
Computer Science Logo Style
Beyond Programming





Volume 3

Brian Harvey

SECOND EDITION

Computer Science Logo Style

Beyond Programming

The MIT Press
Cambridge, Massachusetts
London, England









′

1997 by the Massachusetts Institute of Technology

The Logo programs in this book are copyright 1997 by Brian Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (printed in the
first volume of this series) for more details.

For information on program diskettes for PC and Macintosh, please contact the Marketing
Department, The MIT Press, 55 Hayward Street, Cambridge, Massachusetts, 02142.

Copyright credits for quoted material on page 349.

This book was typeset in the Baskerville typeface.

The cover art is an untitled mixed media acrylic monotype by San Francisco artist Jon
Rife, copyright 1994 by Jon Rife and reproduced by permission of the artist.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Computer Science Logo Style / Brian Harvey. — 2nd ed.

p. cm.
Includes indexes.
Contents: v. 1. Symbolic computing. — v. 2. Advanced techniques —
v. 3. Beyond programming.
ISBN 0–262–58151–5 (set : pbk. : alk. paper). — ISBN
0–262–58148–5 (v. 1 : pbk. : alk. paper). — ISBN 0–262–58149–3 (v.
2 : pbk. : alk. paper). — ISBN 0–262–58150–7 (v. 3 : pbk. : alk.
paper)
1. Electronic digital computers–Programming. 2. LOGO (Computer

programming language) I. Title.
QA76.6.H385 1997
005.13 3—dc20 96–35371

CIP



ix

xvii

1

Contents

Preface

Acknowledgments

1 Automata Theory

x
xii

xiii
xiv

2
3

6
7

8
11

13
15

16
22

24
25

28
29

31
32

33
35

v

About This Series
How to Read This Book
What Isn’t Included
Computers and People

What is a Computation?
Finite-State Machines
Nondeterministic Machines
Representing Machines as Logo Lists
Text Editors: a Use for Acceptors
Regular Expressions
Rules That Aren’t Regular
Regular Expressions and Finite-State Machines
How to Translate
Making the Machine Deterministic
Eliminating Redundant States
A Finite-State Adder
Counting and Finite-State Machines
Turing Machines
Turing’s Thesis
The Halting Theorem
Proving the Halting Theorem in Logo
Program Listing



45

107

2 Discrete Mathematics

3 Algorithms and Data Structures

46
47

53
55

57
60

62
65

66
69

72
78

81
83

85
89

94
99

108
112

115
117
119

126
129

130
131

134
136

139
142

146
153

vi Contents

Propositional Logic
An Inference System
Problems with Ordering
Data Structure
Program Structure: Recording Simple Propositions
Program Structure: Recording Implications
Using Implications to Represent Orderings
Backtracking
Generalized Inference Systems and Predicate Logic
Logic and Computer Hardware
Combinatorics
Inductive and Closed-Form Definition
Pascal’s Triangle
Simulation
The Simplex Lock Problem
An Inductive Solution
Multinomial Coefficients
Program Listing

Local Optimization vs. Efficient Algorithms
Memoization
Sorting Algorithms
Sorting by Selection
Sorting by Partition
Order of Growth
Data Structures
Data Structures in Real Life
Trees
Improving the Data Representation
Trees as an Abstract Data Type
Tree Modification
Searching Algorithms and Trees
Logo’s Underlying Data Structures
Program Listing



161

209

277

4 Programming Language Design

5 Programming Language Implementation

6 Artificial Intelligence

162
169

175
177

181
183

187
190

191
194

197
199

211
214

215
217

223
225

229
235

239
245

253

278
280

282
285

290
294

295
297

300
304

Contents vii

Programming paradigms
Interactive and Non-interactive Languages
Block Structure
Statement Types
Shuffling a Deck Using Arrays
Lexical Scope
Typed Variables
Additional Types in Standard Pascal
Critique of Typed Variables
Procedures and Functions
Call by Value and Call by Reference
Parameters in Logo: Call by Binding

Formal Syntax Definition
Tokenization
Lookahead
Parsing
Expressions and Precedence
The Two-Stack Algorithm for Expressions
The Simulated Machine
Stack Frames
Data Structures
Code Generation
Program Listing

Microworlds: Student
How Student Translates English to Algebra
Pattern Matching
Solving the Equations
Age Problems
AI and Education
Combining Sentences Into One Equation
Allowing Flexible Phrasing
Using Background Knowledge
Optional Substitutions



Appendices

341

349

351

357

307
308

310
311

314

342
342

343
344
345

345
345

346

viii Contents

Bibliography

Credits

Index of Defined Procedures

General Index

If All Else Fails
Limitations of Pattern Matching
Context-Free Languages
Augmented Transition Networks
Program Listing

Read These!
Chapter 1: Automata Theory
Chapter 2: Discrete Mathematics
Chapter 3: Algorithms and Data Structures
Chapter 4: Programming Language Design
Chapter 5: Programming Language Implementation
Chapter 6: Artificial Intelligence
Computers and People



Preface

science

is
Structure and Interpretation of Computer

Programs,

is

ix

The phrase “computer science” is still, in some circles, battling for acceptance. Some
people, not necessarily antagonistic to computers, consider it an illegitimate merger of
two disconnected ideas (much as I feel myself about the phrase “computer literacy”). They
don’t see where the comes in; what is taught in computer science departments is
mostly how-to tricks of the trade, comparable to medical or legal training. Such training is
valuable to the individual and to society, but the trainees are not learning to be scientists.

My own feeling is that there is some truth on both sides. There some science
in computer science. Abelson and Sussman, in

use the words “complexity” and “process” to explain what it is that computer
scientists study. A process need not take place inside a computer, but it happens that
computer processes are particularly amenable to formal study and they shed light on the
idea of process in general. On the other hand, Abelson and Sussman are exceptional.
A great deal of what is called computer science much more a matter of programming
techniques; many computer science students are first offered courses in several different
programming languages and then taught specific techniques for particular problem
domains, like graphics or data base systems or compiler construction. And many students
who find themselves in computer science departments because they love programming
computers are impatient with theory and weak in mathematical sophistication. Such
students are perfectly satisfied with the how-to approach. (I don’t mean this as an insult.
I have in mind some excellent students I’ve taught who are brilliant programmers, very
intelligent people, but happen not to have a theoretical bent.)

My goal in this book is to provide a bridge over which a lover of practical programming
can cross into the world of theory. I envision someone who got bored or confused early
in the high school math curriculum and was left with a distaste for formal thinking,
but who is nevertheless a closet formalist when programming, getting the same joy from
representing an intellectual problem in executable form that a traditional mathematician



About This Series

procedural
declarative,

Computer Science
Logo Style.

algorithm

x Preface

* Of course, computer programs are not concrete for everyone. Despite what I said above about
students who like programming but don’t like abstraction, anyone who has learned to see programs
as concrete objects is well on the way to mastering mathematical abstraction too; that’s what gives
me hope about this enterprise. The fact that the Piagetian boundary between concrete objects
and abstract ideas is not the same for everyone, and that what was formerly abstract can become
concrete in a suitable learning environment (such as the one made possible by computers), was
the insight that led Seymour Papert to espouse computer programming as an activity for children.

gets from representing a similar problem in an axiom system. I’ve tried to discuss
the concerns of more abstract computer science using the language of concrete Logo
programs that embody those concerns. This is an ambitious goal and I’m not sure how
well I’ve succeeded.

For example, in automata theory there is an elementary result called Kleene’s
Theorem that establishes the equivalence of two different representations for a certain
class of problems. One representation, the finite-state machine, is a one, a
sequence of steps, like a Pascal program. The other, the regular expression, is
describing the desired result rather than the sequence of steps needed to get there, like
a Prolog program. The representations are equivalent in the sense that any problem
that can be described as a regular expression can be solved by a finite-state machine,
and vice versa. (Not all problems are in this category.) Automata theory texts offer a
formal proof of Kleene’s Theorem using mathematical induction. What I offer is a Logo
program that takes a regular expression as input and actually works out an equivalent
finite-state machine for that particular expression. The program and the formal proof
are similar in structure, embodying many of the same ideas. But the program is concrete
and manipulable.*

Don’t get the impression that the book contains nothing but formal mathematics,
even in executable guise. The first two chapters (on automata theory and discrete
mathematics) concern relatively abstract topics, although each has practical applications;
the later chapters are more directly about the process of computer programming.

The book you are reading is the final volume in a three-volume series,
In the introductions to the earlier volumes I have distinguished two approaches

to computer science: the software engineering approach and the artificial intelligence
approach. The former makes the idea of the central one. It thrives in a context
of well-defined problems; a computer program proposed as a solution to such a problem



Structure and
Interpretation,

Symbolic Computing,

Advanced Techniques,

Beyond Programming,

About This Series xi

can be clearly judged correct or incorrect, and it can be more or less efficient than some
other proposed solution. The artificial intelligence approach is harder to describe in one
sentence. It embraces vaguely defined problems; it emphasizes an interactive process in
which the programmer and the computer are participants.

Of course the terms in which I describe the two approaches are not value-free.
A software engineer would use different language. Nor would all experts necessarily
accept my dichotomy in the first place. Alan Perlis says, in his foreword to

“After all, the critical programming concerns of software engineering and
artificial intelligence tend to coalesce as the systems under investigation become larger.
This explains why there is such growing interest in Lisp outside of artificial intelligence.”

I have also described the sequence of stages through which I think an apprentice
programmer travels. Volume 1 of this series, teaches the rules of the
game. It is addressed to a reader who has probably done some computer programming
before, but is just starting to get serious about it. It differs from most introductory Logo
programming books in that the latter focus attention on a particular programming goal,
usually turtle graphics, and try to make the language itself as transparent as possible. I
prefer to make the rules of the language an explicit object of study, since the design of
any language embodies the designer’s ideas about the structure of computer science.

Volume 2, combines additional tutorial chapters about advanced
Logo features with a collection of more or less practical programming projects. As in
any field, apprentices learn by doing more than they learn by reading books; yet they
require the attention of a master to see that they are learning a good style of work and
not practicing bad habits. To speak of apprenticeship in this century sounds quaint, and
in fact most of our master programmers do not take on apprentices. That’s a pity, I
think; too many would-be apprentices don’t find suitable guidance. (They sometimes try
to fill the gap by learning how to break into some company’s computer, and then they
get in trouble.) No book can be as good as living contact with a master programmer, but
Volume 2 is my attempt.

This volume, is for the reader with a few substantial programming
projects, or more than a few, behind him or her, who is starting to feel bored with
programming for its own sake but isn’t sure what to do instead. Some people never
do experience that sense of constriction, and that’s okay, as I said earlier. But I love
mathematics myself, and I confess that I’m always a little disappointed if one of my best
students doesn’t come to share that love. In this volume my goal is to tempt them.



ideas

xii Preface

How to Read This Book

Slowly.

Each chapter introduces some rather sophisticated ideas. You may find that reading
the chapter once leaves you with only a vague understanding. There are two things you
can do about that: Read it again and experiment with the programs in the chapter. Test
the limits of the programs; see what problems you can solve that are similar to the ones I
solve, and what problems don’t yield to the techniques I use. Think about how you could
extend the techniques. You should understand how each program works, but don’t fall
into the trap of thinking that the program is the most important thing in the chapter. You
should also understand how the program fits into a broader theoretical framework—how
it embodies the of the chapter.

The programs in each chapter are available on diskette and through the Internet
along with Berkeley Logo, a free Logo interpreter that runs on PC, Macintosh, and Unix
systems. Please note, though, that in a few places I show alternate versions of a program
in the text. In those situations the diskette contains the final version, but it’s worth your
while to work through the development of the program by typing in the earlier versions
yourself. (I don’t do this with enormous programs.)

Most of the chapters concentrate on a single idea selected from a broad topic.
Earlier I mentioned Kleene’s Theorem as an example; that theorem is a very small piece
of automata theory, but it takes up the bulk of the chapter. Only in the final pages do I
hint at some of the other topics within automata theory. I think it’s better to teach you
one idea in depth than to give a handwavy picture of an entire area of study. You should
expect to have to explore each area further by reading books about that topic; this book
ends with a bibliography to help you.

The specific ideas I present are generally not at the cutting edge of current research
in computer science; instead, they are older, more fundamental ideas. In part this is
inherent in the introductory nature of the book. In part it reflects the limitations of my
own knowledge. And in part it reflects the limitations of the home computers I expect
my readers to have available to them. Then, sometimes the older ideas are easier to
present in a complete, coherent, concrete form. For example, in the chapter on artificial
intelligence I present an implementation of a program from 1964. In that program,
the method used in the understanding of English sentences is closely connected to the
particular problem (solving algebra word problems) that that program handles. A more
modern English sentence parsing program is not only slower and more complicated but
also is hard to demonstrate unless it’s attached to an equally slow and complicated expert



What Isn’t Included

most

What Isn’t Included xiii

system or other purposeful program. I hint about the newer techniques, but I don’t
demonstrate them.

Chapters make occasional references to earlier chapters, so it’s best if you read the
book in order, although the references are rarely so substantial that you can’t survive
skipping a chapter. (But definitely read Chapter 4 before Chapter 5.)

When I first conceived of this series I described the third volume as “the first chapter
of every graduate computer science course.” As it turned out, the actual book does not
pretend to cover anything like the entire field of computer science. It contains a selection
of topics that I know about and find most worthwhile.

Some topics are omitted because I just don’t care about them personally. For
example, I don’t have anything to say about numerical analysis. I’m glad there are people
in the world who are concerned to ensure that when I use the square root primitive in
Logo I get the right answer, but I am not such a person myself. That doesn’t mean you
have to share my taste, but if you want to know about numerical analysis you’ll have to
read someone else’s book.

Other topics are omitted because I couldn’t find any way to illustrate the topic
through Logo programming on a microcomputer, which was one of the constraints
I set for myself in planning this series. For example, one of the areas of computer
science I find interesting is operating systems. My high school students in Sudbury
had access to a Unix timesharing system on a minicomputer and they did significant
software development in that environment. But I don’t know how to make that particular
experience available on a single-user microcomputer in which the operating system is
someone’s trade secret.

Finally, some topics just didn’t fit. I originally planned to have a chapter on graphics
programming, but I decided that there are many books on the subject at both a popular
and a professional level of expertise, and I had less to say about it than about some other
areas.

The bibliography in Appendix A includes some pointers to information about some
of the missing topics. In any case, the purpose of this book isn’t to teach you everything
there is to know about computers. It’s to nurture in you a sense of what computer science
is like, or at least one approach to computer science, in the hope that you’ll be inspired
to pursue the study in the “regular” college-level texts.



Computers and People

The Second Self: Computers and the Human Spirit,

xiv Preface

Steve is a college sophomore, an engineering student who had never thought
much about psychology. In the first month of an introductory computer-
science course he saw how seemingly intelligent and autonomous systems
could be programmed. This led him to the idea that there might be something
illusory in his own subjective sense of autonomy and self-determination.

Steve’s classmate Paul had a very different reaction. He too came to ask
whether free will was illusory. The programming course was his first brush
with an idea that many other people encounter through philosophy, theology,
or psychoanalysis: the idea that the conscious ego might not be a free agent.
Having seen this possibility, he rejected it, with arguments about free will and
the irreducibility of people’s conscious sense of themselves. In his reaction
to the computer, Paul made explicit a commitment to a concept of his own
nature to which he had never before felt the need to pay any deliberate
attention. For Paul, the programmed computer became the very antithesis
of what it is to be human. The programmed computer became part of Paul’s
identity as not-computer.

Paul and Steve disagree. But their disagreement is really not about computers.
It is about determinism and free will. At different points in history this same
debate has played on different stages. Traditionally a theological issue, in the
first quarter of this century it was played out in debate about psychoanalysis.
In the last quarter of this century it looks as though it is going to be played
out in debate about machines.

— Sherry Turkle, p. 23.

The psychology of computer programming, the sociology of the computer-intensive
society, the economics of automation, the philosophy of mind, the ethics of computer
use: these are the topics I find most interesting and most important in thinking about
computers. That’s why I’m a teacher instead of a computer programmer in industry.

In the original plan for this book there was to have been a chapter called “Computers
and People” at the end of the book. I feel strongly that it’s irresponsible to train people
in the skills of computer technocracy without also encouraging their sensitivity to the
human implications of their work. I ended up not writing that chapter, for several
reasons. First, it would have to be very different in tone from the hands-on, experimental
style of the rest of the book. I was afraid that, tacked on at the end, it would sound
preachy, or worse, tokenistic and hypocritical. So instead there is this shorter discussion
in the preface, where an author is allowed to sound preachy.



either

Computers and People xv

Second, I’m not sure that the relevant issues can be presented usefully to apprentices
in the form of abstract reading. There is a lot of literature on this side of computing,
some of which is listed in the bibliography. But the books, like all theoretical psychology
or philosophy, are hard reading for people whose relevant practical experience is just
beginning. Instead I think the best way to teach about the human side of computing is
through sensitive adult attention to the actual experiences that take place in the computer
center. (In general I’ve tried to write these books in a way that leaves open exactly who
is reading them. I think this sort of approach to computer science can be useful to a
wide range of people, kids and adults, in and out of formal educational settings. But
I guess right now I am talking primarily to the teachers of high school students and
undergraduates.)

At my high school computer center the kids liked to write video game programs. For
a while some of the authors of these games included in the programs a list of which other
kids were or weren’t allowed to play the games. This practice let the game authors feel
powerful and important, but of course it wasn’t very helpful to the community spirit in
the computer center. I didn’t want to forbid the practice, making the issue one of rules
and authority. Instead, in conversation with the students I tried to turn their attention
away from ideas of intellectual property and entitlement—“It’s my program and I have
the right to decide who can use it”—and toward a sense of their own need for a strong
community. Every time you write a program you’re building on the work of last year’s
students who developed some of the techniques you use, on the work of people outside
the school who designed the programming language, operating system, and so forth,
and on the generosity of the adults in your community who paid for the equipment you
use. In the end, I think the issue was settled not so much by my eloquence as by the
example set by some other students who became important members of the community
through their willingness to help others by teaching, encouraging, and sharing their own
work. The kids all learned that it’s possible to be respected, admired, and loved instead
of respected but resented.

At many schools, when teachers express concern about the social issues in the
computer center, the main focus of that concern is around the question of software
piracy. Kids show up at school with a pirated version of the latest microcomputer game
program, very proud of themselves for having it, and the teachers try to get the kids not
to be proud of their theft of intangible property. But it seems to me that the other side
of the issue, the spirit that’s held up to kids as good computer citizenship, is marked
by secrecy, distribution of programs in compiled form only, copy protection that works
against networking, paranoia, and plain greed. I don’t like side of that dichotomy.



entire

xvi Preface

By contrast, in the university computer centers built around timesharing systems or
networked workstations I see much more of a spirit of sharing, openness, community,
programs provided with source code so that people can build on other people’s work,
trust, and an ideal of service to the community. That’s another reason I chose to set
up a Unix system in Sudbury. The ethical issues that arise in such a setting revolve
around privacy of information. Kids find it a challenge to break into other people’s
accounts just as they do in the real-world computer systems that get into the newspapers,
but at school the person who gets angry is another student rather than some faceless
administrator. And students also experience the positive moral force of software sharing
and collaboration.

I’m exaggerating the differences; I know that there is cooperation among microcom-
puter users and greed in the large computer world. Also, recent hardware developments
are making the boundary less clear; home computers and workstations are built using
the same processor chips. But the software is different and I think the style of human
interaction is different as well. Still, the technical details of the facility are less important
than the teacher’s willingness to be a humane model and not just a fount of expertise.
One of the virtues of that quaint idea of apprenticeship was that the apprentice was
involved in the way of life of the master; there was no artificial separation between
professional concerns and human concerns. What goes on among the people in a
computer center is at least as important as what goes on between person and machine.



sci.math

Acknowledgments

r

Critical Thinking

LogoWorks

xvii

As for the previous two volumes, my greatest debts are to Hal Abelson and Paul
Goldenberg. Both of them read the manuscript carefully through several drafts. Hal
is great at noticing the large problems; he makes comments like “throw out this whole
chapter” and “you are putting the cart before the horse here.” Paul’s comments were
generally on a more detailed level, pointing out sections in which potentially valuable
content was sabotaged by a presentation that nobody would understand. Together they
have improved the book enormously.

Some of the examples in this book are ones that were posed to me by other people
in other contexts. Horacio Reggini raised the issue of listing (not merely counting) the
combinations of elements of a list; Dick White asked me to investigate just how secure
the Simplex lock is; Chris Anderson taught the probability class where the question about
multinomial expansions arose. I’m grateful to Anita Harnadek, whom I’ve never met, for
a logic problem I use to demonstrate inference systems. (She is, by the way, the author of
a fantastic textbook called that I recommend to teachers of almost any
subject: math, English, or social studies.) Jim Davis’s Logo interpreter in Logo (in the

anthology I co-edited) was an inspiration for the Pascal compiler.

I’m grateful to Dan Bobrow, Sherry Turkle, and Terry Winograd for permission to
quote from their work here. In particular, Bobrow’s doctoral thesis forms the basis for
my chapter on artificial intelligence, and I’m grateful for the program design as well
as my extensive quotations from the thesis itself. He was also very patient in answering
technical questions about details of a program he wrote over 20 years ago.

Mike Clancy taught me about generating functions and used them to find the
closed form definition for the multinomial problem; Michael Somos, via the
newsgroup, provided the closed form solution to the Simplex lock problem. Paul
Hilfinger straightened me out about parser complexity.





Computer Science Logo Style
Beyond Programming




