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Program file for this chapter:

Computer scientists often use mathematics as a tool in their work, but the mathematical
problems that arise in computer science are of a special kind. Consider these examples:

Suppose you have a nondeterministic FSM with five states and you want to convert it
to a deterministic one. What is the largest number of states that might be required for
the new machine? Well, each state of the new machine corresponds to some
of states of the old one, because the conversion works by finding multiple transitions
(from some state via the same input character to multiple states) and creating a new state
that combines all those resulting states. How many such combinations are possible? In
other words, how many does a five-element set have? The answer is 2 or 32 states.
(31, really, because one of those is the empty subset and that will never be used.)

Suppose you want to write a program to translate telephone numbers into letters.
A telephone number has seven digits, each of which corresponds to three letters. How
many different strings of letters are possible? Well, there are three choices for the first
digit, times three for the second, and so on...

These are typical of the kinds of mathematics problems that a computer scientist
confronts in that they are problems—ones that involve integers. Another
relevant kind of problem is the problem, in which the values under consideration
are just and . These areas of mathematics are quite different from what
is studied in the usual high school and college math courses: algebra, geometry, trig,
calculus, differential equations. Those courses deal with problems, in which
the answer can be any number, including a fraction or an irrational number. This
conventional mathematics curriculum, studying functions, is dictated by the
needs of physics and the physics-based engineering subjects. Computer scientists need
a different kind of math, called mathematics. (“Discrete” is the opposite of
“continuous” and is not the same word as its homonym “discreet” meaning tactful.)
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You already know that what in Logo is called an is the computer programming
version of a mathematical The inputs and outputs of Logo operations may be
numbers, or they may be other kinds of words or lists. In ordinary algebra the functions
we use have numeric values. Certain Logo operations are identical to the ones used in
algebra: is sin( ) and is . On the other hand, there is nothing in
ordinary school mathematics quite like or . You may have been taught
to use the word “function” only when you see a notation like ( ), but in fact the ordinary
arithmetic operations are functions, too. The addition in + is a function with two
arguments, just like in Logo.

In Logo there are also operations whose inputs and outputs are the words and
. The primitive operations in this category are , , and . Just as algebra

deals with numeric functions, is the branch of mathematics that deals with these
functions. Instead of numbers, these functions combine : statements

that may be true or false. A Logo expression like represents a proposition.
“Abraham Lincoln was the King of England” is a proposition; it happens to be false,
but it’s a perfectly valid one because it asserts something that’s either true or false. “It
will rain in Boston tomorrow” is a proposition whose truth value we don’t know yet.
“Chinese food is better than French food” is an example of a sentence whose validity as
a proposition is open to question. If I say that, I’m expressing my personal taste, not an
objective statement that could be proven true or false.*

Logical functions combine propositions into propositions. For
example, “Either Abraham Lincoln was the King of England or he was the President of
the United States” is a compound proposition. It’s true even though one of the simple
propositions within it is false. Just as in algebra we use letters like to represent numbers
and expressions like + to indicate the use of functions to combine numbers, in logic
we use letters to represent propositions and there are function symbols for the logical
functions. If is the proposition “Abraham Lincoln was the King of England,” and
is the proposition “Abraham Lincoln was the President of the United States,” then the
expression represents the compound proposition above. The symbol represents
the function; represents ; and ~ are alternative representations for The
symbol represents “implies”; it turns out that is equivalent to ; in other
words, the value of the function is true if either the “if” part is or the “then” part is



if→

→

°

→ →
→

An Inference System

to implies :p :q
output or (not :p) :q
end

action

proof.

reason

rules of inference.

p
q p

p q q p q
p p q q

see p

inference systems

An Inference System 47

true. An example of the former is the classic “If wishes were horses then beggars would
ride.”

(Don’t confuse the function with the Logo command. The latter isn’t a
function (an operation), but a command. It tells Logo to take some if a given
condition is met. The operation

is the Logo equivalent of the function in logic.)

The most important use of logic in mathematics is in understanding the idea of
What is a valid reason for claiming that some proposition has been proven true? Many
people come across the idea of proof for the first and last time in high school geometry.
We are asked to prove some proposition like “the sum of the interior angles of a triangle
is 180 .” For each step in the proof we must give a such as “things equal to the
same thing are equal to each other.”

In logic there are certain rules that allow us to infer one proposition from one or
more previously known propositions. These rules correspond roughly to the “reasons” in
a geometry proof. They are called You use rules of inference informally
all the time, whenever you try to convince someone of something by reasoning. “Is Jay
here?” “Yes.” “How do you know?” “I saw his car in the driveway, and if his car is here, he
must be here too.”

Suppose we use the letter to represent the proposition “Jay’s car is here” and the
letter to represent “Jay is here.” Then the reasoning quoted in the last paragraph says “
is true and is true, so must be true.” (“ ” is the proposition “If Jay’s car is here,
he must be here too.”) The fact that and allow us to infer is a rule of inference.
(Of course the rule doesn’t tell us about the truth of its component propositions. We
have to determine that by some means outside of logic, such as observation of the world.
I had to Jay’s car in the driveway to know that is true.)

What does all this have to do with computer science? One application of logic is in
: programs that deduce propositions from other ones. Such systems are

important both in business applications where large data bases are used and in artificial
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intelligence programs that try to answer questions based on information implied by some
text but not explicit in the text.

In this section I’ll show you a special-purpose inference system that solves logic
problems. Logic problems are the ones in which you’re given certain propositions and
asked to deduce others. Mr. Smith lives next to the carpenter; John likes classical music;
who lives in the yellow house? Here is a typical problem taken from Book
B–2, by Anita Harnadek.

A cub reporter interviewed four people. He was very careless, however.
Each statement he wrote was half right and half wrong. He went back
and interviewed the people again. And again, each statement he wrote
was half right and half wrong. From the information below, can you
straighten out the mess?

The first names were Jane, Larry, Opal, and Perry. The last names were
Irving, King, Mendle, and Nathan. The ages were 32, 38, 45, and 55.
The occupations were drafter, pilot, police sergeant, and test car driver.

On the first interview, he wrote these statements, one from each person:

1. Jane: “My name is Irving, and I’m 45.”
2. King: “I’m Perry and I drive test cars.”
3. Larry: “I’m a police sergeant and I’m 45.”
4. Nathan: “I’m a drafter, and I’m 38.”

On the second interview, he wrote these statements, one from each
person:

5. Mendle: “I’m a pilot, and my name is Larry.”
6. Jane: “I’m a pilot, and I’m 45.”
7. Opal: “I’m 55 and I drive test cars.”
8. Nathan: “I’m 38 and I drive test cars.”

The chart provided with the problem is a guide to its solution. Each square in the
chart represents a proposition. For example, the box where the “Larry” row meets the
“pilot” column represents the proposition “Larry is the pilot.” In solving the problem, you
can put marks in the boxes to indicate what you know about the propositions. The status
of a proposition need not be only true or false. Initially the status of each proposition
is ; we have no idea whether it’s true or false. The structure of this particular
problem also allows the status of a proposition to be that it is linked with another
proposition in an relationship; that is, if one of the linked propositions turns
out to be true, then the other must be false, and vice versa. You can use whatever notation
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you find convenient to express these possibilities. After experimenting with T and F and
with check marks and crosses, I found that circles for true propositions and crosses for
false ones made it easiest for me to see quickly the pattern of known truths. For the
linked propositions, I used the statement numbers (1 to 8) in the boxes; two boxes with
the same number represent linked statements.

You should probably solve this problem by hand before we go on to discuss the
computer solution. Stop reading now and work on the problem if you want to do it
without any hints from me.

Let me introduce a little new terminology to help in the following discussion. I’ll
call something like “last name” or “occupation” a ; something like “Mendle” or
“pilot” I’ll call an As I’m using this terminology, “Mendle” and “pilot” are two
different individuals even if they turn out, when we solve the problem, to be the same
person.

It’s important that each group of four statements contains one from each person,
because the names of the speakers include first and last names. That is, from the first
group of statements we know that Jane, King, Larry, and Nathan are four distinct people.
This falsifies such propositions as “Jane is King.” After noting the first group of statements
my chart looks like this:
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From the second group of statements we learn that Mendle, Jane, Opal, and Nathan
are all distinct people. When I marked an X in the “Jane is Mendle” box, I noticed that
all but one last name for Jane had been eliminated. I therefore put a circle in the “Jane
is Irving” box. This illustrates a special rule of inference for problems of this kind: If,
for a given individual , all but one proposition “ is ” have been falsified for a certain

of individuals, then the remaining proposition in that category must be true.
(The reason I’m going through this analysis is that the rules of inference I discover
while working the problem by hand are going to end up in the design of the computer
program.) I’m going to call this the rule.

Since Jane is Irving, nobody else can be Irving. This falsifies three propositions
whose status was formerly unknown: “Larry is Irving,” “Opal is Irving,” and “Perry is
Irving.” (The truth of “Jane is Irving” would also falsify “Jane is King” and so on, but we
already knew those to be false.) The general rule is that if “ is ” is true then “ is ”
must be false for all other in the same category as , and likewise “ is ” is false for all
other in the same category as . I’ll call this the rule.

The proposition “Jane is Irving” was linked with the proposition “Jane is 45” earlier.
That latter proposition must therefore be false. This is another rule of inference, the

rule. There is also a rule that comes into play when a linked
proposition is found to be false; the other linked proposition must then be true.
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Since we know that “Jane is 45” is false, and that “Jane is Irving” is true, it follows that
“Irving is 45” must be false. The general rule is that if “ is ” is true and “ is ” is false,
then “ is ” must also be false. Similarly, if “ is ” is true and “ is ” is true, then “ is ”
must be true. I’ll call these the rules.

You should be following along with your own copy of the chart. By the elimination
rule, “Opal is King” must be true. Then, by the uniqueness rule, “Perry is King” is false.
Then, by the link verification rule, “King is test driver” must be true. By the transitive rule,
“Opal is test driver” is true also. Here is my chart after making all possible deductions
from the fact that Mendle, Jane, Opal, and Nathan are distinct people:

Looking at statement number 5, we see that “Mendle is pilot” is linked to “Mendle is
Larry.” But we already know that the latter is true, so the former must be false. We can
just put an X in that box and not bother marking the number 5 anywhere. The same
is true for statements 6 and 7; my chart after statement 7 is on the next page. I haven’t
marked anything in the age vs. occupation section of the chart, even though I can deduce
some propositions for that section. For example, I know that “Jane is pilot” is true and
that “Jane is 45” is false. By the transitive rule, “pilot is 45” must be false. I just haven’t
bothered making possible deductions; I can always fill in that section of the chart if I
get to the end of the problem and still don’t know who’s who.
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Before dealing with the final statement we know all the pairings of first and last
names, but we don’t know any ages and we only know half the jobs. The last statement
lets loose a flurry of deductions. The critical one is that if Nathan is 38, he or she (Perry
is an ambiguous first name) can’t be the drafter because of the link from statement 4.
Here is my final chart:
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Once it was clear that I was in the final steps of the solution, I didn’t bother maintaining
the age vs. last name section. The results can be found by reading just the three sections
at the top; for example, Jane is Irving, the pilot, and 55.

The elimination, uniqueness, and transitive rules are useful in just about all logic
problems, but the link falsification and link verification rules depend on this specific
problem’s gimmick that we are given pairs of propositions and told that exactly one of
them is true. To solve other problems, a more flexible kind of linkage is needed; we must
be able to say “if is true, then is true also” or “if is false, then must be true,” and so
on.

A very common kind of linkage is an in which we are told a sequence of
events, or a row of houses on a street, for example. In the cub reporter problem, the ages
form an ordering, but aren’t used as such—that is, the problem doesn’t include clues
such as “the test driver is younger than Jane.” Suppose we did see that clue; what could
we conclude from it? Certain propositions would be settled for sure:

The test driver must not be Jane.
The test driver isn’t the oldest age (55).
Jane isn’t the youngest age (32).

Other propositions would be linked by

Jane is 38, the driver is 32.
Jane is 45, the driver is 32 or 38.

and so on. (Actually, the second of these isn’t directly representable on the chart, because
there’s no notation for a single proposition with two alternatives, like “32 or 38.” So
instead we’d represent this using propositions about what be true:

Jane is 45, the driver is not 55.

We already know that the driver isn’t Jane, so there’s no need to record the implication
that if Jane is 45 the driver isn’t 45.)

Here is another problem, called “Forgetful Footes,” by Diane C. Baldwin. It is taken
from

The forgetful Foote family fairly flew from their flat up Fleet Street to the
freeway for a fling in Florida. Before they passed five intersections, Felix
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If then
If then
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and the other four Footes found they each had forgotten something
(including the food) and were forced back to their flat to fetch it. Each
turnaround was made at a different street intersection, one of them at
Field Street. From the following clues, can you figure out who forgot
what and in what order, and find the order of the intersections on Fleet
Street from the Foote’s flat to the freeway?

1. The second turnaround began at the street following Flag Street and
the street before Fred had to return to the flat.

2. The men were responsible for the return for the film, the turnaround
at Fig Street, and the fifth trip back.

3. Fork Street followed the one where they returned to fetch the flashlight
and preceded the one where a woman had them make their first
turnaround.

4. The final trip back didn’t begin at Frond Street, nor was it the one to
fetch the fan.

5. Frank’s forgetfulness turned them back one block and one return trip
following Francine’s.

6. One woman was the third to forget, while the other woman turned
them back at Flag Street.

7. They returned for the fiddle just before the trip back that began at
Frond Street and just following the one requested by Flo.

This problem includes orderings. The order of the intersections with cross
streets is not necessarily the same as the time order of the return trips. That is, the Footes
might have gone four blocks before making their first turnaround, then gone only one
block before the second return, and so on. In making a chart for this problem, I used
the numbers 1–5 to represent the order of streets, and the ordinals 1st–5th to represent
the time order of return trips. Clue 1, then, gives us this series of implications:

Flag Street is 1, 2nd is 2.
Flag Street is 2, 2nd is 3.
Flag Street is 3, 2nd is 4.

2nd is 2, Flag Street is 1.
2nd is 3, Flag Street is 2.
2nd is 4, Flag Street is 3.

2nd is 2, Fred is 3.
2nd is 3, Fred is 4.
2nd is 4, Fred is 5.
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[first last age job]

[32 38 45 55]

pprop "Jane "King "false
pprop "King "Jane "false

Fred is 3, 2nd is 2.
Fred is 3, 2nd is 3.
Fred is 5, 2nd is 4.

It may seem that there are some missing from this list. What if Flag Street is 4? But that
can’t happen (and I so marked the chart) because then 2nd would have to be 5, and that
would make Fred 6, which is too far. But notice that we do have to include both directions
of implication between any two propositions. The clue tells us that if Flag Street is 1, then
2nd is 2, and also that if 2nd is 2, then Flag Street is 1.

See if you can solve this problem, and then we’ll talk about the Logo-based inference
system.

In addition to the status of the “ is ” propositions, the program needs to keep track of the
categories, like “first name,” and the individuals within each category. This information
is needed for the sake of the elimination and uniqueness rules. I chose to have a global
variable named containing (for the cub reporter problem) the list

Each of the elements of that list is the name of a variable containing the individuals in
that category; for example, is the list

The status of the “is” propositions is kept in property lists associated with the names
of individuals. For example, to indicate that the proposition “Jane is King” is false, the
program carries out these two instructions:

Both are necessary because we can’t predict whether we’re going to be figuring out
something about Jane or something about King when we next need this information.
Actually, the fact that the proposition is stored twice reflects another inference rule, one
that’s so obvious we don’t think about it at all when solving these problems without using
a computer: the rule says that if is , then is .
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[Irving pilot]

[King Mendle Nathan drafter sergeant driver]

true
false

true false

true false

Jane Irving [true Jane 45 false]
Jane 45 [true Jane Irving false]

:categories
category

true
false

Jane true

false

If a given property’s value is the empty list, that means that the truth of the
proposition is unknown. (Remember that Logo property lists give the empty list as
the value of a property that you haven’t defined explicitly, so I don’t have to predefine
all possible properties.) The word means that the proposition is known to be
true; the word means that it’s known to be false. If the proposition is linked
to other propositions by implication, then the value of the property is a list containing
four-element implication lists. The first member of each implication is or to
indicate which value of this proposition implies something about the other proposition.
The next two members are names of individuals, indicating which other proposition is
determined by this one. The fourth member is again or , indicating whether
that other proposition is implied to be true or implied to be false.

For example, the statement “My name is Irving, and I’m 45” attributed to Jane is
stored as the following two implications:

Under and , the list .
Under and , the list .

Although the data structure as described so far contains all the necessary information,
it turned out to be convenient to include some redundant forms of the same information.
For example, the elimination rule and the uniqueness rule require the program to find
all the of an individual—the other individuals in the same category. It would be
possible to start with and search for the known individual in a category
list, but it was easier to give each individual a property whose value is the
name of the category to which it belongs.

Similarly, the transitive rule needs to know all of the propositions involving a
particular individual that are known to be true, and all those that are known to be
false. This information is implicit in the properties already described, but to simplify the
program each individual has a property whose value is a list of the other individuals
known to be equal to this one, and a property whose value is a list of the others
known to be different from this one. For example, after processing statement 7 we know
that Jane is Irving and that Jane is the pilot, but we don’t know Jane’s age. Therefore the
property list for has a property whose name is and whose value is the list

and one whose name is and whose value is
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Jane last Irving

category differ says

differ says

differ says

to cub.reporter
cleanup
category "first [Jane Larry Opal Perry]
category "last [Irving King Mendle Nathan]
category "age [32 38 45 55]
category "job [drafter pilot sergeant driver]
differ [Jane King Larry Nathan]
says "Jane "Irving 45
says "King "Perry "driver
says "Larry "sergeant 45
says "Nathan "drafter 38
differ [Mendle Jane Opal Nathan]
says "Mendle "pilot "Larry
says "Jane "pilot 45
says "Opal 55 "driver
says "Nathan 38 "driver
print []
solution
end

Finally, it turned out that at the end of the program, in order to print out the
solutions, it was convenient to have, for each individual, properties with a category as the
name and an individual in that category as the value. For example, since Jane’s last name
is Irving, has a property whose name is and whose value is .

I wanted to enter the problem as a series of assertions, each represented by a Logo
instruction. That is, I wrote this procedure:

(The first instruction erases any old property lists left over from a previous logic problem;
the last prints out the results.) I made , , and print out their
inputs when invoked, so that you can watch the progress of the solution while it’s being
computed.

The procedures and were designed to reflect the terms in which this
problem is presented, rather than the internal workings of the inference system. That
is, if you compare the problem statement with this procedure, it’s easy to see which
instructions represent which clues, even if you have no idea how the program will actually
solve the problem! Our task is to implement and using propositional
logic.
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differ says Differ

Says

differ

differ

falsify
falsify

falsify

differ falsify

Falsify verify
settruth

differ [Jane King Larry Nathan]

falsify "Jane "King
falsify "Jane "Larry
falsify "Jane "Nathan
falsify "King "Larry
falsify "King "Nathan
falsify "Larry "Nathan

to differ :list
print (list "differ :list)
foreach :list [differ1 ? ?rest]
end

to differ1 :a :them
foreach :them [falsify :a ?]
end

to verify :a :b
settruth :a :b "true
end

There’s an important difference between and . gives us direct
information about the truth or falsehood of some simple propositions; specifically, we
learn that several “ is ” propositions are false. , on the other hand, gives us no
direct information about simple propositions; it tells us about implications linking two
such propositions.

First let’s consider how works. The instruction

tells us that Jane is not King, Jane is not Larry, Jane is not Nathan, King is not Larry, King
is not Nathan, and Larry is not Nathan. In effect, will carry out the instructions

There’s no need to invoke for the six cases with inputs in the opposite order
(such as the proposition that King is not Jane) because, as we’ll see, knows
about the symmetric rule and will record those automatically. By the way, some of these
six are unnecessary because the two individuals have the same category and therefore
couldn’t possibly be the same, such as Jane and Larry, both first names. But
will catch these cases and return without doing anything.

Here’s how actually carries out all those instructions:

, and a similar procedure to assert the truth of a proposition, are
implemented in terms of the central procedure about propositions, :
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to falsify :a :b
settruth :a :b "false
end

to settruth :a :b :truth.value
if equalp (gprop :a "category) (gprop :b "category) [stop]
localmake "oldvalue get :a :b
if equalp :oldvalue :truth.value [stop]
if equalp :oldvalue (not :truth.value) ~

[(throw "error (sentence [inconsistency in settruth]
:a :b :truth.value))]

print (list :a :b "-> :truth.value)
store :a :b :truth.value
settruth1 :a :b :truth.value
settruth1 :b :a :truth.value
if not emptyp :oldvalue ~

[foreach (filter [equalp first ? :truth.value] :oldvalue)
[apply "settruth butfirst ?]]

end

to settruth1 :a :b :truth.value
apply (word "find not :truth.value) (list :a :b)
foreach (gprop :a "true) [settruth ? :b :truth.value]
if :truth.value [foreach (gprop :a "false) [falsify ? :b]

pprop :a (gprop :b "category) :b]
pprop :a :truth.value (fput :b gprop :a :truth.value)
end

falsify "Jane "Larry

takes three inputs, two individuals and a truth value. It records the truth or
falsehood of the proposition that is , and uses the rules of inference I’ve described
to derive other propositions when possible.

If the two individuals are in the same category, does nothing. This is to allow
for cases such as the example

as explained earlier. If the individuals are in different categories, the next step is to find
what information was previously available about this proposition. If it was already known
to be true or false, and the truth value input in this call agrees with what was known, then
the program has merely generated some redundant information and stops.
If the known value disagrees with the input value, then something is wrong; the program
has proven two contradictory propositions. Generally this means that some clue has been
represented incorrectly in the program.
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settruth
get store

:a :b
:b :a settruth1

Settruth1 findtrue findfalse
not settruth1 findtrue

settruth1
:a

settruth

says

says "Jane "Irving 45

to says :who :what1 :what2
print (list "says :who :what1 :what2)
xor :who :what1 :who :what2
end

to xor :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "false
implies :who1 :what1 "false :who2 :what2 "true
end

If the proposition was not already known to be true or false, then we have some new
information. After notifying the user by printing a message, must store that
fact. (Procedures and are an interface to the property list primitives that
implement the symmetric rule.) The next step is to make any possible inferences using
the elimination, uniqueness, and transitive rules; this is done separately for “ is ”
and for “ is ” by two calls to the subprocedure .

invokes either or depending on the truth value.
Because of the in the first instruction of , is called when
we are falsifying a proposition, and vice versa. This makes sense because of the tasks of
these procedures. If we are falsifying a proposition, then the elimination rule comes into
play, and we try to find a true proposition. If we are verifying a proposition, then the
uniqueness rule lets us find several false propositions on the same row or column of the
chart. The next instructions in implement the transitive rule, looking at
other individuals known to be the same as, or different from, . The last two instructions
maintain the redundant information used for printing the results and for carrying out
the transitive rule.

The final instruction in deals with implications. If we already knew that
and now we’re learning that is true, we can infer that is true. (This is another

rule of inference, which I’ll call the rule.)

Speaking of implications, we can now explore how the procedure produces and
records implications. The instruction

establishes a relationship between the two propositions “Jane is Irving” and “Jane is 45.”
The relationship is that exactly one of them must be true; the name for this is
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to implies :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who2 :what2 (not :truth2) :who1 :what1 (not :truth1)
end

to implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
localmake "old1 get :who1 :what1
if equalp :old1 :truth1 [settruth :who2 :what2 :truth2 stop]
if equalp :old1 (not :truth1) [stop]
if memberp (list :truth1 :who2 :what2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
if memberp (list :truth1 :what2 :who2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
store :who1 :what1 ~

fput (list :truth1 :who2 :what2 :truth2) :old1
end

is a special case of (a common abbreviation for exclusive or) in which the two
propositions are about a common individual, Jane in the example. The procedure
establishes two implications, and . In other words, if we learn that Jane
is Irving, then we can infer that Jane is not 45; if we learn that Jane is not Irving, we can
infer that Jane is 45. (These two implications are equivalent to each other; in general,
one might be true and the other false. But the exclusive or relationship means that both
are true.)

The procedure takes six inputs. The first three are for one proposition and
the others for the second proposition. For each proposition, two inputs are individuals
(call them and ) and the third is or . If , then the proposition is “
is ”; if , the proposition is “ is not .”

Yet another rule of inference comes into play here, the rule.It says that
if is true, then so is . Although these two implications are mathematically
equivalent, we must enter both of them into our data structure because we might happen
to discover that is true, and we’ll look for relevant implications filed under rather
than under .

The first call to stores the implication in the form given to us; the second call
stores its contrapositive.

The first three instructions in check for the case in which we are told
that but we already know either or . If we already know , then we can derive
that is true. There’s no need to store the implication, because it is already serving its
purpose, which is to allow us to infer . If we already know , then we can forget about
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this implication, because it isn’t going to do us any good. We can’t infer anything about
from this situation.

The next two instructions check for the situation in which we are told but we
already know that . In that case, must not be true, because if it were, we could
infer two contradictory conclusions. Therefore, we can falsify the proposition .

Finally, if none of these conditions is met, we add this implication to the (possibly
empty) list of already known implications about .

For another example of implications at work, here’s the Logo program for the Foote
problem:

to foote.family
cleanup
category "when [1st 2nd 3rd 4th 5th]
category "name [Felix Fred Frank Francine Flo]
category "street [Field Flag Fig Fork Frond]
category "item [food film flashlight fan fiddle]
category "position [1 2 3 4 5]
print [Clue 1]
justbefore "Flag "2nd :position
justbefore "2nd "Fred :position
print [Clue 2]
male [film Fig 5th]
print [Clue 3]
justbefore "flashlight "Fork :position
justbefore "Fork "1st :position
female [1st]
print [Clue 4]
falsify "5th "Frond
falsify "5th "fan
print [Clue 5]
justbefore "Francine "Frank :position
justbefore "Francine "Frank :when
print [Clue 6]
female [3rd Flag]
print [Clue 7]
justbefore "fiddle "Frond :when
justbefore "Flo "fiddle :when
print []
solution
end
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print

falsify

male female
justbefore says

male female

justbefore

to male :stuff
differ sentence :stuff [Francine Flo]
end

to female :stuff
differ sentence :stuff [Felix Fred Frank]
end

category "sex [male female]
verify "Francine "female
verify "Flo "female
verify "Felix "male
verify "Fred "male
verify "Frank "male

to justbefore :this :that :lineup
falsify :this :that
falsify :this last :lineup
falsify :that first :lineup
justbefore1 :this :that :lineup
end

I’ve included instructions to let the user know when the program reaches
each of the seven numbered clues. Clue 4 tells us directly that two possible pairings of
individuals are false, and the program reflects this with two invocations of . But
the other clues either tell us about the sex of the family members or tell us that certain
individuals are next to each other in an ordering. The procedures , , and

reflect the language of the problem in the same way that reflected
the language of the other problem.

Needless to say, this implementation of and works only for this specific
logic problem! It’s tempting to try to use the more general category mechanism this way:

but unfortunately the structure of this inference system requires that each individual
can only match one individual in another category; once we’ve verified that Francine is
female, the uniqueness rule will deduce that Flo isn’t female!

On the other hand, I’ve tried to write in a way that will work for future
problems.
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The input named is a list of individuals from an ordering, in the correct order.
In this problem, it will be the list

if the clue is about street position, or

if the clue is about the order of events in time. As I explained when talking about
orderings earlier, the instruction

results in falsifying some propositions:

and also asserts some implications:

to justbefore1 :this :that :slotlist
if emptyp butfirst :slotlist [stop]
equiv :this (first :slotlist) :that (first butfirst :slotlist)
justbefore1 :this :that (butfirst :slotlist)
end

to equiv :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "true
implies :who2 :what2 "true :who1 :what1 "true
end

[1 2 3 4 5]

[1st 2nd 3rd 4th 5th]

justbefore "Flag "2nd :position

falsify "Flag "2nd
falsify "Flag 5
falsify "2nd 1

implies "Flag 1 "true "2nd 2 "true
implies "2nd 2 "true "Flag 1 "true
implies "Flag 2 "true "2nd 3 "true
implies "2nd 3 "true "Flag 2 "true
implies "Flag 3 "true "2nd 4 "true
implies "2nd 4 "true "Flag 3 "true
implies "Flag 4 "true "2nd 5 "true
implies "2nd 5 "true "Flag 4 "true
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category "color [yellow1 yellow2 blue brown green]

verify "Fred "yellow1

differ "architect [blue brown green]

This inference system can solve many logic problems, but sometimes it runs into trouble.
I’ve already mentioned, while discussing the and procedures, that the
program insists that each individual in a category must appear exactly once in the
solution. Suppose you have a problem about five people living in five houses; they have
five distinct first names, five last names, five occupations—but two of the houses are
yellow. It’s sometimes possible to get around this, but the technique is a little awkward.
You can set up a category like this:

then you find clue that mentions a yellow house and use for that one:

but for any other mention of something being yellow in the problem, you represent that
by saying that the individual is one of the other colors:

You never explicitly mention except in setting up the category.

That technique works if you know that yellow is the color that appears twice. What
if the problem tells you only that there are five houses and four colors? Or what if some
individuals are in the solution? For example, a problem might discuss the activities
of five people, each doing something on a different day of the week, but you don’t know
until you solve the problem which of the seven weekdays are involved.

An entirely different approach to solving logic problems by computer is
Instead of starting from the clues and making deductions, a program can start by
making arbitrary guesses about who goes with what, and then use the clues to look
for contradictions. If a contradiction is found, the program systematically makes a
different guess until every possible arrangement has been tried. (Presumably before
every possibility has been tried, one of them will lead to a contradiction, and that’s
the solution.)

In practice, backtracking is a more flexible technique than the inference system I
wrote, because it’s easy to let a backtracking program try multiple appearances of an
individual if the problem allows that. But I thought the inference system would be more
interesting to study, for two reasons. First, the inference system more closely models the
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Generalized Inference Systems and Predicate Logic

* People do sometimes use a combination of inference and backtracking. If, by inference,
you’ve established that Jane must be either the pilot or the drafter, but you can’t settle which, you
might decide to that Jane is the pilot and hope that you can then infer either a complete
solution to the problem or a contradiction. In the latter case, you’d know that Jane must be the
drafter.

way people solve logic problems. In the cub reporter problem, with four people to keep
straight, there are (4!) or 13,824 possible solutions. In the Foote problem, with five
people, there are (5!) or just over 200 million possibilities. A computer can try them all,
but a person couldn’t.* (If multiple appearances were allowed, the numbers would be
even higher.) Second, backtracking doesn’t work at all unless the problem deals with a
finite set of individuals, as in a logic problem. Inference systems can be generalized to
deal with potentially unbounded problems.

The rules of inference in this program are specially designed for problems like the ones
we’ve just solved. The implication rule is applicable to any propositional logic situation,
but the ones based on categories, such as the uniqueness and elimination rules, are not.
The idea of a “category” as we’ve used it isn’t a general principle of logic; instead, that
idea should really be expressed as a series of propositions. For example, to say “there
is a category called ‘last name’ whose members are Irving, King, Mendle, and Nathan”
is really to make several statements of the form “Jane has exactly one last name,” or, in
terms of the basic “ is ” propositions,

(Jane is Irving) (Jane is King)

(Jane is Mendle) (Jane is Nathan)

(i.e., Jane has at least one last name)

((Jane is Irving) (Jane is King))

(i.e., Jane isn’t named both Irving and King)

((Jane is Irving) (Jane is Mendle))

and so on. If we wanted to solve this problem in a general inference system we’d assert
the truth of all those propositions at the beginning. Then if the program discovers that
Jane is Irving, it would have the two propositions

((Jane is Irving) (Jane is King))
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and
(Jane is Irving)

and from these it could infer
(Jane is King)

using the standard inference rules of propositional logic.

The “and so on” just above includes quite a large number of propositions. And yet
this small problem concerns a mere 16 individual names divided into four categories.
For a larger problem it would be nearly impossible to list all the relevant propositions,
and for a problem involving an infinite set of individuals, such as the integers, it would
be literally impossible. What would make the representation of a problem easier is if
we could use, in a formal system, the same kind of language I used in describing (in
English) the inference rules earlier: “for all other in the same category as ...” There
are two parts to such a formal notation. First, in addition to the variables like

used in propositional logic, we need variables like and that can represent objects
in the system we want to describe. Second, we need a notation for “for all.” The formal
system including these additions to propositional logic is called logic. The name
is like that used in Logo to refer to operations with or outputs because the
statements in predicate logic involve truth-valued functions of objects analogous to the
Logo predicates. For example, the formula we’ve been representing informally as “ is ”
is represented formally using the predicate function is( , ). This is much like the Logo
expression

A predicate function of two arguments (“inputs” in Logo) is also called a in
mathematics. Algebraic relations include ones like = (equal) and (less than).

We are almost ready to show how the uniqueness rule can be expressed as a formula
in predicate logic. If you’re not accustomed to mathematical formalism, this formula is a
little scary—perhaps the scariest thing in this book. But I want you to see it so that you’ll
appreciate the fact that just formula of predicate logic can sum up a rule that would
require formulas in propositional logic. I’m going to introduce a new relation
called “isa” that’s true if its first argument is a member of its second argument. The first
must be an individual and the second a category. For example, isa(pilot, job) is true.
And the symbol means “for all.” The uniqueness rule says that if is then can’t also
be for any in the same category as . Here’s how to say that formally:

is( , ) ((isa( , ) isa( , ) ( = )) is( , ))
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To indicate the linking of two propositions in the general inference system, no special
rules of inference are required. To say “the reporter wrote down these two statements;
one is true and the other false” is just to say ; I’m using the symbol to represent
the function. This formula is equivalent to

( ) ( )

A general inference system will know that if it’s been told and then later it learns,
say, then it can infer .

The cub reporter problem is simpler than some of its type in that the only relevant
relation among individuals is “is,” which is an relation. This means that if Jane
is Irving then also Irving is Jane (the technical name for a relation with that property is

), and also that if Jane is Irving, and Irving is the pilot, then Jane is the pilot
(so the relation is ). It’s relatively easy to work out all the implications of a
proposition about equivalence relations.

By contrast, the Foote problem contains relations like “is later than” that are
transitive but not symmetric. To handle such problems the inference system must have a
way to represent “ is the last.” Other problems contain relations like “lives in the house
next to” that are symmetric but not transitive. A statement like “Mr. Smith lives in the
house at the end” has to be represented formally as something like “there is only one
person such that lives in the house next to Mr. Smith.”

One reason a general inference system is harder to program than the special-purpose
one I’ve written in this chapter is that my system makes all possible inferences from any
newly verified or falsified proposition. This is possible only because there is a finite,
fairly small number of such inferences. Once you introduce variables and predicates, the
number of possible inferences is potentially infinite. A general inference system must
take care not to infer infinitely many useless results. One solution is to defer the making
of inferences until the user of the system asks a question, and then infer only what’s
needed to answer that particular question. But it isn’t always easy to know exactly what’s
needed.

An inference system like the one I’m vaguely describing is a central part of the
programming language Prolog. In that language, you program not by issuing instructions
that tell the computer what to do, but rather by making that some proposition
is true. You can then ask questions like “for what values of is this formula true?”
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false true

0 0 1 1
0 1 0 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

Besides inference systems, another area in which logic is important in computer science is
in the design of the computers themselves. In a computer, information is represented as
electrical signals flowing through wires. (These days, a “wire” is likely to be a microscopic
conducting region on a silicon chip rather than a visible strand of metal, but the principle
is the same.) In almost all computers, each wire may be carrying one of two voltage
levels at any moment. (It is the restriction to two possible voltages that makes them
computers. It would be possible to build computer circuits using three voltages,
but I know of no practical application of that idea.) A computer is built out of small
circuit elements called that combine or rearrange binary signals in various ways.
Perhaps the simplest example of a gate is an ; it has one input signal and provides
one output signal that is the opposite of the input. That is, if you have a high voltage
coming into the inverter you get a low voltage out, and vice versa.

The voltages inside the computer can be thought of as representing numbers (zeros
and ones) or truth values (false and true). From now on I’ll use the symbols 0 and 1 to
represent the voltages, but you can mentally replace 0 with and 1 with to
see how what I’m saying here ties in with what’s gone before.

Suppose you have a gate with two input wires and one output. What are the
possibilities for how that output is determined by the inputs? Each of the two inputs
can have two possible values; that means that a gate has four different possible input
configurations. For each of those four, the gate can output 0 or 1. As you can see from
the chart below, this means that there are 16 possible kinds of two-input gates:

input :
input :

outputs:
and ( )

exclusive or ( )
or ( )
nor (not-or, ( ))
equivalence ( )
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implies ( )
nand (not-and, ( ))

The table indicates, for example, that a gate whose output is 1 only when both inputs
are 1 is an gate, implementing the usual logical and operation. The 16 possibilities
include all the standard logic functions as well as several less obviously useful ones. Two
gate types called and represent functions rarely used in mathematical logic but
common in computer design because it is sometimes helpful to have the opposite of the
signal you’re logically interested in.

Numbers other than 0 and 1 can’t be represented as a single signal in a single wire.
That’s why there isn’t a “plus gate” along with the and gates, or gates, and so on; if both
inputs to a plus gate were 1, the output would have to be 2. To add two zero-or-one
numbers we need a more complicated device with output wires, one of which is the
“carry” to the next binary digit:

input:
input:

sum out:
carry out:

These sum and carry outputs can be defined in terms of logical operations:

Sum =

Carry =

Exclusive or gates are, in fact, not generally used as basic hardware components, so this
device is traditionally represented in terms of and gates, or gates, and inverters:

The device we’ve just built is called a for reasons that should become clear in a
moment.
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To represent numbers larger than 1 we have to use more than one signal wire. Each
signal represents a binary digit, or that is implicitly multiplied by a power of 2 just
as in the ordinary decimal representation of numbers each digit is implicitly multiplied
by a power of 10. For example, if we have three signal wires for a number, they have
multipliers of 1, 2, and 4; with these signals we can represent the eight numbers from 0
(all signals 0) to 7 (all signals 1). When we want to add two such three-bit numbers, the
sum for all but the rightmost bit can involve a carry as well as a carry out. The circuit
for each bit position must have inputs, including one for the carry from the next bit
over as well as the two external inputs. The outputs are found using these formulas:

Sum = ( ) CarryIn

CarryOut = ( ) (( ) CarryIn)

This circuit can be built using two half-adders:

To add two three-bit numbers we connect three adders together this way:

The carry out signal from the leftmost adder (the one representing the largest power of
2) is the signal; if it’s true, the sum didn’t fit in the number of bits provided.
Many computers use this signal to the execution of their programs so that people
don’t end up seeing incorrect results.

The phrase “computer logic” is widely used, even by non-experts, to refer to the
inner workings of a computer. Many people, though, think that the phrase describes
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the of the computer, which they imagine to be like that of Mr. Spock.
“Computers may be able to play chess, but they can’t write poetry, because that isn’t
logical.” Here you’ve seen the real meaning of the phrase: Just as a Logo program
has procedures defined in terms of subprocedures and ultimately in terms of primitive
procedures, the capabilities of a computer itself are built out of smaller pieces, and the
primitive hardware components compute logical, rather than arithmetic, functions. (For
a computer to exhibit Mr. Spock’s sense of purpose, understanding of cause and effect,
drive for self-preservation, loyalty to his species and his government, and so on, would
be no less miraculous than for it to write a love poem or throw a temper tantrum. Later
we’ll discuss the efforts of artificial intelligence researchers to produce such miracles.)

Earlier I listed the 16 possible logical functions of two logical arguments. I could have
figured out that there are 16 without actually listing them this way: If a function has
two arguments, and each argument has two possible values, that makes 2 possible
combinations of argument values. A logical function is determined by its result for each
of those four possible argument combinations. (The four are (0, 0), (0, 1), (1, 0), and
(1, 1).) There are two possible results for (0, 0), two for (0, 1), and so on; the number

of possible functions is the product of all these twos, 2 or 16.

The mathematics of counting how things can be combined is called
The problem we’ve just done illustrates a fundamental rule of combinatorics, namely
that the number of possibilities for a choice with several components is the product of
the number of possibilities for each component choice. This may be easier to understand
with an example in which not all the relevant numbers are 2. Here’s a classic: Suppose
you have a group of four men and three women, and you want to form a committee
of one man and one woman chosen from this group. How many such committees are
possible? There are 4 choices for the male member of the committee and 3 choices for
the female member; that means 4 3 or 12 committees.

(The multiplication rule only works if the component choices are ; that
is, the possible outcomes of one choice can’t be affected by the outcome of any of the
others. For example, if our committees are to have a chairperson who can be of either sex
and then two other members, one man and one woman, you can’t say “there are 7 choices
for the chairperson, times 4 for the man, times 3 for the woman” because after choosing
the chairperson the number of choices for the other members is changed depending on
the sex of the chair. There are two correct ways to solve this problem. One is to say “The
chairperson is either male or female. If male, there are 4 possible chairs, times 3 possible
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other male members, times 3 possible female members, for 36 possible committees. If
female, there are 3 possible chairs, times 4 possible male members, times 2 possible other
female members, for 24 committees. The total is 36 + 24 or 60 committees.” The second
solution is to pick the chairperson ; then you say “There are 4 possible male members,
times 3 possible females, times 5 possible chairs (7 people in the original group minus 2
already chosen).” Apart from arithmetic errors, almost all the mistakes people make in
solving combinatorics problems come from forgetting that events have to be independent
to allow you to multiply the choices.)

Let’s return to logical functions for a moment. Suppose we experiment with a
ternary logic in which the possible values are yes, no, and maybe. (You can represent
these using the numbers 0, 1, and 2.) How many three-argument ternary logic functions
are there? Is it 3 or is it (3 ) ? (It doesn’t matter which way you group the twos for the
binary logic version because the two groupings have the same value, 16, but this isn’t true
with threes.) How many two-argument ternary logic functions are there? 2 ? 3 ?
(3 ) ? How many three-argument binary logic functions? The virtue of these problems
is that you can check your own answers by listing all the possible functions as I did for the
two-argument binary logic functions.

Most people are introduced to combinatorics by way of the mathematics
of gambling. Given a number of equally likely possible situations, some of which win a
bet and the rest of which lose it, the probability of winning is a ratio:

probability =
number of possible winning situations

total number of possible situations

The role of combinatorics is to help in computing the numerator and denominator of
that fraction.

For example, suppose you have six brown socks and four blue socks in a drawer, and
you pull out two socks without looking. What is the probability of getting a matching
pair? I’m going to give each sock a name like for the third brown sock so that we
can talk about individual socks even if they’re the same color. How many possible pairs
of socks are there? That is, given the set

{ , , . . . , , , . . . , }

containing ten socks, how many two-sock subsets are there?

The first step in answering this question is to notice that we have 10 choices for the
first sock and then 9 choices for the second. So there are 10 9 ways to make the two
choices. (There is a subtle point here that some textbooks don’t bother explaining. The
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combs [brown1 brown2 ... brown6 blue1 ... blue4] 2

[[brown1 brown2] [brown1 brown3] ... [brown4 blue3] ... [blue3 blue4]]

choice of the second sock is independent of the first choice, since we can’t choose
the same sock twice. However, the of second choices is always 9, even though
the particular nine available socks depend on the first choice. So we can get away with
multiplying in this example.)

This isn’t quite the answer we want, though. We’ve shown that there are 90
of socks. But once we get the socks out of the drawer, it doesn’t matter which we

picked first. In other words, if we say there are 90 possible choices, we are counting
{ , } and { , } as two different choices. Since we don’t care
which sock came out of the drawer first, we are really counting every pair twice, so there
are only 90/2 or 45 possible pairs.

An ordered subset of a set is called a a subset without a particular order
is a We say that there are 90 permutations of ten things taken two at a time;
there are 45 combinations of ten things taken two at a time.

It turns out that combinations are what matters most of the time; it’s relatively rare
for permutations to turn up in a math problem. An exception is the device wrongly
called a “combination lock”; to open one, you must know a particular permutation of
the possible numbers. My high school locker “combination” was 18–24–14. If I tried
the same numbers in a different order, like 24–18–14, the lock wouldn’t open. (Actually
it’s misleading for me to use this example because the same number can appear twice
in most locks of this type, so the “combination” is not a subset of the available numbers.
If there are 50 numbers available, the total number of possibilities is not 50 49 48
but rather 50 50 50. These lock-opening patterns are therefore neither permutations
nor combinations but something else that we might call “permutations with repetition
allowed.”)

We haven’t finished solving the sock problem. How many of the possible pairs of
socks are matching pairs? One way to find out would be to list all the possible pairs and
actually count how many of them match. This is the sort of thing computers do well.
First we have to write a procedure that takes as input a list and a number, and outputs a
list of lists, each of which is a subset of the input list whose length is the input number.
That is, we want to take

and this should output a list of pairs:
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brown2 blue3

brown1

brown1 brown1

brown1
butfirst
butfirst

combs combs

[brown2 blue3]

[blue3 brown2]

to combs :list :howmany
... <stop rule> ...
output sentence (map [fput first :list ?]

combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)

end

This is a fairly tricky program to write. Try it before you read further. Can you reduce
the problem to a smaller, similar problem? Don’t forget that we want combinations, not
permutations, so the output can’t have two sublists containing the same elements.

To make sure that each combination appears in the result in only one order, we can
decide explicitly what that order will be. The most convenient thing is to say that the
elements will appear in each sublist in the same order in which they appear in the original
list. That is, since the input list has before , the output will contain the list

but not the list

It follows that the very first element of the input list, , can only appear as the first
element of any output sublist. In other words, there are two kinds of sublists: ones with

as their first element and ones that don’t include at all. This is a way to
divide the problem into smaller pieces.

If we are looking for -element subsets, the first kind consists of stuck in
front of a smaller subset of 1 elements chosen from the remainder (the )
of the input list. The second kind of subset is an -element subset of the .
We can collect all of each kind by a recursive invocation of the procedure we’re going to
write, then append the two collections and output the result. So the procedure will look
like this:

By now you’ve had a lot of experience writing recursive procedures, but I’m going over
this one in detail for two reasons: It’s tricky and it’s a model for solving many other
combinatorial problems. What makes it tricky is a combination of two things. One is that
it’s recursive twice; that is, there are two recursive invocations of within .
This makes the control structure very different from the
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butfirst

:howmany
:list emptyp

:howmany

combs socks

sort of recursion that may be more familiar. The second tricky part is that there are two
input variables, each of which may be made smaller (by ing or by subtracting
1) but need not be in a particular recursive call.

One implication of these complicating factors is that we need stop rules. It may
be obvious that we need one for the situation of counting down to zero, but
we also need one for getting too small. Ordinarily this latter would be an
test, but in fact any list whose length is less than is too small, not just the
empty list. Here is the finished procedure:

Now we can use on the sock problem. (Note: The procedure shown
here is not the one in the program file; there will be a modified version a few paragraphs
down the road.)

to blah :list
output fput ( first :list) (blah butfirst :list)
end

to combs :list :howmany
if equalp :howmany 0 [output [[]]]
if equalp :howmany count :list [output (list :list)]
output sentence (map [fput first :list ?]

combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)

end

?
[[a b c] [a b d] [a b e] [a c d] [a c e] [a d e]

[b c d] [b c e] [b d e] [c d e]]

to socks :list
localmake "total combs :list 2
localmake "matching filter [equalp butlast first ? butlast last ?] ~

:total
print (sentence [There are] count :total [possible pairs of socks.])
print (sentence [Of these,] count :matching [are matching pairs.])
print sentence [Probability of match =] ~

word (100*(count :matching)/(count :total)) "%
end
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socks [brown1 brown2 brown3 brown4 brown5 brown6
blue1 blue2 blue3 blue4]

filter socks
brown3 brown4

filter

[brown brown] [brown blue]
[blue blue]

socks

?

There are 45 possible pairs of socks.
Of these, 21 are matching pairs.
Probability of match = 46.6666667%

[brown brown brown brown brown brown blue blue blue blue]

[equalp first ? last ?]

[6 brown 4 blue]

to socks :list
localmake "total combs (expand :list) 2
localmake "matching filter [equalp first ? last ?] :total
print (sentence [There are] count :total [possible pairs of socks.])
print (sentence [Of these,] count :matching [are matching pairs.])
print sentence [Probability of match =] ~

word (100*(count :matching)/(count :total)) "%
end

The answer is that the probability of a matching pair is just under half. The template
used in the invocation of in depends on the fact that two socks match if
their names are equal except for the last character, such as and .

I’ve numbered the socks because it’s easier for us to talk about how the program
works (and about how the underlying mathematics works, too) if we can identify an
individual sock. But it’s worth noting that the program doesn’t really need individual
sock names. We could instead use the list

and change the template to

The program will generate some pairs, some pairs,
and some pairs. The number of pairs will still be 45 and the number of
matching pairs will still be 21.

Having come to that realization, we can make the “user interface” a little smoother
by having accept an input list like

and expand that into the desired list of ten socks itself. Here is the final program:
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to expand :list
if emptyp :list [output []]
if numberp first :list ~

[output cascade (first :list)
[fput first butfirst :list ?]
(expand butfirst butfirst :list)]

output fput first :list expand butfirst :list
end

?
There are 45 possible pairs of socks.
Of these, 21 are matching pairs.
Probability of match = 46.6666667%

[brown2 brown5] [brown5 brown2]

[brown brown]

My reason for presenting this refinement of the program is that it offers a concrete
opportunity for reflection on how you can tell which differences are important in a
combinatorics problem. In discussing the first version of the program, I said that the two
lists

represent the same pair of socks, so both shouldn’t be included in the list of lists output
by . Now I’m saying that several lists that look identical like

represent pairs of socks and must all be counted. It would be a mistake to
say, “There are three possibilities: brown-brown, brown-blue, and blue-blue. So the
probability of a match is 2/3.” It’s true that there are three of pairs of socks, but
the three kinds are not equally represented in the list of 45 possible pairs.

The usual approach to problems like the one about the socks is not to enumerate the
actual combinations, but rather to compute the of combinations directly. There
are formulas for both number of combinations and number of permutations. Usually
the latter is derived first because it’s easier to understand.

With 10 socks in the drawer, the number of two-sock permutations is 10 9. If
we’d wanted three socks for a visiting extraterrestrial friend, the number of permutations
would be 10 9 8. In general, if we have things and we want to select of them, the



( )

︸ ︷︷ ︸
factors

⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ −

−

−

n r

r

n r

r r n r

n r

n r
n r

r r

P n n n r

n n
n

P
n

n r

r

n r
combination n r

r r
r r P r P

C n r
r

r

n
r

C
P
P

n
r n r

Inductive and Closed-Form Definition 79

to perms :n :r
output (fact :n)/(fact (:n-:r))
end

to fact :n
output cascade :n [# * ?] 1
end

to perms :n :r
if :r=0 [output 1]
output :n * perms :n-1 :r-1
end

number of permutations is

= ( 1) ( + 1)

Mathematicians don’t like messy formulas full of dots, so this is usually abbreviated using
the factorial function. The notation “ !” is pronounced “ factorial” and represents the
product of all the integers from 1 to . Using this notation we can write

=
!

( )!

This is an elegant formula, but you should resist the temptation to use it as the basis for a
computer program. If you write

then you’re doing more multiplications than necessary, plus an unnecessary division.
Instead, go back to the earlier version in which terms are multiplied:

The set of all permutations of things taken at a time includes several rearrange-
ments of each of things at a time. How many rearrangements of each?
Each combination is a set of things, so the number of possible orderings of those
things is the number of permutations of things at a time, or !. is greater
than , the number of combinations of things taken at a time, by this factor. In
other words, if each combination corresponds to ! permutations, then the number of
permutations is ! times the number of combinations. So we have

= = =
!

! ( )!
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The notation ( ) is much more commonly used in mathematics and computer science
texts than . It’s pronounced “ choose .”

The traditional way to do the sock problem is this: The total number of possible pairs
of socks is ( ). The number of matching pairs is equal to the number of brown pairs plus
the number of blue pairs. The number of brown pairs is the number of combinations of
6 brown socks chosen 2 at a time, or ( ). Similarly, the number of pairs of blue socks is
( ). So

probability of match =
( ) + ( )

( )
=

15 + 6
45

=
21
45

which is the same answer we got by enumerating and testing all the possible pairs.

A formula like
=

!
! ( )!

defines a mathematical function in terms of other, more elementary functions. It is
comparable to a Logo procedure defined in terms of primitives, like

The “primitives” of mathematics are addition, subtraction, and so on, along with a few
more advanced ones like the trigonometric and exponential functions. These are called
“elementary functions” and a formula that defines some new function in terms of those
is called a

The function ( ) could also be defined in a different way based on the ideas in the
program we used to enumerate combinations. The combinations fall into two

categories, those that include the first element and those that don’t. So the number of
combinations is the sum of the numbers in each category:

=
1, if = 0;
1, if = ;
( ) + ( ), otherwise.

This is called an It is analogous to a recursive procedure in Logo.

These two formulas provide alternative definitions for the function, just as
two Logo procedures can employ different algorithms but have the same input-output
behavior. How do we know that the two definitions of ( ) really do define the same
function? Each definition was derived from the fundamental definition of “the number
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of combinations of things taken at a time” by different arguments. If those arguments
are correct, the two versions must define the same function because there is just one
correct number of combinations. It is also possible to prove the two definitions equivalent
by algebraic manipulation; start with the closed form definition and see if it does, in fact,
obey the requirements of the inductive definition. For example, if = 0 we have

0
=

!
0! ( 0)!

=
!
!

= 1

(It may not be obvious that 0! should be equal to 1, but mathematicians define the
factorial function that way so that the formula ! = ( 1)! remains true when = 1.)
See if you can verify the other two parts of the inductive definition. Here’s a hint:

1
1

+
1

=
( 1)!

( 1)! (( 1) ( 1))!
+

( 1)!
! ( 1 )!

=

Why would anyone be interested in an inductive definition when the closed form
definition is mathematically simpler and also generally faster to compute? There are two
reasons. First, some functions don’t have closed form definitions in terms of elementary
functions. For those functions, there is no choice but to use an inductive definition.
Second, sometimes when you start with a non-formal definition of a function in terms
of its purpose, like “the number of combinations...” for ( ), it may be easier to see how
to translate that into an inductive definition as a first step, even if it later turns out that
there is also a less obvious closed form. In fact, that’s what I did in presenting the idea
of combinations. I found it more straightforward to understand the inductive definition
because it made sense to think about the actual combinations and not merely how many
of them there are. (In fact there is a mathematical technique called
that can sometimes be used to transform an inductive definition into a closed form
definition, but that technique requires calculus and is beyond the scope of this book.)

In addition to closed form and inductive definitions, it’s often helpful to present a sort
of partial definition of a function in the form of a table of values. (For logic functions,
with only a finite number of possible values for the arguments of the function, such a
table is actually a complete definition.) Partial definitions in a table of values can be
particularly useful when the function displays some regularity that allows values outside
the table to be computed easily based on the values in the table. For example, the
sine function is ; its values repeat in cycles of 360 degrees. If you need to know
the sine of 380 degrees, you can look up the sine of 20 degrees and that’s the answer.
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For functions of two variables, like addition and multiplication, these function tables
are often presented as square arrays of numbers. In elementary school you learned
the addition and multiplication tables for numbers up to 10, along with algorithms for
reducing the addition and multiplication of larger numbers to a sequence of operations
on single digits.

The function ( ) is a function of two variables, so it would ordinarily be presented
as a square table like the multiplication table, except for the fact that this particular
function is meaningfully defined only when . (There are no combinations of three
things taken five at a time, for example, so ( ) is 0.) So instead of a square format like
this:

\ 0 1 2 3 4 5
0 1 1 1 1 1 1
1 0 1 2 3 4 5
2 0 0 1 3 6 10
3 0 0 0 1 4 10
4 0 0 0 0 1 5
5 0 0 0 0 0 1

this function is traditionally presented in a triangular form called “Pascal’s Triangle” after
Blaise Pascal (1623–1662), who invented the mathematical theory of probability along
with Pierre de Fermat (1601–1665). Pascal didn’t invent the triangle, but he did pioneer
its use in combinatorics. Each row of the triangle contains the nonzero values of ( ) for
a particular :

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Pascal’s Triangle is often introduced in algebra because the numbers in row (counting
from zero) are the the constant factors in the terms in the expansion
of ( + ) . For example,

( + ) = 1 + 4 + 6 + 4 + 1

=
4
0

+
4
1

+
4
2

+
4
3

+
4
4
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Do you see why the binomial coefficients are related to combinations? An expression
like ( + ) is a sum of products of four s and s. (How many such products? Each
term involves four choices between and ; there are 2 ways to make each choice, and
the choices are independent, so there are 2 possible products.) These products are
combined into terms based on the fact that some are equal to each other, such as
and , both of which contribute to the term. How many arrangements of three s
and one are there? That’s like asking how many ways there are to choose one slot for a

out of four possible slots, which is ( ).

Can you predict what the coefficients will be in the expansion of ( + + ) ? For
example, what is the coefficient of ? Try to multiply it out and see if your formula is
right.

Everyone is taught in school that each number in Pascal’s Triangle, except for the
1s at the ends, is the sum of the two numbers above it. But this is usually presented as
a piece of magic with no explanation. It’s not obvious how that fact is connected to the
formula expressing ( ) in terms of factorials. But the technique I used in writing the

procedure to enumerate the actual combinations explains how Pascal’s Triangle
works. The set of all combinations of things taken at a time can be divided into
those combinations that include the first of the things and those that don’t. How
many of the former are there? Each such combination must be completed by adjoining
to that first thing 1 out of the remaining 1 available things, so there are ( )
such combinations. The second category, those not containing the first thing in the list,
requires us to choose things out of the remaining 1, so there are ( ) of them. So
( ) must be the sum of those two numbers, which are indeed the ones above it in the
triangle.

Thinking about the triangle may also help you to understand why needs two
stop rules; each row contains numbers, the ones (pun) at each end, that can’t be
computed as the sum of two other numbers.

Yet another approach to solving the sock problem would be the experimental method:
Load a drawer with six brown and four blue socks, pull out pairs of socks a few thousand
times, and see how many of the pairs match. The actual experiment would be time-
consuming and rather boring, but we can the experiment with a computer
program. The idea is to use random numbers to represent the random choice of a sock.
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Socktest
true

socktest
socktest [6 brown 4 blue] socks

socktest
true

cascade

to socktest
localmake "first ~

pick [brown brown brown brown brown brown blue blue blue blue]
localmake "second ~

pick (if equalp :first "brown
[[brown brown brown brown brown blue blue blue blue]]
[[brown brown brown brown brown brown blue blue blue]] )

output equalp :first :second
end

print (cascade 1000 [? + if socktest [1] [0]] 0) / 10

is a predicate that simulates one trial of picking a pair of socks and outputs
if the socks match. Notice how the available choices for the second sock depend on

which color sock was chosen first. (It’s a little unaesthetic that this particular selection of
six brown and four blue socks is built into the program, with three slightly different lists
explicitly present inside . It would be both more elegant and more flexible if

could take a list like as input, like , and compute
the list of possibilities for the second sock itself. But right now I’m more interested in
showing how a simulation works than in programming style; you can make that change
yourself if you like.)

What we want to do is invoke repeatedly and keep track of how many
times the output is . That can be done with an instruction like

I divide by 10 so that the result will be expressed as a percent probability. (If I made 100
trials instead of 1000 the output from would already be a percentage.) Your
results will depend on the random number generator of your computer. I tried it three
times and got results of 50.1%, 50.8%, and 45.5%. I then did 10,000 trials at once with a
result of 48.78%. The result expected on theoretical grounds was 46 %.

Simulation is generally much slower than either of the techniques we used earlier
(enumeration of possibilities and direct computation of the number of possibilities), and
it gives results that are only approximately correct. So why would anyone want to use this
method? For a simple problem like this, you probably wouldn’t. But some combinatorics
problems are too complicated to be captured by a simple formula. For example, what is
the probability of winning a game of solitaire? (To make this a sensible question, you’d
have to decide on a particular set of strategy rules to determine which card to play next
when there are several possibilities. The rule could be “play the higher ranking card” or
“choose a card at random,” for example.) In principle this question could be answered
exactly, since there are only a finite number of ways a deck of cards can be arranged and
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we could analyze each of them. But in practice the most reasonable approach is probably
to write a solitaire simulator and have it play out a few thousand randomly ordered hands.

Solitaire is a rather complicated game; even a simulator for it would be quite a large
project. A more manageable one, if you’d like something to program, would be a craps
simulator. Remember that the 11 possible results of rolling two dice (2 to 12) are not
equally likely! You have to simulate each die separately.

This is a picture of a Simplex lock, so called because it’s manufactured by Simplex
Security Systems, Inc. It is a five-button mechanical (i.e., no electricity) combination lock
with an unusual set of possible combinations. As an example of a challenging problem
in combinatorics, I’d like you to figure out how many possible combinations there are.

What makes this lock unusual is that a combination can include more than one
button pushed at the same time. For example, one possible combination is “2, then 1
and 4 at the same time, then 3.” Here are the precise rules:



5 2
5
2

x-x x x

x x
x-x
1-4 4-1

x-x x x x x x-x-x

is

order

patterns

P

86 Chapter 2 Discrete Mathematics

1. Each button may be used at most once. For example, “2, then 2 and 3 at the same
time” is not allowed.

2. Each push may include any number of buttons, from one to five. For example, one
legal combination is “hit all five buttons at once with your fist.” (But hitting all five
buttons can’t be part of a larger combination because of rule 1.)

It follows from these rules that there can be at most five distinct pushes. (Do you see
why?) The rules also allow for the null combination, in which you don’t have to push any
buttons at all.

When working on this problem, don’t forget that when two or more buttons are
pushed at the same time, their order doesn’t matter. That is, you shouldn’t count “2 and
3 together, then 5” and “3 and 2 together, then 5” as two distinct combinations. (For this
reason, the Simplex lock entitled, at least in part, to the name “combination lock”!)

Try to figure out how many combinations there are before reading further. You can
enumerate all the possibilities or you can derive a formula for the number of possibilities.
You might want to start with a smaller number of buttons. (As a slight hint, when you buy
one of these locks, the box it comes in says “thousands of combinations.”)

I first attacked this problem by trying to enumerate all the possible combinations,
but that turns out to be quite messy. The trouble is that it isn’t obvious how to the
combinations, so it’s hard to be sure you haven’t missed any. Here is how I finally decided
to do it. First of all, divide the possible combinations into six categories depending on
how many buttons (zero to five) they use. There is exactly one combination using zero
buttons, and there are five using one button each. After that it gets tricky because there
are different of simultaneous pushes within each category. For example, for
combinations using two buttons there are two patterns: the one in which they’re pressed
together ( ) and the one in which they’re pressed separately ( ). (I’m introducing
a notation for patterns in which hyphens connect buttons that are pressed together and
spaces connect the separate pushes.) How many distinct combinations are there in each
of those patterns? Figure it out before reading on.

In the pattern there are “combinations” because the order in which you push
the buttons matters. In the pattern there are only ( ) combinations because the two
buttons are pushed together; and are the same combination. Altogether there
are 20 + 10 or 30 combinations usng two of the five buttons.

Beyond this point it gets harder to keep track of the different patterns. Among
the three-button patterns are , , and . How many more are there?
How many four-button patterns? You might, at this point, like to see if you can finish
enumerating all the possibilities for the five-button lock.
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x

x x x x

x-x x x

1-2 3 4 2-1 3 4
1-3 2 4 1-2 4 3

x x-x x x x x-x

00 x x x
01 x x-x
10 x-x x
11 x-x-x

000 x x x x
001 x x x-x
010 x x-x x
011 x x-x-x
100 x-x x x
101 x-x x-x
110 x-x-x x
111 x-x-x-x

My solution is to notice that in a three-button pattern, for example, there are two
slots between the s, and each slot has a space or a hyphen. If I think of those slots as
binary digits, with 0 for space and 1 for hyphen, then each pattern corresponds to a 2-bit
number. There are four such numbers, 00 to 11 (or 0 to 3 in ordinary decimal notation).

number pattern

Similarly, there are eight four-button patterns:

number pattern

And there are 16 five-button patterns, from 0000 to 1111.

How many combinations are there within each pattern? There are two different ways
to go about calculating that number. To be specific, let’s consider four-button patterns.
The way I chose to do the calculation was to start with the idea that there are ways
to choose four buttons in order. For the pattern, this is the answer. For the
other patterns, this number (120) has to be divided by various factors to account for the
fact that the order is immaterial, just as in deriving the formula for combinations
from the formula for permutations we divided by ! because the order is completely
immaterial. Consider the pattern . In this pattern the order of the first two
numbers is immaterial, but the choice of the first two numbers as a pair matters, and so
does the order of the last two numbers. So is the same combination as
but different from or . That means the number 120 is too big by a
factor of 2, because every significant choice of combination is represented twice. For
this pattern the number of different combinations is 60. Of course the same argument
applies to the patterns and .
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remainder :number 2

to lock :buttons
output cascade :buttons [? + lock1 :buttons #] 1
end

x-x x-x
1-2 3-4

1-2 4-3 2-1 3-4 2-1 4-3
x-x-x x

x-x x x

x-x x-x

:number/2

lock 5
lock1 5 4

lock2 120 5 1

What about ? In this pattern there are two pairs of positions within which
order doesn’t matter. Each combination appears times in the list of 120;
is the same as , , and . So there are 30 significantly different
combinations in this pattern. What about ? In this pattern, the order of
the first three numbers is irrelevant; this means that there are 3! or 6 appearances of
each combination in the 120, so there are 20 significantly different combinations in this
pattern. The general rule is that for each group of consecutive hyphens in the pattern
you must divide by ( + 1)! to eliminate duplicates.

(My approach was to start with permutations and then divide out redundant ones.
Another approach would be to build up the pattern using combinations. The pattern

contains three groups of numbers representing three “pushes”: a group of two
and two groups of one. Since this is a five-button lock, for the first group of two there
are ( ) choices. (Order doesn’t matter within a group.) For the second group there are
only three buttons remaining from which we can choose, so there are ( ) choices for
that button. Finally, there are ( ) choices for the fourth button (the third group). This
makes 10 3 2 possible combinations for this pattern, the same as the 60 we computed
the other way. For the pattern this method gives ( )( ) or 30 combinations.)

Having worked all this out, I was ready to write a computer program to count the
total number of combinations. The trickiest part was deciding how to deal with the
binary numbers that represent the patterns. In the end I used plain old numbers. The
expression

yields the rightmost bit of a number, and then gives all but the rightmost
bit (with a little extra effort for odd numbers). To help you read the program, here is a
description of the most important procedures:

outputs the total number of combinations for the 5-button lock.
outputs the number of combinations that use 4 out of the 5 buttons.
outputs the number of combinations for the 4-button pattern cor-
responding to the binary form of the number 5 (101 or x-x x-x).
The 120 is and the 1 is always used as the third input except in
recursive calls.

Here is the program:
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to lock1 :total :buttons
localmake "perms perms :total :buttons
output cascade (twoto (:buttons-1)) ~

[? + lock2 :perms #-1 1] ~
0

end

to twoto :power
output cascade :power [2 * ?] 1
end

to lock2 :perms :links :factor
if equalp :links 0 [output :perms/(fact :factor)]
if equalp (remainder :links 2) 0 ~

[output lock2 :perms/(fact :factor) :links/2 1]
output lock2 :perms (:links-1)/2 :factor+1
end

One slight subtlety is that in the third input to is 1 rather than 0 to
include the one 0-button combination that would not otherwise be added in.

When I wrote that program, I was pleased with myself for managing to turn such a messy
solution into executable form, but I wasn’t satisfied with the underlying approach. I
wanted something mathematically more elegant.

What made it possible for me to find the approach I wanted was the chance discovery
that the number of combinations that use all five buttons (541) is half of the total number
of combinations (1082). Could this possibly be a coincidence, or would that have to be
true for any number of buttons? To see that it has to be true, I used an idea from another
branch of mathematics, A is any collection of things, in no particular order.
One can speak of the set of all the fingers on my left hand, or the set of all the integers, or
the set of all the universities in cities named Cambridge. Much of the interesting part of
set theory has to do with the properties of infinite sets; for example, it turns out that the
set of all the integers is the same size as the set of all the rational numbers, but both of
these are smaller than the set of irrational numbers. What does it mean for one infinite
set to be the same size as, or to be larger than, another? The same definition works
equally well for finite sets: Two sets are the same size if they can be placed in

This means that you must exhibit a way to pair the elements of one set
with the elements of the other so that each element of one has exactly one partner in the
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other. (A set is larger than another if they aren’t the same size, but a subset of the first is
the same size as the second.)

To prove that my observation about the lock combinations has to be true regardless
of the number of buttons, I have to exhibit a one-to-one correspondence between two
sets: the set of all combinations using all the buttons of an -button lock and the set
of all combinations using fewer than of the buttons. But that’s easy. Starting with a
combination that uses all the buttons, just eliminate the last push (one or more buttons
pushed at the same time) to get a combination using fewer than all the buttons. For
example, for a five-button lock, the five-button combination is paired with
the three-button combination . (We have to eliminate the last and not merely
the last for two reasons. First, if we always eliminated exactly one button, we’d
always get a four-button combination, and we want to pair five-button combinations with
all the fewer-than-five ones. Second, which is the “last” button if the last push involves
more than one? Remember, is the combination as . But
writing this combination in two different forms seems to pair it with two different smaller
ones. The rules of one-to-one correspondence say that each element of a set must have
exactly one partner in the other set.)

To show that the correspondence works in both directions, start with a combination
that doesn’t use all the buttons; its partner is formed by adding one push at the end that
contains all the missing buttons. For example, if we start with then its partner is

.

I’ve just proved that the number of all- combinations must be equal to the number
of fewer-than- combinations. So it’s not a coincidence that 541 is half of 1082. In order
to be able to talk about these numbers more succinctly, I want to define

( ) = number of -button combinations of an -button lock

We’ve just proved that it’s also true that

( ) = number of fewer-than- -button combinations

Now, what does “fewer than buttons” mean? Well, there are combinations using no
buttons, one button, two buttons, and so on up to 1 buttons. Let’s define

( , ) = number of -button combinations in an -button lock

So we can formalize the phrase “fewer than ” by saying

( ) = ( , 0) + ( , 1) + ( , 2) + + ( , 1)
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Instead of using those dots in the middle, mathematicians have another notation for a
sum of several terms like this.

( ) = ( , )

If you haven’t seen this notation before, the ( ) symbol is the Greek letter and is
used to represent a um. It works a little like the iteration tool; the variable below
the (in this case, ) takes on values from the lower limit (0) to the upper limit ( 1),
and for each of those values the expression following the is added into the sum. The
Logo equivalent would be

The -expression is pronounced “the sum from equals zero to minus one of of
comma .”

So far, what I’ve done is like what I did before: dividing the set of all possible
combinations into subsets based on the number of buttons used in each combination.
This is like the definition of in terms of . The next step is to see if we
can find a formula for ( , ). How many 3-button combinations, for example, can we
make using a 5-button lock? (That’s (5, 3).) There are many different ways in which I
might try to derive a formula, but I think it will be helpful at this point to step back and
consider my overall goal. I started this line of reasoning because I’m trying to express
the solution for the five-button lock in terms of easier solutions for smaller numbers of
buttons. That is, I’m looking for an inductive definition of ( ) in terms of values of
for smaller arguments. I’d like to end up with a formula like

( ) = . . . (0) . . . (1) . . . ( 1) . . .

but I don’t yet know exactly what form it will take. So far I’ve written a formula for ( ) in
terms of ( , ) for values of less than . It would be great, therefore, if I could express

( , ) in terms of ( ); that would give me exactly what I want.

To put that last sentence into words, it would be great if I could express the
number of -button combinations of an -button lock in terms of the number of -button
combinations of an -button lock. For example, can I express the number of combinations
using 3 out of 5 buttons in terms of the number of combinations of 3 out of 3 buttons?
Yes, I can. The latter is the number of rearrangements of three buttons once we’ve
selected the three buttons. If we start with five buttons, there are ( ) possible sets of
three buttons to choose. For each of those ( ) sets of three buttons, there are (3) ways
to arrange those three buttons in a combination.
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buttons: 1,2,3 2,3,4 1,4,5

1 2 3 2 3 4 1 4 5
1 3 2 2 4 3 1 5 4
2 1 3 3 2 4 4 1 5
2 3 1 3 4 2 4 5 1
3 1 2 4 2 3 5 1 4
3 2 1 4 3 2 5 4 1
1 2-3 2 3-4 1 4-5
2 1-3 3 2-4 4 1-5
3 1-2 4 2-3 5 1-4
1-2 3 2-3 4 1-4 5
1-3 2 2-4 3 1-5 4
2-3 1 3-4 2 4-5 1
1-2-3 2-3-4 1-4-5

( , ) = ( )

It may not be obvious why this is so. Suppose you list all the 3-button combinations of a
3-button lock. There are 13 of them, consisting of the numbers from 1 to 3 in various
orders and with various groups connected by hyphens. Those 13 combinations are also
some of the 3-button combinations of a 5-button lock, namely, the ones in which the
particular three buttons we chose are 1, 2, and 3. If instead we choose a different set
of three (out of five) buttons, that gives rise to a different set of 13 combinations. For
example, if we choose the buttons 2, 3, and 4, we can take the original 13 combinations
and change all the 1s to 2s, all the 2s to 3s, and all the 3s to 4s:

This table has a column for each of three possible combinations of five numbers three
at a time. The table could be extended to have a column for such combination
of numbers, and then it would contain all the lock combinations using three out of five
buttons. The total number of entries in the extended table is therefore (5, 3); the table
has (3) rows and ( ) columns. So

(5, 3) =
5
3

(3)

which is a particular case of the general formula above.

We now have a formula for ( ) in terms of all the ( , ) and a formula for ( , )
in terms of ( ). Combining these we have

( ) =
0

(0) +
1

(1) + +
1

( 1)
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lock 5
simplex 5

simplex

ln ln 2
power

Fact

to simplex :buttons
output 2 * f :buttons
end

to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end

to choose :n :r
output (perms :n :r)/(fact :r)
end

to simp :n
output round (fact :n)/(power (ln 2) (:n+1))
end

or

( ) = ( ) for 0

Like any inductive definition, this one needs a special rule for the smallest case, from
which all the others are computed:

(0) = 1

The total number of combinations for an -button lock is 2 ( ). I find this much
more elegant than my original solution. (So why didn’t I just show you this one to
begin with? Because I never would have figured this one out had I not first done the
enumeration of cases. I want you to see how a combinatorics problem is solved, not just
what the beautiful solution looks like.) This formula can also be turned into a computer
program:

This program is faster as well as simpler than the other; on my home computer,
takes about 4 seconds, about 2 seconds.

The function has no exact closed form equivalent, but it turns out that
there is (amazingly!) a closed form definition that, when rounded to the nearest integer,
gives the desired value:

The function, a Logo primitive, computes the “natural logarithm” of its input;
has the approximate value 0.69314718056. The function of two inputs takes the
first input to the power of the second input. is the factorial function as defined
earlier in this chapter.
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Another related programming problem is to list the actual combinations, rather than
merely count them. Probably the simplest way to do that is to use an approach similar to
the one I used in the procedure that lists combinations of members of a list: First
use recursion to find the lock combinations using only the of the available
buttons, then find the ways in which the button can be added to each of them.

Earlier, in talking about Pascal’s Triangle, I showed how binomial coefficients are related
to combinations and asked you to think about coefficients. What, for example,
is the coefficient of in the expansion of ( + + ) ?

The expansion is a sum of products; each of those products contains four variables
( , , etc.). The ones that contribute to the term are the ones with one , two
s, and one ; these include , , , and so on. Out of the four slots for variables

in one of those products, how many ways can we choose a slot for one ? The answer is
( ). Having chosen one, we are left with three slots and we want to choose two of them
for s. There are ( ) ways to do that. Then we have one slot left, just enough for the one
, which makes a trivial contribution of ( ) to the overall number of possibilities. The

total is ( ) ( ) ( ) or 4 3 1 or 12, and that is the coefficient of . Similarly, the
coefficient of is ( ) ( ) or 4.

The same sort of argument can be used for even more complicated cases. In the
expansion of ( + + + + ) what is the coefficient of ? It’s

14
2

12
3

9
1

8
5

3
3

= 91 220 9 56 1 = 10,090,080

Here is a harder question: How many terms are there in, say, ( + + + ) ? It’s
easy to see that there are 4 products of four variables, but after the ones that are equal
to each other have been combined into terms, how many distinct terms are there?

Like the Simplex lock problem, this one can probably be solved most easily by re-
ducing the problem to a smaller subproblem—in other words, by an inductive definition.
This problem also has something in common with the earlier problem of listing all the
combinations of a given size from a given list, as we did in the procedure. Try to
solve the problem before reading further. (It’s hard to say how another person will find
a problem, but I think this one is easier than the Simplex one.)

In order to be able to express the original problem in terms of a smaller version, we
have to generalize it. I posed a specific problem, about the seventh power of the sum of
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four variables. I’d like to be able to give the answer to that problem the name (4, 7) and
try to find a way to express that in terms of, let’s say, (4, 6). So I’m going to define the
function as

( , ) = number of terms in ( + + + )

(If this were a “straight” math book I’d cheerfully recycle the name for the function,
even though we had a different in the last section, but I’m anticipating wanting to write
a Logo program for this problem and I can’t have two procedures named in the same
workspace.)

In writing I used the trick of dividing all possible combinations into two
groups: those including the first member of the list and those not including that member.
A similar trick will be useful here; we can divide all the terms in an expansion into two
groups. One group will contain those terms that include the first variable ( ) and the
other will contain the rest. For example, in the original problem, is a term in the
first group, while is a term in the second group.

A term in the first group can be divided by ; the result must be a term in the
expansion of ( + + + ) . How many such terms are there? There are ( , 1)
of them. So that’s how many terms there are in the first group.

A term in the second group is a product of variables including . That means
that such a term is also part of the expansion of ( + + ) . How many such terms are
there? There are ( 1, ) of them. Notice the difference between the two groups. In
the first case, we associate a term with a similar term in the expansion of an expression
involving a of the of variables. In the second case, we associate a
term with an equal term in the expansion of an expression involving taken
to the

Combining these two results, we see that

( , ) = ( , 1) + ( 1, )

Since this is a function of two variables, it needs two “stop rules,” just like the function
( ). Picking these limiting cases seems much simpler than inventing the induction rule,
but even so, it may repay some attention. For the rule

=
1
1

+
1

we ended up considering the limiting cases = 0 and = . I didn’t say anything about
it at the time because I didn’t want to get distracted, but it’s not obvious why there is the
asymmetry between the two variables in those limiting cases. That is, why didn’t I pick
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= 0 and = 0 as the limiting cases? That would be more like what you’re accustomed
to in recursive Logo procedures, where stop rules almost always involve a comparison of
something with zero or with the empty list.

The funny limiting cases for ( ) (and the corresponding funny stop rules in )
are related to the fact that this function is meaningful only when . The two
arguments can’t be chosen independently. If we didn’t have the = limiting case, the
inductive formula would have us compute

5
5

=
4
4

+
4
5

If we define ( ) as zero, this equation does turn out to be true, but it isn’t a very sensible
way to compute ( ).

In the case of the function , the two arguments independent. Both (4, 7) and
(7, 4) are sensible things to ask for. Therefore, we should use the more obvious limiting

cases = 0 and = 0. The trouble is that it’s not obvious what the value of (0, ) or ( , 0)
should be. The first of these, (0, ), represents the number of terms in the expansion
of () —nothing to the th power! That seems meaningless. On the other hand, ( , 0)
represents the number of terms in ( ) , which is 1. Anything to the zeroth power is
1. Does “1” count as a term? It doesn’t have any variables in it.

One solution would be to take as limiting cases = 1 and = 1. It’s much easier to
see what those values should be. ( ) has one term, so (1, ) = 1. And ( + + )
has terms, so ( , 1) = . We could, then, define the function as

( , ) =
1, if = 1;

, if = 1;
( , 1) + ( 1, ), otherwise.

But it is possible to figure out appropriate values for zero arguments by working backwards
from the cases we already understand. For example, we know that (2, 1) must equal 2.
But

(2, 1) = (2, 0) + (1, 1) = (2, 0) + 1

It follows that (2, 0) must be 1. So it’s reasonable to guess that ( , 0) = 1 will work in
general. Similarly, we know that (1, 2) = 1, but

(1, 2) = (1, 1) + (0, 2) = 1 + (0, 2)
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to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

(A+B+C+D)^7 =
1 A^7 +
7 A^6 B +
21 A^5 B^2 +
...

Therefore (0, 2) must be 0. We can define as

( , ) =
0, if = 0;
1, if = 0;
( , 1) + ( 1, ), otherwise.

What is (0, 0)? The definition above contradicts itself about this. The answer should
be 0 because = 0 but also 1 because = 0. This reminds me of the similar problem
about powers of integers. What is 0 ? In general 0 = 0 but = 1, for nonzero . There
is really no “right” answer, but mathematicians have adopted the convention that 0 = 1.
To make our definition of truly correct I have to choose a convention for (0, 0) and
modify the definition to reflect it:

( , ) =
1, if = 0;
0, if = 0 and 0;
( , 1) + ( 1, ), otherwise.

It’s straightforward to translate this mathematical function definition into a Logo
procedure:

Using this function we can compute and find that the answer to the original
problem is 120.

(Can you write a program to display the actual expansion? That is, it should print
something like

There are two parts to this problem. One is to figure out the combinations of variables
in the 120 terms, which can be done with a procedure like , and the other is to
figure out the coefficients, which I discussed at the beginning of this section.)
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I was introduced to this problem as a student teacher in a high school probability
class. The teacher gave “how many terms are there in the expansion of ( + + + ) ”
as a quiz problem, and nobody answered it. In the ensuing class discussion, it turned out
that she meant the students to answer the much easier question of how many products of
seven variables there are. As I noted earlier, the answer to question is just 4 . But all
the students interpreted the question as meaning the harder one we’ve been exploring
here. I took the problem home that evening and reached the point we’ve reached in this
chapter. I didn’t think I could get a better answer than that until my housemate taught
me about generating functions. It turns out that there a closed form definition for this
function:

( , ) =
+ 1

1

This definition is faster to compute as well as more beautiful.

Once armed with the formula, it wasn’t hard to invent a way to demonstrate that it
must be correct without going through the inductive definition and the use of calculus.
The trick is that we must be choosing 1 somethings out of a possible + 1 for
each term. What does a term look like? Ignoring the constant coefficient, it is the
product of (seven, in the specific problem given) variables, some of which may be
equal. Furthermore, when the terms are written in the usual way, the variables come in
alphabetical order. A term like represents ; there won’t be a different term
with the same letters in another order. In general, the variables will be some number
(zero or more) of s, then some number of s, and so on.

Now comes the trick. Suppose we write the string of variables with a “wall” for each
change to the next letter. So instead of I want to write . (There are
two walls before the final to reflect the fact that we skipped over .) In this notation
there are always exactly 1 walls. (That’s why I chose to put the walls in; remember,
we’re looking for 1 of something.) The term includes variables and 1 walls, for
a total of + 1 symbols.

Once the walls are there, it really is no longer necessary to preserve the individual
variable letters. The sample term we’ve been using could just as well be written .
What comes before the first wall is the first variable letter, and so on. So
represents . But now we’re finished. We have found a way to represent each possible
term as a string of copies of the letter interspersed with 1 walls. How many such
arrangements are there? How many ways are there to choose 1 positions for walls in
a string of + 1 symbols?

Earlier, in talking about the difference between closed form and inductive definitions,
I suggested that the an inductive definition might be much easier to discover even if a
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closed form definition also exists. This is a clear example. If I’d given the demonstration
just above, with s and walls, without first showing you the more roundabout way I really
discovered the definition, you’d rightly complain about rabbits out of hats.

;;; Logic problem inference system

;; Establish categories

to category :category.name :members
print (list "category :category.name :members)
if not namep "categories [make "categories []]
make "categories lput :category.name :categories
make :category.name :members
foreach :members [pprop ? "category :category.name]
end

;; Verify and falsify matches

to verify :a :b
settruth :a :b "true
end

to falsify :a :b
settruth :a :b "false
end

to settruth :a :b :truth.value
if equalp (gprop :a "category) (gprop :b "category) [stop]
localmake "oldvalue get :a :b
if equalp :oldvalue :truth.value [stop]
if equalp :oldvalue (not :truth.value) ~

[(throw "error (sentence [inconsistency in settruth]
:a :b :truth.value))]

print (list :a :b "-> :truth.value)
store :a :b :truth.value
settruth1 :a :b :truth.value
settruth1 :b :a :truth.value
if not emptyp :oldvalue ~

[foreach (filter [equalp first ? :truth.value] :oldvalue)
[apply "settruth butfirst ?]]

end



100 Chapter 2 Discrete Mathematics

to settruth1 :a :b :truth.value
apply (word "find not :truth.value) (list :a :b)
foreach (gprop :a "true) [settruth ? :b :truth.value]
if :truth.value [foreach (gprop :a "false) [falsify ? :b]

pprop :a (gprop :b "category) :b]
pprop :a :truth.value (fput :b gprop :a :truth.value)
end

to findfalse :a :b
foreach (filter [not equalp get ? :b "true] peers :a) ~

[falsify ? :b]
end

to findtrue :a :b
if equalp (count peers :a) (1+falses :a :b) ~

[verify (find [not equalp get ? :b "false] peers :a)
:b]

end

to falses :a :b
output count filter [equalp "false get ? :b] peers :a
end

to peers :a
output thing gprop :a "category
end

;; Common types of clues

to differ :list
print (list "differ :list)
foreach :list [differ1 ? ?rest]
end

to differ1 :a :them
foreach :them [falsify :a ?]
end

to justbefore :this :that :lineup
falsify :this :that
falsify :this last :lineup
falsify :that first :lineup
justbefore1 :this :that :lineup
end
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to justbefore1 :this :that :slotlist
if emptyp butfirst :slotlist [stop]
equiv :this (first :slotlist) :that (first butfirst :slotlist)
justbefore1 :this :that (butfirst :slotlist)
end

;; Remember conditional linkages

to implies :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who2 :what2 (not :truth2) :who1 :what1 (not :truth1)
end

to implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
localmake "old1 get :who1 :what1
if equalp :old1 :truth1 [settruth :who2 :what2 :truth2 stop]
if equalp :old1 (not :truth1) [stop]
if memberp (list :truth1 :who2 :what2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
if memberp (list :truth1 :what2 :who2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
store :who1 :what1 ~

fput (list :truth1 :who2 :what2 :truth2) :old1
end

to equiv :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "true
implies :who2 :what2 "true :who1 :what1 "true
end

to xor :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "false
implies :who1 :what1 "false :who2 :what2 "true
end

;; Interface to property list mechanism

to get :a :b
output gprop :a :b
end

to store :a :b :val
pprop :a :b :val
pprop :b :a :val
end
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;; Print the solution

to solution
foreach thing first :categories [solve1 ? butfirst :categories]
end

to solve1 :who :order
type :who
foreach :order [type "| | type gprop :who ?]
print []
end

;; Get rid of old problem data

to cleanup
if not namep "categories [stop]
ern :categories
ern "categories
erpls
end

;; Anita Harnadek’s problem

to cub.reporter
cleanup
category "first [Jane Larry Opal Perry]
category "last [Irving King Mendle Nathan]
category "age [32 38 45 55]
category "job [drafter pilot sergeant driver]
differ [Jane King Larry Nathan]
says "Jane "Irving 45
says "King "Perry "driver
says "Larry "sergeant 45
says "Nathan "drafter 38
differ [Mendle Jane Opal Nathan]
says "Mendle "pilot "Larry
says "Jane "pilot 45
says "Opal 55 "driver
says "Nathan 38 "driver
print []
solution
end
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to says :who :what1 :what2
print (list "says :who :what1 :what2)
xor :who :what1 :who :what2
end

;; Diane Baldwin’s problem

to foote.family
cleanup
category "when [1st 2nd 3rd 4th 5th]
category "name [Felix Fred Frank Francine Flo]
category "street [Field Flag Fig Fork Frond]
category "item [food film flashlight fan fiddle]
category "position [1 2 3 4 5]
print [Clue 1]
justbefore "Flag "2nd :position
justbefore "2nd "Fred :position
print [Clue 2]
male [film Fig 5th]
print [Clue 3]
justbefore "flashlight "Fork :position
justbefore "Fork "1st :position
female [1st]
print [Clue 4]
falsify "5th "Frond
falsify "5th "fan
print [Clue 5]
justbefore "Francine "Frank :position
justbefore "Francine "Frank :when
print [Clue 6]
female [3rd Flag]
print [Clue 7]
justbefore "fiddle "Frond :when
justbefore "Flo "fiddle :when
print []
solution
end

to male :stuff
differ sentence :stuff [Francine Flo]
end

to female :stuff
differ sentence :stuff [Felix Fred Frank]
end
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;;; Combinatorics toolkit

to combs :list :howmany
if equalp :howmany 0 [output [[]]]
if equalp :howmany count :list [output (list :list)]
output sentence (map [fput first :list ?]

combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)

end

to fact :n
output cascade :n [# * ?] 1
end

to perms :n :r
if equalp :r 0 [output 1]
output :n * perms :n-1 :r-1
end

to choose :n :r
output (perms :n :r)/(fact :r)
end

;; The socks problem

to socks :list
localmake "total combs (expand :list) 2
localmake "matching filter [equalp first ? last ?] :total
print (sentence [there are] count :total [possible pairs of socks.])
print (sentence [of these,] count :matching [are matching pairs.])
print sentence [probability of match =] ~

word (100 * (count :matching)/(count :total)) "%
end

to expand :list
if emptyp :list [output []]
if numberp first :list ~

[output cascade (first :list)
[fput first butfirst :list ?]
(expand butfirst butfirst :list)]

output fput first :list expand butfirst :list
end
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to socktest
localmake "first pick [brown brown brown brown brown brown

blue blue blue blue]
localmake "second ~

pick (ifelse equalp :first "brown ~
[[brown brown brown brown brown
blue blue blue blue]] ~

[[brown brown brown brown brown brown
blue blue blue]])

output equalp :first :second
end

;; The Simplex lock problem

to lock :buttons
output cascade :buttons [? + lock1 :buttons #] 1
end

to lock1 :total :buttons
localmake "perms perms :total :buttons
output cascade (twoto (:buttons-1)) [? + lock2 :perms #-1 1] 0
end

to lock2 :perms :links :factor
if equalp :links 0 [output :perms/(fact :factor)]
if equalp (remainder :links 2) 0 ~

[output lock2 :perms/(fact :factor) :links/2 1]
output lock2 :perms (:links-1)/2 :factor+1
end

to twoto :power
output cascade :power [2 * ?] 1
end

to simplex :buttons
output 2 * f :buttons
end

to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end
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to simp :n
output round (fact :n)/(power (ln 2) (:n+1))
end

;; The multinomial expansion problem

to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end


