most elegant possible Pascal style. This is partly because of issues in Pascal that I don’t
want to talk about (records) and partly because of issues that I want to talk about in
the next section (scope).

Here’s what happens when you run the program:

The Pascal is somewhat like the Berkeley Logo in its semantics, although
of course the syntax is quite different. The step value must be either 1 (indicated by the
keyword) or 1 (). By the way, if you’ve been wondering why I changed one
of the variable names in the Tower of Hanoi program from in the Logo version to

in the Pascal version, it’s because is a in Pascal and can’t be used as
the name of anything.

The Pascal standard does not include a function. Most practical versions of
Pascal do provide a random number generator of some sort; since there’s no standard,
I’ve chosen to implement the kind that’s most useful for the kind of programming I’m
interested in, namely the Logo that takes an integer argument and returns an
integer between zero and one less than the argument.

Program has three procedures: , , and . Each of these
is declared directly in the top-level program. However, is not directly
at top level; it’s used by the other two procedures. (This is one of the questionable bits of
programming style I’ve put in for the sake of the following discussion; ordinarily I think
I’d have put the statements that invoke in the main program block.)

must

{showdeck, cards}

{movedisk, hanoi, tower}

{showdeck, deck, cards}

for
for cards

for
for

for

showdeck i

i deck shuffle
deck deck showdeck i

showdeck

showdeck i deck

showdeck i

showdeck

movedisk tower

showdeck

not
free reference. is

bound

dynamic scope:

the block within which the current procedure was
declared,

lexical
lexical environment.

dynamic environment.

184 Chapter 4 Programming Language Design

* Actually, the Pascal language requires that the variable used in a statement be
declared in the same procedure in which the appears; program is not legal Pascal
for that reason. What’s the purpose of that restriction? Suppose that this procedure was invoked
from within another loop in another procedure, and both use the same variable; then both
procedures would be trying to assign conflicting values to that variable. Berkeley Logo’s
automatically makes its variable local to the procedure itself, for the same reason. But my
Pascal compiler lets us get away with breaking this rule, and I’ve done it deliberately to make a
point.

If you read the program carefully you’ll see that uses a variable but
does declare that variable.* (When a variable is used but not declared within a certain
procedure, that use of the variable is called a A use of a variable that
declared in the same block is called a reference.) There are three variables named

in the program: one in the outer block, one in , and one in . When, for
example, the main program calls and calls , which variable does

use?

In Logo the answer would be that uses the belonging to , the
procedure that invoked it. That’s because Logo follows the rules of A
free reference to a variable is directed to the variables of the procedure that invoked the
current one, then if necessary to the variables of the procedure that invoked that one,
and so on up to the global variables. (Dynamic scope is discussed more fully in the first
volume of this series.)

In Pascal, uses the belonging to the main program. That’s because
a free reference to a variable is directed to

then to the block surrounding that one, and so on up to the outermost program
block. This rule is called scope. The set of blocks surrounding a given block,
smaller to larger, is its The lexical environment of is

The lexical environment of in the program is

The set of procedure invocations leading to a given procedure is its
A procedure’s dynamic environment isn’t always the same; for example, the dynamic
environment of is sometimes

v

v

v

while for run

lexicon,

in motion;

before

Lexical Scope 185

{showdeck, shuffle, cards}

while [:degrees < 0] [make "degrees :degrees+360]

and sometimes

The word “lexical” is the adjective form of which means “dictionary.” It’s used in
this computer science context because the lexical context of a procedure has to do with
where it’s defined, just as words are defined in a dictionary. The word “dynamic” means

it’s used because the dynamic context of a procedure keeps changing as the
program runs.

What are the reasons behind the choice of lexical or dynamic scope? This is another
choice that was originally made for implementation reasons. It turns out to be easy
for an interpreter to use dynamic scope, but for a compiler it’s much easier to use
lexical scope. That’s because the interpreter makes the decision about which variable
to use while the program is running and the dynamic environment is known, but the
compiler has to translate the program it is run. At “compile time” there isn’t one
fixed dynamic environment, but there is a single, already-known lexical environment.
Originally, interpreted languages like Logo, Lisp, and APL all used dynamic scope, while
compiled ones like Fortran and Pascal used lexical scope. (There was even a period of
time when Lisp systems offered both an interpreter and a compiler, and the behavior of
the same program was different depending on whether you compiled it or interpreted it
because of different scope rules.)

More recent dialects of Lisp, such as Common Lisp and Scheme, have been designed
to use lexical scope even when interpreted. Their designers think lexical scope is better
for reasons that don’t depend on the implementation technique. One reason is that
dynamic scope allows for programming errors that don’t arise when lexical scope is used.
In Logo, suppose you write a procedure that makes a free reference to some variable

. What you intended, let’s say, was to use a global variable by that name. But you’ve
forgotten that your procedure is sometimes invoked by another procedure that you wrote
two weeks ago that happens to have an input named . It can be very hard to figure
out why your procedure is suddenly getting the wrong variable. With lexical scope, it’s
much easier to keep track of the context in which your procedure is defined, to make
sure there are no local variables in the lexical environment.

It’s possible to argue in favor of dynamic scope also. One argument is that in a
lexically scoped language certain kinds of tool procedures can’t be written at all: the
ones like or that take an instruction list as input and the list repeatedly.
Suppose you write a procedure in Logo that contains an instruction like

degrees
degrees

while

while

pause

a
b c

c {c,b,a} c {c,a}
a c a b

b

showdeck deck cards

distinct

all

restriction

another procedure

186 Chapter 4 Programming Language Design

What variable do you want this instruction to use? Presumably you mean the
same variable that is used by other instructions in the same procedure. But if
Logo used lexical scope, then wouldn’t have access to the local variables of your
procedure. (It’s possible to design other features into a lexically scoped language to
get around this limitation, but the necessary techniques are more complicated than the
straightforward way you can write in Logo.)

Another argument for dynamic scope, with particular relevance to Logo, is that
dynamic scope fits better with the expectations of an unsophisticated programmer who
hasn’t thought about scope at all. One of the design goals of Logo is to be easy for
such beginners. Until now we’ve been talking about scope in terms of naming conflicts:
what happens if two variables have the same name. But suppose you write a program
with a bunch of procedures, with a bunch of variable names used as inputs. It
makes life very simple if all those variables are available whenever you want them, so you
don’t have to think in such detail about how to get a certain piece of information down
the procedure invocation chain to a subprocedure. If some variables are accessible to
subprocedures but others aren’t, that’s one more mystery to make programming seem
difficult. In particular, dynamic scope can simplify the debugging of a Logo program.
If you arrange for your program to at the moment when an error happens, then
you can enter Logo instructions, with all of the local variables of pending procedure
invocations available, to help you figure out the reason for the error. Debuggers for
lexically scoped languages require a more complicated debugging mechanism in which
the programmer must explicitly shift focus from one procedure to another.

In the situations we’ve seen, lexical scope always acts as a on the availability
of variables to subprocedures. That is, a procedure’s lexical environment is always a
subset of its dynamic environment. (Suppose procedure includes the definition of
procedure , which in turn includes the definition of . So the lexical environment
of is . You might imagine that ’s dynamic environment could be
if procedure invoked directly, but in fact that’s illegal. Just as can’t use ’s local
variables, it can’t use ’s local procedures either. The reason the dynamic environment
can be different from the lexical one at all is that two procedures can be part of the
same block, like and in the program.) In Lisp, it’s possible for
a procedure to return as its output—not just the name of the procedure
or the text of the procedure, as we could do in Logo, but the procedure itself, lexical
environment and all. When such a procedure is later invoked from some other part of
the program, the procedure’s lexical environment may not be a subset of its dynamic
environment, and so lexical scope gives it access to variables that it couldn’t use under
dynamic scope rules. That’s a powerful argument in favor of lexical scope for Lisp, but it
doesn’t apply to Pascal.

Typed Variables

var a : array [1..10] of array [1..4] of integer;

cards deck showdeck showdeck deck

integer 23
real -5.0
char ’Q’

Boolean true false

word, list, array.
variable

char, integer, array of char, array of integer,
packed array of char.

scalar

Typed Variables 187

One special scope rule in Pascal applies to procedures declared in the same block:
The one declared later can invoke the one declared earlier, but not the other way around.
In the program, can call but can’t call . There
is no deep reason for this restriction; it’s entirely for the benefit of the compiler. One of
the design goals of Pascal was that it should be easy to write a compiler that goes through
the source program once, from beginning to end, without having to back up and read
part of the program twice. In particular, when the compiler sees a procedure invocation,
it must already know what inputs that procedure requires; therefore, it must have already
read the header of the subprocedure. Usually you can get around this restriction by
rearranging the procedures in your program, but for the times when that doesn’t work
Pascal provides a kludge that lets you put the header in one place in the source file and
defer the rest of the procedure until later.

Berkeley Logo has three data types: and (Numbers are just words that
happen to be full of digits.) But a in Logo does not have a type associated with it;
any datum can be the value of any variable.

Pascal has lots of types, and every variable belongs to exactly one of them. In the
sample programs so far we’ve used five types: and

When a variable is declared, the declaration says what type it is.

The selection of data types is the area in which my Pascal compiler is most lacking;
I’ve implemented only a few of the possible types. I’ll describe the ones available in my
compiler in detail and give hints about the others.

The fundamental types out of which all others are built are the types that
represent a single value, as opposed to an aggregate like an array or a list. Pascal has four:

a positive or negative whole number (e.g.,)
a number including decimal fraction part (e.g.,)
a single character (e.g.,)

or

Pascal also has several kinds of aggregate types. The only one that I’ve implemented is
the array, which is a fixed number of uniform elements. By “uniform” I mean that all
members of the array must be of the same type. Full Pascal allows the members to be of
any type, including an aggregate type, as long as they’re all the same, so you could say

a[3,2]

1..10

frequency[’w’]

multiple indices;

range;

is

ordinal

packed array

bytes

188 Chapter 4 Programming Language Design

something

* The Berkeley Logo primitive can take an optional second input to specify a different
starting index.

var a : array [1..10, 1..4] of integer;

make "ten array 10

var ten:array [1..10] of

var frequency : array [’a’..’z’] of integer;

array

to get an array of arrays. But in my subset Pascal the members of an array must be scalars.
This restriction is not too severe because Pascal arrays can have instead of
the above you can use the equivalent

This declaration creates a two-dimensional array whose members have names like .

The notation is called a it indicates the extent of the array. Berkeley
Logo arrays ordinarily start with index one, so a Logo instruction like

is equivalent to the Pascal declaration

except that the Logo array need not have uniform members.* (Also, a subtle difference
is that the Logo array is an independent datum that can be the value of a variable just as
a number can be the value of a variable. The Pascal array the variable; you can change
the contents of individual members of the array but it’s meaningless to speak of changing
the value of that variable to be something other than that array.)

In Pascal an index range doesn’t have to be numbers; you can use any scalar type
except real:

might be used in a program that counts the frequency of use of letters, such as a
cryptography program. The members of this array would be used by referring to things
like . (In Pascal documentation there is a word for “scalar type other
than real”: It’s called an type.)

A is one that’s represented in the computer in a way that takes up as
little memory as possible. Ordinary arrays are stored so as to make it as fast as possible to
examine or change an individual element. The distinction may or may not be important
for a given type on a given computer. For example, most current home computers have
their memory organized in that are just the right size for a single character. On such

packed
cards

suitnames

suitnames

words

n

constant string

Typed Variables 189

suitnames := ’HSDC’

suitnames := ’HSDC ’

var a,b:array [3..17] of real;

a := b

var primes : array [1..4] of integer;

primes[1] := 2;
primes[2] := 3;
primes[3] := 5;
primes[4] := 7

a computer, an array of char and a packed array of char will probably be represented
identically. But one of my favorite larger computers, the Digital Equipment Corporation
PDP-10, had its memory organized in of 36 bits, enough for five 7-bit characters
with one bit left over. A packed array of char, on the PDP-10, would be represented with
five characters per word; an ordinary array of char might store only one character per
word, wasting some space in order to simplify the task of finding the th character of the
array.

My compiler, which is meant to be simple rather than efficient, ignores the
declaration. The reason I used it in the program is to illustrate a rule of Pascal:
The statement

assigns a to the array variable , and such assignments are
allowed only to packed arrays of char. Also, the size of the array must equal the length of
the string. If were an array of length 10, for example, I’d have had to say

filling up the unused part of the array explicitly with spaces.

In an assignment statement, the type of the variable on the left must be the same as
the type of the expression on the right. An assignment can copy one array into another
if it involves two variables of exactly the same type:

but except for the case of packed arrays of char mentioned above there is no way to
represent a constant array in a Pascal program. If you want an array of all the prime
numbers less than 10 you have to initialize it one member at a time:

Additional Types in Standard Pascal

not

record;

pointer

quite

190 Chapter 4 Programming Language Design

17
17.0 trunc

round Trunc
trunc(4.99) 4 Round

+ - * /

/
div mod

=
equalp < > <= >=

<>
and or not

cards

(x < 0) and (y <= 28)

var carddeck: array [0..51] of record
rank:integer;
suit:char

end;

carddeck[4].rank

In scalar assignments, a slight relaxation of the rules is allowed in that you may assign
an integer value to a real variable. The value is converted to a real number (e.g.,
to). The opposite is allowed, but there are two built-in functions (for
“truncate”) and that can be used to convert a real value to an integer. cuts
off the fraction part, so is . rounds to the nearest integer.

Pascal provides the usual infix arithmetic operations , , , and , following the
usual precedence rules, just as in Logo. The result of any of these is integer if both
operands are integer, otherwise real, except that the result of (division) is always
real. There are integer division operations (integer quotient) and (integer
remainder); both operands to these must also be integers. The relational operators
(like in Logo), (less than), (greater than), (less than or equal to),
(greater than or equal to), and (not equal to) take two real or integer operands and
yield a Boolean result. There are also Boolean operators , , and , just like the
Logo ones except that they use infix syntax:

Standard Pascal, but not my version, includes other aggregate types besides the array.
One such type is the a record is a non-uniform aggregate, but the “shape” of
the aggregate must be declared in advance. For example, you can declare a record
containing three integers and an array of 10 characters. In the program, instead
of two separate arrays for ranks and suits I could have said

Then to refer to the rank of card number 4 I’d say

and that would be an integer. A is a variable whose value is the memory address of
a record; pointer variables can be used to implement dynamic data structures like Logo
lists by building explicitly the collections of boxes and arrows illustrated in some of the
pictures in Chapter 3. But it’s hard to build anything in Pascal that’s like Logo

Critique of Typed Variables

type
var

string

integer string
type

John Paul

dieface
integer

requires

subrange

enumerated

Critique of Typed Variables 191

type string = packed array [1..10] of char;

procedure paul(words:packed array [1..10] of char);

type dieface = 1..6;

type Beatle = (John, Paul, George, Ringo);

lists, even using pointers, because what’s in each box has to belong to some particular
predeclared type.

Real Pascal also includes user-defined types. There is a declaration that goes
before the declaration in a block:

Variable declarations can then use as the type of the variable being declared. In
fact, standard Pascal the use of named types in certain situations. For example, in
a procedure header the formal parameters must be given a named type (either a built-in
scalar type like or a defined type like); since I haven’t implemented

my compiler allows

although standard Pascal doesn’t allow such a header.

You can also define types:

This type is really an integer, but it’s constrained to have only values in the given range.
This particular one might be used for a variable whose value is to represent the result of
rolling a six-sided die. Finally, there are types:

This type is used for a variable that represents one of a small number of possible things.
In reality it’s also a kind of integer; the word represents 0, is 1, and so on. In
fact, it’s only during the compilation of the program that Pascal remembers the names
of the possible values; you can’t read or print these variables during the running of the
program.

Why would anyone want to use a subrange or other restricted type? If the program
works using a variable of type , it would work just as well if the variable were of
type . The only difference is that using a subrange type is slower because the

use

not not

192 Chapter 4 Programming Language Design

cards shuffle i j
ranks suits

integer

while
i

i

for while

var i,j : 0..51;

i := 0;
while i <= 51 do
begin
writeln(ranks[i]:3,suits[i]);
i := i+1

end

* I know I said I wasn’t going to try to convince you which language is better, but on this
particular point I really think the Pascal people don’t have a leg to stand on.

program has to check (at run time) to make sure that any value you try to assign to that
variable is in the approved range.

According to Pascal enthusiasts, the virtue of restricted types, like the virtue of typed
variables in the first place, is that their use helps catch program bugs. For example, in the

program, procedure has variables and that are used to index the
arrays and . How do we know there isn’t an error in the program so that
one of those variables is given a value that isn’t a valid index for those arrays? Such an
error would be caught when we the index variable to try to refer to an array element
that doesn’t exist, but it’s easier to debug the program if we get the error message at the
moment when the variable is assigned the incorrect value. So I should have declared

instead of using . (Of course one reason I didn’t use a subrange type is that I
didn’t implement them in my compiler!)

The trouble is that strict typing of variables is an unnecessary pain in the neck.*
Take this business of array index bounds. Here is a possible piece of Pascal program:

There’s nothing wrong with this. It will print the value of each member of the two arrays,
starting from index 0 and continuing through 51. However, at the end of the
statement, the variable has the value 52. This is an error; the program does try
to refer to member 52 of the arrays. But if we declared as a subrange type the way we
“should,” the program will give an error message and die. This particular example could
be rewritten using instead of to avoid the problem, but it turns out that there
are many algorithms that jump around in an array in which the index variable sometimes
takes on a value just outside the bounds of the array. Some sort algorithms, for example,
are like that.

done

done

integer

array of char

char

robust

Critique of Typed Variables 193

to addnumbers
print [Enter the numbers, one per line.]
print [Type the word ’done’ when done.]
print se [The sum is] addnumbers1 0
end

to addnumbers1 :sum
localmake "next readnumber
if emptyp :next [output :sum]
output addnumbers1 :sum+:next
end

to readnumber
localmake "input readlist
if emptyp :input [output readnumber]
if equalp :input [done] [output []]
if numberp first :input [output first :input]
print [Please type numbers only.]
output readnumber
end

Typed variables work against program robustness. (A program is one that
keeps calm in the face of bad data or other user error, rather than dying abruptly.) For
example, suppose we want to find the sum of a bunch of numbers. Some human being is
going to type these numbers into the computer, one at a time. We don’t know in advance
how many there are, so we let the person type when done. Since the typist is only
human, rather than a computer, we want to make sure the program doesn’t blow up if
he accidentally types something other than a number or . Here’s one way to do it
in Logo:

If the user makes a typing mistake, the program says so, ignores the bad input, and keeps
going. Now, how shall we write this in Pascal? Into what type of variable should we read
each number from the keyboard? If we pick , then any entry of a non-number
will incite Pascal to print an error message and terminate the program. Instead we can
read the keyboard entry into an , one character at a time. Then anything
the user types is okay, but we can’t do arithmetic on the result—we can’t add it into the
accumulated sum. We can read it as s and then write a procedure that knows how
to look at a string of digits and compute the number that those digits represent. But this
is not the sort of thing that we should need to do ourselves in a high-level programming
language.

done

Procedures and Functions

union types.

variants,
type inference,

functions procedures

194 Chapter 4 Programming Language Design

to square :x
output :x * :x
end

function RealSquare(x:real): real;
begin
RealSquare := x * x

end;

function IntSquare (x:integer): integer;
begin
IntSquare := x * x

end;

Why should a programmer have to decide in advance whether or not the numbers
that a program will manipulate are integers? In Logo I can write a general numeric
procedure like this one:

but in Pascal I need one for each kind of number:

Why pick on the distinction between integer and non-integer values? Why not positive
and negative values, or odd and even values? The historical answer is that computer
hardware uses two different representations for integer and real numbers, but so what?
That doesn’t mean the distinction is relevant to the particular program I’m writing.

The language ML, which I mentioned earlier as an example of a pure functional
language, tries to provide the best of both worlds on this issue. It does require that
variables have types, as in Pascal, to help catch programming errors. But two features
make ML’s type system more usable than Pascal’s. One is the provision of It’s
possible to say that a particular variable must contain either a number or the word ,
for example. (Pascal has something like this, called but they’re less flexible.)
Second, the ML compiler uses a technique by which the compiler can often
figure out the appropriate type for a variable without an explicit declaration.

In Logo a distinction is made between those procedures that output a value (operations)
and those that don’t (commands). Pascal has the same categories, but they’re called

and respectively.

arguments

output

multi

memo[n,k]

type

not
right

t n k k
n

t n k

Procedures and Functions 195

function whatever () : integer;

program multi;
{Multinomial expansion problem}

var memo: array [0..4, 0..7] of integer;
i,j: integer;

function t(n,k:integer) : integer;

function realt(n,k:integer) : integer;
{without memoization}

begin {realt}
if k = 0 then
realt := 1

else
if n = 0 then
realt := 0

else
realt := t(n,k-1)+t(n-1,k)

end; {realt}

A function is a block just like a procedure block except for the minor changes
needed to accommodate the fact that the function produces a value. First of all, the
function header has to say what the of the result will be:

The function’s type must be a scalar, not an aggregate type. This restriction is in the
standard only to make life easier for the compiler, and some versions of Pascal do allow
array-valued (or record-valued, etc.) functions.

The other difference is that in the statement part of a function block we have to
tell Pascal what the value will be. That is, we need something equivalent to in
Logo. Pascal’s convention is that somewhere in the block an assignment statement must
be executed that has the name of the function as its left hand side. That is, the function
name is used in an assignment statement as though it were a variable name. (However,
the name must be declared as a variable.) This notation may be a little confusing,
because if the same name appears on the side of the assignment statement, it signals
a recursive invocation of the function. Perhaps an example will make this clear.

Program is a Pascal version of the memoized multinomial function from
Chapter 3. In the Logo version, (,) was memoized using the property name on the
property list named . In the Pascal version, since we have multi-dimensional arrays, it is
straightforward to use a two-dimensional array and store (,) in .

output

realt t

multi

196 Chapter 4 Programming Language Design

begin {t}
if memo[n,k] < 0 then
memo[n,k] := realt(n,k);

t := memo[n,k]
end; {t}

begin {main program}
{initialization}
for i := 0 to 4 do
for j := 0 to 7 do
memo[i,j] := -1;

{How many terms in (a+b+c+d)7̂?}
writeln(t(4,7));

end.

realt := 0

The assignment statements like

are the ones that control the values returned by the functions. These assignment
statements are not exactly like in Logo because they do not cause the function
to return immediately. They act just like ordinary assignments, as if there were actually
a variable named or ; when the statement part of the function is finished,
whatever value was most recently assigned to the function name is the one that’s used
as the return value. (In fact the functions in program are written so that only
one such assignment is carried out, and there are no more statements to execute after
that assignment. That’s a pretty common programming style; it’s rare to change the
assignment to the function name once it’s been made.)

Apart from arbitrary syntactic details, Pascal’s design with respect to procedures and
functions is similar to Logo’s, so I can’t ask why the two languages made different choices.
It’s probably just as well, since you shouldn’t get the impression that Pascal is the exact
opposite of Logo in every way. Instead we could compare these two languages with Lisp,
in which there are only operations, or most versions of BASIC, in which there are only
commands. But I don’t have the space to teach you enough about those languages to
make such a comparison meaningful.

Call by Value and Call by Reference

make "baz 23
increment "baz
print :baz

increment
push pop

increment

var
v Increment

name

variable parameter; value parameters.

Call by Value and Call by Reference 197

to increment :var
make :var (thing :var)+1
end

?
?
?
24

procedure increment(var v:integer);
begin
v := v+1;

end;

program whatzit;

var gub:integer;
begin
...
gub := 5;
increment(gub);
...
end.

Consider this Logo procedure:

The input to is the of a variable that you want to increment. A similar
technique is used, for example, in the and library procedures, which take the
name of a stack variable as input. The reason this technique is necessary is that we want
the procedure to be able to modify the variable—to assign it a new value.

The same technique won’t work in Pascal. For one thing, the association of a name
with a variable only exists at compile time. Once the compiled program is running, the
variables have no names, only addresses in computer memory. Also, takes
advantage of dynamic scope because the variable it wants to modify isn’t its own, but
rather a variable accessible to the calling procedure.

Here’s how you do it in Pascal:

What’s new here is the reserved word in the argument list. This word indicates that
is a ordinary ones are called would be

used in a program like this:

increment(2+3);

v := v+1

gub := gub+1

call by value
value

must

another name for the same variable

does
call by reference refers

198 Chapter 4 Programming Language Design

increment var
increment(gub)

increment gub
gub

v increment increment
v

increment v
gub v

v

v
increment

increment v

v gub

v

v

increment
increment var

Suppose had been written without the word in its header. In that
case, when the statement was executed here’s what would happen.
First, the actual argument to (namely) would be evaluated. The value
would be 5, since that’s the value of the variable . Then that value would be assigned
to the local variable in . Then the instruction part of would
be run. The assignment statement there would change the value of from 5 to 6. Then

would be finished, and its local variable would disappear. All of this would
have no effect on the variable . This ordinary interpretation of is called
because what gets associated with the name is the of the actual argument, 5 in
this example, regardless of how that 5 was derived. For example, the instruction in the
main program could have been

and it wouldn’t have mattered.

Making a variable parameter instead of a value parameter changes the operation
of the program substantially. When is invoked, the actual argument be
a variable name, not an arbitrary expression. Pascal does not find the value of the actual
argument and pass that value along to ; instead, the formal parameter
becomes named in the actual argument. In this example,

becomes another name for . So the assignment statement

isn’t really about the local variable at all; it’s another way to say

and so it affect the variable in the calling block. This use of variable parameters is
called because the formal parameter () to another variable.

One way to think about call by reference is that it provides, in effect, a sort of
limited dynamic scope. It’s a way for a superprocedure to allow a subprocedure access
to one selected variable from the superprocedure’s lexical environment. Because this
permission is given to the subprocedure explicitly, call by reference doesn’t give rise to
the possible naming bugs that argue against dynamic scope in general. Also, dynamic
scope as used in Logo has the problem that you have to be careful not to allow a formal
parameter name to be the same as the name of a variable you want to use from the
superprocedure’s environment. For example, in the Logo version of , what
if you wanted to use to increment a variable named ? If you try to say

Parameters in Logo: Call by Binding

increment

increment
v

var

increment explicitly name

Parameters in Logo: Call by Binding 199

increment "var

print butlast butfirst [Yes, this is a list evidently.]

it won’t work, because will end up trying to increment its own formal
parameter. (This is why the inputs to some of the Berkeley Logo library procedures have
such long, obscure names.) But the Pascal would have no trouble with a
variable named in the calling procedure.

On the other hand, call by reference is a little mysterious. If you’ve understood all
of the above, and you know exactly when you should say in a formal parameter list
and when you shouldn’t, you’re doing better than most beginning Pascal students. In
Logo there is only one rule about passing inputs to procedures; to make something like

work, you pass the of a variable as input.

Call by reference is generally used when a subprocedure needs to change the value
of a variable in a superprocedure. But there is also another situation in which some
people use it. Suppose you want to write a procedure that takes a large array as an
argument. If you make the array a value parameter, Pascal will allocate space for the array
in the subprocedure and will copy each member of the array from the superprocedure’s
variable into the subprocedure’s variable as the first step in invoking the subprocedure.
This time-consuming array copying can be avoided by declaring the array as a variable
parameter, thereby giving the subprocedure direct access to the superprocedure’s array.
Pascal enthusiasts consider this use of call by reference cheating, though, because it
creates the possibility that the subprocedure could accidentally change something in the
superprocedure’s array. Call by value is safer, from this point of view.

Does Logo use call by value or call by reference for passing arguments to procedures?
The official textbook answer is “call by value,” but I find that misleading, because those
two categories really make sense only in a language with a particular idea of what a
variable is. A Logo variable is different from a Pascal variable in a subtle way. If you can
understand this difference between the two languages, you’ll have learned something
very valuable.

In Logo, the world is full of data (words, lists, and arrays). These data may or may
not be associated with variables. For example, when you enter an instruction like

Logo Lisp APL

name

value

langs

name

value

mylangs

langs

mylangs langs

i j

make

make "langs [Logo Lisp APL]

make "mylangs :langs

var this,that: array [1..10] of integer;

this := that;

variable
binding

is bound to

same

is

separate

two different integers

binding

the datum

200 Chapter 4 Programming Language Design

three different lists are involved: the one you typed explicitly in the instruction and two
smaller lists. None of these three lists is the value of any variable. A is an
association (called a) between a name and a datum. If you enter the instruction

we say that the name the indicated list. If you then do

we say that the name is bound to the datum as . We’re dealing with
one list that has two names.

In Pascal a variable is not a binding in this sense. A Pascal variable the datum it
contains. If you have two array variables

and you do an assignment like

then there are two arrays that happen to have equal values stored in them. The
same thing is true, although it’s less obviously meaningful, about scalars. If integer
variables and both have the value 10, then there are that happen
to have the same value. That’s not the way a mathematician uses the word “integer”;
to a mathematician, there is only one 10. But to a Pascal programmer, an integer isn’t
something like 10; an integer is a box, and in the box there might be something like 10.

In Logo, a variable assignment (that is, an invocation of) changes the
of the given variable name so that that name is now associated with a different datum. In
Pascal, a variable assignment changes the value of that is unalterably associated
with the named variable.

setitem

actual other
proc actual

proc formal

pointer

another

mutable
can

Parameters in Logo: Call by Binding 201

The official textbook story is this: A Logo variable is a box, just as a Pascal variable
is a box. The difference is that what goes in the box, in Logo, is a to the datum
of interest. (A binding, officially, is the connection between the variable’s name and its
box. So there are two levels of indirection in finding what we ordinarily think of as the
value of a variable: First the binding gets us from the name to a box—a location in the
computer’s memory—and then in that box we find a pointer, which gets us to
location in memory, which holds the actual information we want. In this model, call by
reference can easily be described by saying that two different names are bound to the
same box.) From this point of view, it makes sense to say that Logo uses call by value,
because the “value” in question is the pointer, which is indeed copied when a procedure
is called.

But ordinarily we don’t think of the value of a Logo variable as being a pointer; we
think that the value of the variable is a word, a list, or an array. From that point of view,
parameter passing in Logo acts like call by reference in some ways but like call by value
in other ways. For example, call by value makes a copy of the datum being passed. Logo
does not copy the actual datum, so in that respect it’s like call by reference. On the
other hand, assigning a new value to a Logo formal parameter does not change the value
of any variables in the calling procedure; in that way, Logo works like call by value. On
the third hand, if the datum to which the formal parameter is bound is a data
structure, such as an array, a Logo subprocedure change the value of a variable in the
calling procedure, not by assigning a new value to the formal parameter name (changing
the binding), but by invoking on the shared datum (altering the bound datum
itself).

The chart on the next page is a graphic representation of the ideas in the last
paragraph. The three columns represent Pascal call by value, Pascal call by reference,
and Logo. In each case the main program has two arrays named and ;
it then invokes a procedure using as the actual argument providing the
value for ’s formal parameter .

[0] [1]

3 4

actual
formal

[0] [1]

5 6

other

[0] [1]

5 6

actual
formal

[0] [1]

5 6

other

(values copied)

[0] [1]

3 6

actual
formal

[0] [1]

5 6

other

(value copied)

[0] [1]

3 4

actual
[0] [1]

5 6

other

[0] [1]

3 4

formal

[0] [1]

3 4

actual
[0] [1]

5 6

other

[0] [1]

5 6

formal

(values copied)

[0] [1]

3 4

actual
[0] [1]

5 6

other

[0] [1]

3 6

formal

(value copied)

name

value

formal

name

value

other

name

value

actual

[0] [1]

3 4

[0] [1]

5 6

name

value

formal

name

value

other

name

value

actual

[0] [1]

3 4

[0] [1]

5 6

(change binding)

name

value

formal

name

value

other

name

value

actual

[0] [1]

3 6

[0] [1]

5 6

(value copied)

Pascal: call by value Pascal: call by reference Logo

initial
situation

procedure
assigns
entire array

formal
 ← other

procedure
assigns
one member

formal[1]
 ← other[1]

202
C

hapter4
Program

m
ing

L
anguage

D
esign

body body

body

proc
proc other

formal

proc

Parameters in Logo: Call by Binding 203

Pascal call by value Pascal call by reference

Logo

The first row of the figure shows the situation when is entered, before its body is
executed. The second row shows what happens if contains an assignment of
to , i.e.,

in either Pascal version or

in the Logo version. The third row shows what happens if, instead, contains an
assignment of just one member of the array, i.e.,

program pgm; program pgm;
type pair = array [0..1] type pair = array [0..1]

of integer; of integer;
var actual,other: pair; var actual,other: pair;

procedure proc(formal:pair); procedure proc(var formal:pair);
begin begin

end end

begin begin
actual[0] := 3; actual[0] := 3;
actual[1] := 4; actual[1] := 4;
other[0] := 5; other[0] := 5;
other[1] := 6; other[1] := 6;
proc(actual) proc(actual)

end. end.

make "actual {3 4}@0
make "other {5 6}@0
proc :actual

to proc :formal

end

formal := other

make "formal :other

formal[1] := other[1]

p≤p ≥p

2
−

actual proc

setitem 1 :formal (item 1 :other)

Programming Pearls

n
n

O n

median

204 Chapter 4 Programming Language Design

in either Pascal version or

in the Logo version. Your goal is to see what happens to in each case when
is finished.

Our final Pascal program example, showing the use of call by reference, is a version
of the partition sort from Chapter 3 that uses the technique of exchanging two array
members when appropriate to divide the array into two partitions “in place” (without
requiring the allocation of extra arrays to hold the partitions). This program is adapted
from Jon Bentley’s version in (Addison-Wesley, 1986). It’s much closer
in style to the real quicksort than my list-based version.

In the partition sort program of Chapter 3, I had to put a lot of effort into preventing
a situation in which every member of the list being sorted ended up on the same side
of the partition value. The quicksort solution starts by choosing some member of the
array as the partition value and excluding that member from the partitioning process.
As a result, the worst possible case is that the members of the array are divided into
the partitioning member, a partition of size 1, and a partition of size zero. If we’re
unlucky enough to hit that case every time, we’ll have an () running time, but not an
infinite loop.

How do we choose the partitioning member? It turns out that just picking one at
random is surprisingly successful; sometimes you get a very bad choice, but usually not.
But in this program I’m using a popular method that tends to work a little better (that
is, to give more balanced partition sizes): The program finds the first member of the
unsorted array, the last member, and the one halfway in between, and chooses the
of these three values—the one that’s neither the largest nor the smallest.

Once the partitioning member has been chosen, the goal is to rearrange the array
members into an order like this:

If other members of the array have the same value as the one we’ve chosen as the
partitioning member, it doesn’t really matter in which partition they end up. What
does matter is that before doing the partitioning, we don’t know where in the array
the partitioning member will belong, so how can we keep from bumping into it as

index

Parameters in Logo: Call by Binding 205

i j

i j
data[i]

data[j]
i j

exch

psort
data

i data[100]

if i > upper then ...

program psort;
{partition sort demo}

var data: array [0..100] of integer;
i: integer;

procedure showdata;
{print the array}

var i: integer;

begin {showdata}
for i := 0 to 99 do
begin
if i mod 20 = 0 then writeln;
write(data[i]:3)

end;
writeln;
writeln

end; {showdata}

we rearrange the other members? The solution is that the partitioning member is
temporarily kept in the leftmost possible position; the other members are partitioned,
and then the partitioning member is swapped back into its proper position.

The partition works using two variables and , which start at the leftmost
and rightmost ends of the part of the array that we’re sorting. (Remember that this
algorithm uses recursive calls to sort each partition, so that might not be all 100 members
of the full array.) We move toward the right, and toward the left, until we find two
members out of place. That is, we look for a situation in which is greater than
the partitioning member and is smaller than the partitioning member. We
then interchange those two members of the array and continue until and meet in the
middle. Procedure has two variable parameters and exchanges their values.

Program illustrates a fairly common but not obvious technique: the array
contains 100 “real” members in positions 0 to 99 but also has a “fence” or “sentinel”

member (with index 100) just so that the program doesn’t have to make a special case
check for the index variable reaching the end of the array. The value of
is guaranteed to be greater than all the numbers that are actually being sorted. Having
this extra member in the array avoids the need for an extra comparison of the form

and thereby helps make the program a little faster.

206 Chapter 4 Programming Language Design

function median(lower,upper:integer):integer;
{find the median of three values from the data array}
var mid: integer;

begin
mid := (lower+upper) div 2;
if (data[lower] <= data[mid]) and (data[mid] <= data[upper]) then
median := mid

else if (data[lower] >= data[mid]) and
(data[mid] >= data[upper]) then

median := mid
else if (data[mid] <= data[lower]) and

(data[lower] <= data[upper]) then
median := lower

else if (data[mid] >= data[lower]) and
(data[lower] >= data[upper]) then

median := lower
else median := upper

end;

procedure sort(lower,upper:integer);
{sort part of the array}

var key,i,j:integer;

procedure exch(var a,b:integer);
{exchange two integers}

var temp:integer;

begin {exch}
temp := a;
a := b;
b := temp

end; {exch}

Parameters in Logo: Call by Binding 207

begin {sort}
if upper > lower then
begin
exch (data[lower],data[median(lower,upper)]);
key := data[lower];
i := lower;
j := upper+1;
repeat
i := i+1

until data[i] >= key;
repeat
j := j-1

until data[j] <= key;
while (i <= j) do
begin
exch(data[i], data[j]);
repeat
i := i+1

until data[i] >= key;
repeat
j := j-1

until data[j] <= key
end;

exch(data[lower], data[j]);
sort(lower,j-1);
sort(i,upper)

end
end; {sort}

begin {main program}
data[100] := 200;
for i := 0 to 99 do
data[i] := random(100);

writeln(’Data before sorting:’);
showdata;

sort(0,99);
writeln(’Data after sorting:’);
showdata

end.

