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Abstract

In this thesis, we study the 𝑡-wise independence of block ciphers following the
Substitution-Permutation Network design to prove resilience against cryptanalytic
attacks and show non-asymptotic bounds for two widely-used ciphers. There are two
main contributions of this thesis.

We study the pairwise independence of AES. Replacing the INV 𝑆-box with an
‘ideal’ variant, we are able to compute tight convergence properties and prove that
this ideal AES is pairwise independent in 5 rounds. As a corollary, we show how
to simulate the ideal AES variant using the true AES, after silencing parts of some
AES rounds. We call the resulting construction censored AES and we prove that it
is pairwise independent in 92 rounds. Since this variant is modeled after AES, but
does not perform a significant fraction of the mixing steps, we believe that our result
is evidence that the true AES is pairwise independent in less than 100 rounds.

In the second part of this thesis, we study the 𝑡-wise independence of the MiMC
cipher. In particular, we explore whether the use of exponential sums results from
algebraic number theory can show convergence to 𝑡-wise independence of the MiMC
cipher over a prime order field. Even though we do not achieve any concrete results,
we believe that this is a direction worth pursuing further.

Thesis Supervisor: Vinod Vaikuntanathan
Title: Professor of EECS
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Introduction

A significant part of the traffic on the Web is encrypted using block ciphers. Many
of these block ciphers follow the Substitution-Permutation Network (SPN) design,
meaning they are efficient encryption schemes that repeat simple and weak encryp-
tions for multiple rounds. Our intuitive understanding of why they work is that the
composition of many weak encryptions gives strong security.

Despite their widespread use, mathematically analyzing their resilience against
cryptanalytic attacks remains an open problem. In the literature, cryptographers
typically rely on reductions to prove the security of cryptographic schemes, by demon-
strating how breaking the scheme would result in also solving a problem we believe
to be hard. When it comes to block ciphers, we have no candidate ‘hard’ problems
to reduce to. The inherent nature of SPNs as compositions of simple permutations
makes them hard to associate with well-studied mathematical problems.

Additionally, the incremental format of SPNs makes them a great candidate to
construct attacks against. For example, over the past years cryptanalysts have been
developing attacks for more and more rounds of the Advanced Encryption Standard
(AES) cipher [GRR17, Gra19, BODK+18, BCC19]. In the past, cryptanalysts have
been very successful in devising attacks against the security of popular block ciphers.
One example is the use of differential cryptanalysis [BS91] against Data Encryption
Standard (DES), the predecessor of AES.

A recent paper by Liu, Tessaro and Vaikuntanathan [LTV21] set forth a research
program whose goal is to study the security of practical and widely-used SPN ciphers.
One desirable property that they focused on was 𝑡-wise independence, which can rule
out several classes of known attacks. In this thesis, we continue their study of the
𝑡-wise independence of block ciphers and we obtain concrete non-asymptotic results
for two widely-used ciphers today, AES and MiMC. Our results can be extended to
ciphers that are designed according to the Substitution-Permutation Network frame-
work.
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1.1 Substitution-Permutation Networks

Given two positive integers 𝑘, 𝑏, a Substitution-Permutation Network (SPN) is a class
of keyed permutations on the set of (𝑏𝑘)-bit strings {0, 1}𝑛, for 𝑛 = 𝑏𝑘. SPNs divide
the 𝑛 bits of their input into 𝑘 blocks of 𝑏 consecutive bits. We typically think of
such a string of 𝑏 bits as an element of the finite field F2𝑏 . Then, SPNs apply a
transformation to these blocks according to a random secret key for a predetermined
number of repetitions (rounds). The transformation during one round of the cipher
is parametrized by three operations that happen in sequence

1. AddRoundKey . XOR the input with the secret key. Since the XOR operation
happens per-bit, AddRoundKey applies to each block separately.

2. 𝑆-Box . The 𝑆-Box is a permutation defined by the function 𝑆 : F2𝑏 → F2𝑏 . 𝑆
is non-linear, such as the inverse over F2𝑏 : 𝑆(𝑥) = 𝑥2

𝑏−2 or the cube: 𝑆(𝑥) = 𝑥3

over F2𝑏 for an odd integer 𝑏.

3. LinearMixing . The last operation is a linear mixing that happens between
all 𝑘 blocks of the input, which is represented as a 𝑘 × 𝑘 matrix with entries
from F2𝑏

This sequence of operations is then repeated 𝑟 times to obtain an 𝑟-round SPN.
We assume that the cipher is using a new random 𝑛-bit secret key in each round,
for a total of 𝑟 · 𝑛 bits of randomness in total. In practice, a key schedule is used to
expand 𝑛 random bits to 𝑟 · 𝑛 bits. The effect of the key schedule on block ciphers
and their pseudorandomness is an important open problem [LTV21].

Although what we can prove about SPNs is limited, our intuition behind their
design is that the combination of AddRoundKey + 𝑆-Box generate random-looking
blocks. The LinearMixing layer is then used to diffuse the randomness between all
blocks.

If 𝑘 = 1, the cipher contains one large block of 𝑛 bits and the 𝑆-box function
applies to all 𝑛 bits at the same time. This is in many cases inefficient since it
requires computing the non-linear 𝑆-box over a large domain. For efficiency, many
modern ciphers (like AES) split the input to 𝑘 > 1 blocks. It is still not exactly clear
how the choice of 𝑘 affects the security of the cipher, since the 𝑘 = 1 variant of AES
with trivial mixing is known not to be 4-wise independent [LTV21].
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𝑥1
𝑥2
...
𝑥𝑘

→

+𝑟
(1)
1

+𝑟
(1)
2
...

+𝑟
(1)
𝑘

→

𝑆
𝑆
...
𝑆

→ 𝑀

⏟  ⏞  
one round

→ · · · →

+𝑟
(1)
1

+𝑟
(1)
2
...

+𝑟
(1)
𝑘

→

𝑆
𝑆
...
𝑆

→ 𝑀

⏟  ⏞  
one round

→

𝑦1
𝑦2
...
𝑦𝑘

Figure 1-1: An example of a Substitution-Permutation Network with 𝑘 blocks and 2
rounds shown in yellow boxes. Each round contains three sets of colored operations:
AddRoundKey, 𝑆-Box and LinearMixing

1.1.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (originally known as Rijndael) is the most widely
used block cipher in the world. AES became effective as a U.S. federal government
standard in May 2002, after approval by the U.S. Secretary of Commerce. It is a
particular instantiation of a Substitution-Permutation Network.

The length of the input is 𝑛 = 128 bits, which are divided in 𝑘 = 16 blocks of
𝑏 = 8 bits each. These 16 blocks are usually arranged in a 4 × 4 array. The 𝑆-box
is chosen as an affine transformation of the inverse function INV over the F28 finite
field.

The linear mixing layer is a bit more complicated, as it was designed with im-
plementation efficiency and parallelism in mind. In particular, the linear mixing is
divided in two steps: ShiftRows and MixColumns.

ShiftRows. This step acts on each row separately. Counting from row 0 down to
row 3, each row 𝑖 is shifted to the left by 𝑖 positions. This means that the first row
remains unchanged, the second row shifts its first block to the left and so on. Below
you can find an example on how the ShiftRows operation behaves.

𝛼11 𝛼12 𝛼13 𝛼14

𝛼21 𝛼22 𝛼23 𝛼24

𝛼31 𝛼32 𝛼33 𝛼34

𝛼41 𝛼42 𝛼43 𝛼44

ShiftRows−−−−−→

𝛼11 𝛼12 𝛼13 𝛼14

𝛼22 𝛼23 𝛼24 𝛼21

𝛼33 𝛼34 𝛼31 𝛼32

𝛼44 𝛼41 𝛼42 𝛼43

MixColumns. The second part of the mixing involves each column separately. If
we consider the 4×4 block array as a matrix, then MixColumns is performing matrix
multiplication with the block array matrix and a known 4×4 matrix MC. This means
that each element is now the linear combination of the elements in its column.
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𝛼11 𝛼12 𝛼13 𝛼14

𝛼22 𝛼23 𝛼24 𝛼21

𝛼33 𝛼34 𝛼31 𝛼32

𝛼44 𝛼41 𝛼42 𝛼43

MixColumns−−−−−−→

⎡⎢⎢⎣
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤⎥⎥⎦
𝛼11 𝛼12 𝛼13 𝛼14

𝛼22 𝛼23 𝛼24 𝛼21

𝛼33 𝛼34 𝛼31 𝛼32

𝛼44 𝛼41 𝛼42 𝛼43

As an example, if the elements of the first column are 𝛼11, 𝛼22, 𝛼33, 𝛼44 then after
MixColumns the first element of the first column will equal 2𝛼11 + 3𝛼22 + 𝛼33 + 𝛼44.
Recall that multiplication and addition is done over F28 .

1.1.2 MiMC

The name of the MiMC cipher stands for Minimal Multiplicative Complexity and
was introduced in [AGR+16] for Succinct Non-interactive Arguments of Knowledge
(SNARKS). Other applications include Multi-Party Computation (MPC) and Fully
Homomorphic Encryption (FHE).

MiMC is another instantiation of the Substitution-Permutation Network design,
whose input is arranged in only one block 𝑘 = 1 and with the cube over F2𝑏 as its 𝑆-
box, 𝑆(𝑥) = 𝑥3. Since it has only one block, there is no need for a linear mixing layer.
Two variants of MiMC have been introduced, one defined to work over the extension
field F2𝑏 (for 𝑏 odd) and the other over prime fields F𝑝, for 𝑝 a large prime. For the
purposes of this thesis, MiMC will have 𝑛 independent and uniformly distributed
round keys denoted as 𝑟1, . . . , 𝑟𝑛 and its execution on input 𝑥 can be seen below.

𝑥
ARK−−→ 𝑥+𝑟1

𝑆−→ (𝑥+𝑟1)
3 ARK−−→ (𝑥+𝑟1)

3+𝑟2
𝑆−→ . . .

𝑆−→
(︁
. . .
(︀
(𝑥+ 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3

1.2 𝑡-Wise Independence and Cryptanalysis

The recent paper of Liu, Tessaro and Vaikuntanathan [LTV21] initiated a research
program that studies the 𝑡-wise independence of concrete block ciphers. They argue
that 𝑡-wise independence is a desirable property for a block cipher against various
cryptanalytic attacks. Indeed, pairwise independence implies security against dif-
ferential and linear attacks, whereas extending this property to 𝑡-wise independence
implies resilience against statistical attacks with at most 𝑡 inputs and order log2(𝑡)
differential attacks.
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1.3 Our Contributions

This thesis continues the work of [LTV21] on two fronts. First, we obtain improved
pairwise independence guarantees for a variant of AES, which we call ‘censored AES’.
We do this by first replacing the inverse (INV) 𝑆-box by an ideal 𝑆-box, which is
easier to analyze. Then, we can analyze the convergence properties of this ideal
𝑆-box exactly and we prove that 5 rounds of AES with the ideal 𝑆-box are enough
to reach pairwise independence.

Theorem. (Informal). The statistical distance of a substitution-permutation network
with an ideal 𝑆-box and a linear mixing layer of maximal branching number from
pairwise independence after 2𝜌+ 1 steps is

𝑑(2𝜌+ 1) ≤ 2𝜌𝑘−1(2𝑒)𝜌(𝑘−1)/2

(2𝑏 − 1)𝜌𝑘/2

Additionally, AES with an ideal 𝑆-box and a linear mixing layer of maximal branching
number is 2−128-close to pairwise independent after only 5 rounds.

We proceed with showing how to simulate the ideal 𝑆-box using consecutive INV
𝑆-boxes. The way to compose INV in sequence is to censor (i.e. silence) the mixing
steps between them, which is how we obtain our result for the censored variant of
AES.

Theorem. (Informal). Consider a ‘censored’ variant of the AES cipher with a max-
imal branching mixing layer, in which a specific subset of the mixing layers is not
performed. Then ‘censored’ AES is 2−128-close to pairwise independent in 92 rounds,
where a round could be normal, or with silenced mixing.

Since the censored variant performs significantly less mixing operations than the
true AES, we expect that its convergence to pairwise independence is severely slowed
down. Thus, we believe that our result is evidence that the true AES is pairwise
independent in less than 100 rounds.

We note here that analyzing AES using idealized components is a promising
research direction, especially since recent reduced-round attacks on AES [GRR17,
Gra19, BODK+18] do not use the algebraic nature of the 𝑆-box.

The second part of this thesis is dedicated to the MiMC cipher. Prior work
[LTV21] proved the existence of SPNs that are 𝑡-wise independent after 𝑡 + 𝑜(𝑡)
rounds. We hope to extend this result by proving that the MiMC cipher over prime
order fields is a concrete construction of a 𝑡-wise independent cipher in 𝑂(𝑡) rounds
for large enough fields.

15



Due to the algebraic structure of the MiMC cipher, we attempt to obtain such
a result using character sums, and in particular using Deligne’s proof of the Weil
conjectures [Del74, Del80]. The motivation behind this approach is that 𝑡 distinct
plaintexts give 𝑡 MiMC ciphertexts that can be computed using low-degree poly-
nomials. Deligne’s result provides an upper bound on the character sums of these
polynomials, which can bound the pointwise distance of the ciphertext distribution
to 𝑡-wise independence.

Erratum note. A prior version of this thesis claimed to prove the 𝑡-wise inde-
pendence of the MiMC cipher in 𝑂(𝑡) rounds using the techniques described above.
Since then, an issue with the proof was discovered and we were unable to restore
the original result. The current version does not include the unverified statement
but contains some preliminary work on the MiMC cipher with the hope that similar
techniques can recover the original result.

16



Pairwise Independence of Ideal AES

2.1 Preliminaries

2.1.1 Assumptions

For this thesis, we will adopt the AES model from [LTV21]. In that paper, the
authors assume that each round key is sampled uniformly and identically from F𝑘

2𝑏
.

In practice, only one such key is sampled and is then expanded to one key per round
using a key scheduler. Another simplification in [LTV21] is to ignore the fixed affine
transformation after the 𝑆-box, since it does not affect our convergence properties.

The new assumption that we make in this paper will be about the mixing layer.
For the remainder of this thesis we will assume that the mixing of AES is represented
as a maximal branching number matrix 𝑀 ∈ F𝑘×𝑘

28 . This is not the case in practice,
since mixing consists of ShiftRows and MixColumns. Admittedly, we expect that
replacing the mixing layer with full branch mixing will improve the convergence to
pairwise independence, with the caveat of sacrificing the efficiency and parallelism
that the current mixing provides.

Definition 1. The branching number of a matrix 𝑀 ∈ F𝑘×𝑘
2𝑏

is defined as

br(𝑀) = max
𝛼∈F𝑘

2𝑏

(wt(𝛼) + wt(𝑀𝛼))

where wt is the Hamming weight. The maximal branching number for any 𝑘× 𝑘
matrix is 𝑘 + 1 and having a maximal branching number is a desirable property for
mixing functions [Dae95, KHL+02].

2.1.2 Pairwise Independence

A random permutation 𝑃 : F𝑘
2𝑏

→ F𝑘
2𝑏

is pairwise independent if for all pairs of
distinct input plaintexts (𝑥1, 𝑥2), the output (𝑃 (𝑥1), 𝑃 (𝑥2)) is uniformly distributed
over all pairs of distinct ciphertexts. Equivalently, we want the linear transformation

17



(𝑃 (𝑥1), 𝑃 (𝑥1) + 𝑃 (𝑥2))

to have the first coordinate uniformly distributed over F𝑘
2𝑏

and the second coor-
dinate uniformly distributed over F𝑘

2𝑏
∖{0}. Since the first AddRoundKey operation

makes the marginal distribution of 𝑃 (𝑥1) uniform, what is left is to bound the dis-
tance of 𝑃 (𝑥1) + 𝑃 (𝑥2) from the uniform distribution over F𝑘

2𝑏
∖{0}, 𝑈(F𝑘

2𝑏
∖{0}).

Lemma 1. The statistical distance of AES from pairwise independent is equal to the
maximum statistical distance of AES(𝑥1)+ AES(𝑥2) from 𝑈(F𝑘

2𝑏
∖{0}) for all 𝑥1, 𝑥2.

With Lemma 1 we have reduced the dimension of our problem from the joint
distribution of two ciphertexts to the marginal distribution of their sum. To make this
statistical distance arbitrarily small, we will frequently make use of the Amplification
Lemma of [KNR05].

Lemma 2. (Amplification Lemma [KNR05]). Consider a Markov chain 𝐺 = (𝑉,𝐸)
with transition matrix 𝑀 and stationary distribution 𝜋(·). Define the statistical dis-
tance from stationary after 𝑡 steps as

𝑑(𝑡) = max
𝑥

‖𝑀 𝑡𝑒𝑥 − 𝜋‖𝑇𝑉

Here 𝑒𝑥 is the vector with 1 at position 𝑥 and 0 everywhere else. Then the distance
after 𝑠+ 𝑡 steps is related to the distance after 𝑡 and 𝑠 steps.

𝑑(𝑠+ 𝑡) ≤ 2𝑑(𝑠)𝑑(𝑡)

We will mostly use the Amplification Lemma in the following form, which can be
proved using induction for all positive integers 𝜌.

𝑑(𝜌𝑡) ≤ 2𝜌−1𝑑(𝑡)𝜌

2.1.3 Ideal 𝑆-box

In this section we will understand how the non-linear 𝑆-box affects the sum of the
two ciphertexts, which will motivate the design of an ideal 𝑆-box. Since the mixing
layer 𝑀 is linear, just like the sum operation, the AES mixing has the same effect
on the ciphertext sum. Formally for any two ciphertexts 𝑐1, 𝑐2

𝑀(𝑐1) +𝑀(𝑐2) =𝑀(𝑐1 + 𝑐2)

18



Consider now the effect of the AddRoundKey and 𝑆-box operations on two cipher-
texts 𝑐1, 𝑐2 with sum 𝑑. The round key 𝑟(1) is uniformly sampled from F𝑘

2𝑏
and we

apply the 𝑆-box to each block of the ciphertexts separately.

𝑐1
𝑐2⏟ ⏞ 

sum 𝑑

ARK−−→ 𝑐1 + 𝑟(1)

𝑐2 + 𝑟(1)⏟  ⏞  
sum 𝑑

𝑆−→ 𝑆
(︀
𝑐1 + 𝑟(1)

)︀
𝑆
(︀
𝑐2 + 𝑟(1)

)︀⏟  ⏞  
sum 𝑆(𝑟)+𝑆(𝑟+𝑑)

where we write 𝑟 = 𝑐1 + 𝑟(1), which is uniformly distributed over F𝑘
2𝑏

. Nyberg
[Nyb93] analyzed the scalar version of this distribution

𝑆(𝑑)
def
= 𝑆(𝑟) + 𝑆(𝑟 + 𝑑)

for any non-zero 𝑑 ∈ F2𝑏 , 𝑟 ∈ F2𝑏 chosen uniformly at random, and 𝑆 being the INV
function over F2𝑏 . Below we assume 𝑏 is even, as is the case for AES, and Tr: F2𝑏 → F2

is the linear trace function over the finite field of characteristic 2.

P𝑟[𝑆(𝑑) = 𝛾] =

⎧⎪⎪⎨⎪⎪⎩
4
2𝑏

𝛾 = 1
𝑑

2
2𝑏

Tr
(︁

1
𝛾·𝑑

)︁
= 0

0 otherwise

As we can see, if the sum of the ciphertexts if 𝑑, then after ARK and the INV 𝑆-box,
the possible sums are distributed over the inverse of a subspace of F2𝑏 , with one value
appearing twice as often as the rest. This complex distribution is hard to work with,
and indeed prior work [LTV21] proved pairwise independence by approximating this
distribution. What we will do, is we will replace this distribution with 𝑈(F2𝑏∖{0}).
The uniform distribution and 𝑆(𝑑) are quite far apart in statistical distance, however
we are able to relate them because the composition 𝑆(. . . 𝑆(𝑑) . . . ) approximates
𝑈(F2𝑏∖{0}). The way we will get this composition of 𝑆, is by censoring the mixing
layers between the ARK and 𝑆-box operations.

Definition 2. We call a function 𝑆* : F2𝑏 → F2𝑏 the ideal 𝑆-box if

𝑆*(𝑑) =

{︃
𝛾 ∼ 𝑈(F2𝑏∖{0}) 𝑑 ̸= 0

0 𝑑 = 0

Such an ideal 𝑆-box can exist in practice, if we replace AddRoundKey and INV
with a random permutation 𝑃 : F28 → F28 . To summarize, we showed that the sum
of two ciphertexts after one round of AES is obtained after applying 𝑆 to each block,
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followed by the mixing layer. Since the distribution of 𝑆 is hard to work with, we
have defined the ideal 𝑆-box 𝑆*. Using this new distribution, we will obtain tight
bounds on the number of rounds required for the sum of two plaintexts to converge
to 𝑈(F𝑘

2𝑏
∖0).

2.1.4 Layouts and the Layout Graph

Our definition of the ideal 𝑆-box now motivates us to define ‘equivalence groups’.
In particular, after one application of the ideal 𝑆-box, any block of the ciphertext
sum that has a non-zero value will be uniformly distributed over all non-zero values.
On the other hand, any zero block remains zero. Thus the distribution of our sum 𝑑
after one application of the ideal 𝑆-box is uniformly distributed over all sums that
have non-zero entries in exactly the same positions as 𝑑. We will define this set of
sums as the ‘layout’ of 𝑑.

Definition 3. A layout is the set of ciphertext sums that have zero and non-zero
entries in the same positions. If we represent the indices with zero entries and non-
zero entries with bits 0 and 1 respectively, we get a string 𝑐 of 𝑘 bits that defines the
layout. Thus, we say a ciphertext sum 𝑥 is in layout 𝑐 if

𝑥𝑖 ̸= 0 ⇔ 𝑐𝑖 = 1

We also denote with |𝑐| as the number of set bits in 𝑐. Equivalently, |𝑐| is the number
of non-zero entries in layout 𝑐 and we will also refer to it as the weight of layout 𝑐.

Example. Below is an example, assuming a smaller number of blocks, 𝑘 = 4. Here
all 𝛼𝑖 are non-zero. ⎡⎢⎢⎣

𝛼1

𝛼2

0
𝛼4

⎤⎥⎥⎦ ∈ 𝑐, 𝑐 = 1101, |𝑐| = 3

Definition 4. For a layout 𝑓 and an integer 𝑖 (possibly negative) such that

0 < |𝑓 |+ 𝑖 ≤ 𝑘

we define 𝑓𝑖 to be an arbitrary layout with |𝑓𝑖| = |𝑓 |+ 𝑖.

Definition 5. For simplicity, we will denote by k the unique layout with no zero
entries, i.e. |k| = 𝑘.
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We will analyze the convergence of the ciphertext sum using a Markov chain.
The vertices of our Markov chain will be the layouts of ciphertexts sums, since
the ideal 𝑆-box takes two sums 𝑥, 𝑦 from the same layout to the same distribution
𝑆*(𝑥) = 𝑆*(𝑦). This reduces the total number of vertices in our Markov chain from
2𝑘𝑏 − 1 chiphertext sums to 2𝑘 − 1 possible layouts.

Definition 6. The layout graph 𝐺 = (𝑉,𝐸) for a block cipher consists of 2𝑘 − 1
vertices, one for each possible layout. We add directed edges from layout 𝑐 to layout
𝑑 with weight 𝑤𝑐𝑑 equal to the probability of starting from any ciphertext sum in 𝑐
and after one round of the block cipher we end up in layout 𝑑.

Example. Below we show a small part of the layout graph for a block cipher with
𝑘 = 4. On the left side we have one layout ℓ1 with weight 1 and on the right we have
the layout with weight 𝑘 at the top and a layout ℓ3 with weight 3 at the bottom.
Since the ideal 𝑆-box makes any ciphertext sum in these layouts behave similarly,
the probability of transitioning from a layout 𝑐 to another layout 𝑑 is independent of
the starting sum in 𝑐. We can compute it to be equal to

𝑤𝑐𝑑 =
|{𝑥 ∈ 𝑐 |𝑀𝑥 ∈ 𝑑}|

(2𝑏 − 1)|𝑐|

In the case when |𝑐| = 1, then the maximal branching number of the mixing layer
guarantees that 𝑀𝑥 lies in the layout with weight 𝑘 for any 𝑥 ∈ 𝑐.

ℓ1 = 1000 4

ℓ3 = 0111

1

𝑤4ℓ1

𝑤ℓ34

𝑤4ℓ3

In the next section we will compute the rest of the transition probabilities exactly,
which will allow us to bound the mixing time of the layout graph.
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2.2 Transition Probabilities of the Layout Graph

2.2.1 Exact Transition Probabilities

Lemma 3. Consider a block cipher with 𝑘 blocks, the ideal 𝑆-box and a full-branch
mixing layer. The probability of transitioning from a specific layout 𝑐 to a particular
layout 𝑑 is

𝑤𝑐𝑑 =

(︀
𝑘−1
𝑘−1

)︀
(2𝑏 − 1)𝑘−|𝑑| −

(︀
𝑘

𝑘−1

)︀
(2𝑏 − 1)𝑘−|𝑑|+1

+

(︀
𝑘+1
𝑘−1

)︀
(2𝑏 − 1)𝑘−|𝑑|+2

− . . .⏟  ⏞  
|𝑐|+|𝑑|−𝑘 terms

=

|𝑐|+|𝑑|−𝑘−1∑︁
𝑖=0

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝑘−|𝑑|+𝑖

The above equality only holds as long as |𝑐| + |𝑑| ≥ 𝑘 + 1. In the opposite case, the
maximal branching number rules out this transition and hence the probability is equal
to 0.

To better understand the statement of the lemma, we provide an example before
jumping into the proof. Let 𝑘 = 4 and 𝛼𝑖, 𝛽𝑖 be non-zero elements of F2𝑏 . Consider
the transition

𝛼
def
=

⎡⎢⎢⎣
𝛼1

𝛼2

0
𝛼4

⎤⎥⎥⎦→

⎡⎢⎢⎣
0
𝛽2
𝛽3
0

⎤⎥⎥⎦ def
= 𝛽

Here 𝛼 is in the layout 𝑐 = 1101 and 𝛽 is in the layout 𝑑 = 0110. Since |𝑐| =
3, |𝑑| = 2, we can verify from Table 2.1 that the probability of transitioning from 𝛼
to 𝛽 after one round of AES is equal to 1

22𝑏
.

Proof. We will prove this by induction, by fixing the layout 𝑐 and computing the
transition probability for all layouts 𝑑, in increasing value of |𝑑| (number of non-zero
entries).
Base Case. The maximal branching number of the mixing layer restricts that
|𝑐|+ |𝑑| ≥ 𝑘+1. Thus our base case will be any layout 𝑑 with weight |𝑑| = 𝑘−|𝑐|+1.
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# of Blocks 𝑘 |𝑐| |𝑑| Probability 𝑤𝑐𝑑

4 1 4 1
4 2 3 1

2𝑏

4 2 4 1− 4
2𝑏

4 3 2 1
22𝑏

4 3 3 1
2𝑏
− 4

22𝑏

4 3 4 1− 4
2𝑏
+ 10

22𝑏

4 4 1 1
23𝑏

4 4 2 1
22𝑏

− 4
23𝑏

4 4 3 1
2𝑏
− 4

22𝑏
+ 10

23𝑏

4 4 4 1− 4
2𝑏
+ 10

22𝑏
− 20

23𝑏

3 1 3 1
3 2 2 1

2𝑏

3 2 3 1− 3
2𝑏

3 3 1 1
22𝑏

3 3 2 1
2𝑏
− 3

22𝑏

3 3 3 1− 3
2𝑏
+ 6

22𝑏

5 5 1 1
24𝑏

5 5 2 1
23𝑏

− 5
24𝑏

5 5 3 1
22𝑏

− 5
23𝑏

+ 15
24𝑏

5 5 4 1
2𝑏
− 5

22𝑏
+ 15

23𝑏
− 35

24𝑏

5 5 5 1− 5
2𝑏
+ 15

22𝑏
− 35

23𝑏
+ 70

24𝑏

Table 2.1: This table shows the probability of transitioning from layout 𝑐 to layout
𝑑 for different values of 𝑘. We are assuming a mixing layer with maximal branching
number. It turns out that the transition probability does not depend on the exact
position of the non-zero entries, but rather on their number only.
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Layout 𝑐 has |𝑐| non-zero entries. Let these entries be |𝑐| variables 𝑥1, . . . , 𝑥|𝑐| such
that 𝑥𝑖 ̸= 0. The zero entries in 𝑑 define 𝑘−|𝑑| = |𝑐|−1 equations on the 𝑥𝑖 variables.⎡⎢⎢⎢⎢⎢⎢⎣

𝑀11 𝑀12 . . . 𝑀1𝑘

. . . . . . . . . . . .
𝑀(|𝑐|−1)1 𝑀(|𝑐|−1)2 . . . 𝑀(|𝑐|−1)𝑘

𝑀|𝑐|1 𝑀|𝑐|2 . . . 𝑀|𝑐|𝑘
. . . . . . . . . . . .
𝑀𝑘1 𝑀𝑘2 . . . 𝑀𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1
. . .
𝑥|𝑐|−1

𝑥|𝑐|
. . .
0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
. . .
0

̸= 0
. . .
̸= 0

⎤⎥⎥⎥⎥⎥⎥⎦
Since we have |𝑐| variables and |𝑐| − 1 equations, we need one more equation to

solve for 𝑥. Without loss of generality, set 𝑥1 = 𝛼 for all 𝛼 ∈ F2𝑏∖{0} and solve the
system of equations to obtain the entries of vector 𝑥. We show below that these are
valid and the only possible solutions to the system.

Claim 1. Setting 𝑥1 = 𝛼 ̸= 0 cannot set another 𝑥𝑖 to zero.

Proof. By contradiction, this would mean that 𝑥 has ≤ |𝑐|−1 non-zero entries and 𝑑
has ≤ 𝑘 − |𝑐|+ 1 non-zero entries. In total, their weight is at most 𝑘 < 𝑘 + 1, which
violates the maximal branching number of our mixing 𝑀 .

Claim 2. Setting 𝑥1 = 𝛼 ̸= 0 cannot set a non-zero entry of 𝑑 to zero.

Proof. By contradiction, this would mean that 𝑑 has at most 𝑘−|𝑐| non-zero entries
and 𝑥 at most |𝑐| entries. Their total Hamming weight is at most 𝑘 < 𝑘 + 1, which
again violates the maximal branching number of 𝑀 .

Claim 3. There can be no solution with 𝑥1 = 0.

Proof. Similar to the first claim, setting 𝑥1 = 0 will make the total Hamming weight
of 𝑥 and 𝑑 less than 𝑘 + 1, violating the maximal branching number.

As a result, all 2𝑏 − 1 values of 𝑥1 result in exactly one unique vector in 𝑐 that
transitions to layout 𝑑. Out of the (2𝑏 − 1)|𝑐| possible columns in 𝑐, exactly 2𝑏 − 1 of
them work, making the probability of such a transition equal to

𝑤𝑐𝑑 =
1

(2𝑏 − 1)|𝑐|−1
=

0∑︁
𝑖=0

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)|𝑐|−1+𝑖

Setting up the induction. Recall that layout 𝑐 has (2𝑏 − 1)|𝑐| possible ciphertext
sums. Define the number of such sums from layout 𝑐 that transition to layout 𝑑 as

𝑇 (𝑐, 𝑑) = |{𝑥 | 𝑥 ∈ 𝑐 ∩𝑀𝑥 ∈ 𝑑}|
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The number of sums and the transition probability satisfy

𝑇 (𝑐, 𝑑) = 𝑤𝑐𝑑 · (2𝑏 − 1)|𝑐|

Thus, we will prove the following statement for the number of sums, which will
imply our original lemma

𝑇 (𝑐, 𝑑) =

|𝑐|+|𝑑|−𝑘−1∑︁
𝑖=0

(−1)𝑖
(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−𝑖

Lemma 4. (Diagonal Equality). The value of 𝑇 (𝑐, 𝑑) only relies on the sum |𝑐|+ |𝑑|
and not on the exact values of |𝑐| and |𝑑|. In particular, ‘exchanging’ all zero entries
of 𝑑 with non-zero entries of 𝑐 does not change the value of 𝑇 (·, ·).

𝑇 (𝑐𝑑−𝑘,k) = 𝑇 (𝑐, 𝑑)

As a result, instead of computing 𝑇 (𝑐, 𝑑), we will compute 𝑇 (𝑐𝑑−𝑘,k).

Computing 𝑇 (𝑐𝑑−𝑘,k). Recall that |𝑐𝑑−𝑘| = 𝑐 + 𝑑− 𝑘 and |k| = 𝑘. Of all possible
(2𝑏 − 1)|𝑐|+|𝑑|−𝑘 sums in 𝑐𝑑−𝑘, the number of sums that transition in the k layout are
all except the ones that transition in a layout k−𝛾 with 𝑘 − 𝛾 non-zeros, for 𝛾 > 0.
But the number of sums that end up in a specific layout with 𝑘 − 𝛾 non-zeros is
𝑇 (𝑐𝑑−𝑘, 𝑘−𝛾), which we have computed using induction, since the total weight is

|𝑐𝑑−𝑘|+ |𝑘−𝛾| = |𝑐|+ |𝑑| − 𝑘 + 𝑘 − 𝛾 = |𝑐|+ |𝑑| − 𝛾 < |𝑐|+ |𝑑|

Hence we can compute the number of ciphertext sums by subtracting the ones
that do not arrive where we want. Note that there are

(︀
𝑘
𝛾

)︀
possible layouts with 𝑘−𝛾

non-zero entries. Thus

𝑇 (𝑐𝑑−𝑘,k) = (2𝑏 − 1)|𝑐|+|𝑑|−𝑘 −
|𝑐|+|𝑑|−𝑘−1∑︁

𝛾=1

𝑇 (𝑐𝑑−𝑘,k−𝛾) ·
(︂
𝑘

𝛾

)︂
(2.1)

Intuition. To complete the proof, we will show that the coefficients of each power
of 2𝑏− 1 are equal in the LHS and the RHS of eq. (2.1). Now we recall our inductive
hypothesis, that for positive integer 𝛾
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𝑇 (𝑐𝑑−𝑘,k−𝛾) =

|𝑐|+|𝑑|−𝛾−𝑘−1∑︁
𝑖=0

(−1)𝑖
(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝛾−𝑘−𝑖

=

(︂
𝑘 − 1

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝛾−𝑘 −

(︂
𝑘

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝛾−𝑘−1 + . . .

We want to prove the hypothesis for 𝛾 = 0

𝑇 (𝑐𝑑−𝑘,k) =

|𝑐|+|𝑑|−𝑘−1∑︁
𝑖=0

(−1)𝑖
(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−𝑖

=

(︂
𝑘 − 1

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝑘 −

(︂
𝑘

𝑘 − 1

)︂
· (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−1 + . . .

Matching Coefficients for Powers of (2𝑏 − 1). 𝑇 (𝑐𝑑−𝑘,k−𝛾) has all powers of
2𝑏 − 1 from (2𝑏 − 1)1 up to (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−𝛾.

• (2𝑏 − 1)|𝑐|+|𝑑|−𝑘. This power only appears outside the summation of eq. (2.1)
with coefficient 1, just like our hypothesis.

• (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−1. This power appears in the first term of the summation with
coefficient.

−
(︂
𝑘

1

)︂
·
(︂
𝑘 − 1

𝑘 − 1

)︂
= −𝑘

This matches our hypothesis.

• (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−2. This power appears in the first two terms of the summation
with coefficient.

−
(︂
𝑘

2

)︂
·
(︂
𝑘 − 1

𝑘 − 1

)︂
+

(︂
𝑘

1

)︂
·
(︂

𝑘

𝑘 − 1

)︂
=

(︂
𝑘 + 1

𝑘 − 1

)︂
This matches our hypothesis.

• Term (2𝑏 − 1)|𝑐|+|𝑑|−𝑘−𝛼 for positive integer 𝛼. This power appears in the first
𝛼 terms of the summation with coefficient.

−
(︂
𝑘

𝛼

)︂
·
(︂
𝑘 − 1

𝑘 − 1

)︂
+

(︂
𝑘

𝛼− 1

)︂
·
(︂

𝑘

𝑘 − 1

)︂
− · · ·+ (−1)𝛼

(︂
𝑘

1

)︂
·
(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
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=
𝛼−1∑︁
𝑖=0

(−1)𝑖+1

(︂
𝑘

𝛼

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
The coefficient of this power in 𝑇 (𝑐𝑑−𝑘,k) is then

(−1)𝛼
(︂
𝑘 − 1 + 𝛼

𝑘 − 1

)︂
As a result, we want to prove that

𝛼−1∑︁
𝑖=0

(−1)𝑖 ·
(︂

𝑘

𝛼− 𝑖

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
= (−1)𝛼−1

(︂
𝑘 + 𝛼− 1

𝑘 − 1

)︂
Which is true by the following lemma, whose proof is included in the appendix.

Lemma 5. For positive integers 𝛼, 𝑘 with 𝛼 ≤ 𝑘

𝛼−1∑︁
𝑖=0

(−1)𝑖 ·
(︂

𝑘

𝛼− 𝑖

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
= (−1)𝛼−1

(︂
𝑘 + 𝛼− 1

𝑘 − 1

)︂
In particular, when expanding the summation the equality looks as follows(︂
𝑘

𝛼

)︂(︂
𝑘 − 1

𝑘 − 1

)︂
−
(︂

𝑘

𝛼− 1

)︂(︂
𝑘

𝑘 − 1

)︂
+· · ·+(−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
= (−1)𝛼−1

(︂
𝑘 + 𝛼− 1

𝑘 − 1

)︂
As a result, the coefficients of the two sides match. This concludes our proof by

induction on the value of 𝑇 (·, ·). Dividing by the total number of values (2𝑏 − 1)|𝑐|

concludes the proof of the lemma on the transition probabilities.

2.2.2 Bounds on the Transition Probabilities

In the previous section we computed the probability of transitioning from any ci-
phertext sum from a particular layout 𝑐 to anywhere in a layout 𝑑. This probability
is not dependent on the exact position of the non-zero entries, but rather it depends
on the number of non-zero entries and is equal to

𝑤𝑐𝑑 =

|𝑐|+|𝑑|−𝑘−1∑︁
𝑖=0

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝑘−|𝑑|+𝑖
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In this section we will prove some simple bounds for this probability that will help
with our analysis later. Since the exact probability expression is quite technical, we
first start with introducing a helpful piece of notation.

Definition 7. For simplicity, write

𝑃 𝑖
𝑐→𝑑 =

(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝑘−𝑑+𝑖

Then the transition probabilities can be written as

𝑤𝑐𝑑 =
𝑐+𝑑−𝑘−1∑︁

𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑

Lemma 6. As long as 𝑘 < 2𝑏 − 2, then the summation terms for the probabilities
satisfy

𝑃 𝑖
𝑐→𝑑 > 𝑃 𝑖+1

𝑐→𝑑

Proof. We want to show that(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝑘−𝑑+𝑖

>

(︀
𝑘+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝑘−𝑑+𝑖+1

Exchange numerators with denominators to obtain

⇔ (2𝑏 − 1)𝑘−𝑑+𝑖+1

(2𝑏 − 1)𝑘−𝑑+𝑖
>

(︀
𝑘+𝑖
𝑘−1

)︀(︀
𝑘−1+𝑖
𝑘−1

)︀
Expand the binomial coefficient

⇔ 2𝑏 − 1 >
(𝑘 + 𝑖)!

(𝑘 − 1)!(𝑖+ 1)!
· (𝑘 − 1)!𝑖!

(𝑘 − 1 + 𝑖)!

Cancel out terms
⇔ 2𝑏 − 1 >

𝑘 + 𝑖

𝑖+ 1

The maximum value of the RHS is achieved when 𝑖 = 0 and the RHS is then equal
to 𝑘 + 1. As long as 2𝑏 − 2 > 𝑘, the inequality is satisfied.

Lemma 7. As long as 𝑘 < 2𝑏 − 2, we can obtain upper and lower bounds for the
probability of transition using the truncated summation

1

(2𝑏 − 1)𝑘−𝑑
− 𝑘

(2𝑏 − 1)𝑘−𝑑+1
= 𝑃 0

𝑐→𝑑 − 𝑃 1
𝑐→𝑑 ≤ 𝑤𝑐𝑑 ≤ 𝑃 0

𝑐→𝑑 =
1

(2𝑏 − 1)𝑘−𝑑
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Proof. Consider the summation

(−1)𝑡
𝑡∑︁

𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 = (−1)𝑡𝑃 0

𝑐→𝑑 + (−1)𝑡+1𝑃 1
𝑐→𝑑 + · · · − 𝑃 𝑡−1

𝑐→𝑑 + 𝑃 𝑡
𝑐→𝑑

And compare it with the next partial sum

(−1)𝑡
𝑡+1∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 = (−1)𝑡𝑃 0

𝑐→𝑑 + (−1)𝑡+1𝑃 1
𝑐→𝑑 + · · · − 𝑃 𝑡−1

𝑐→𝑑 + 𝑃 𝑡
𝑐→𝑑 − 𝑃 𝑡+1

𝑐→𝑑

The two summations are identical, except for the last term of the second summation,
which subtracts a non-negative amount. Thus

(−1)𝑡
𝑡+1∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 ≤ (−1)𝑡

𝑡∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑

Now we compare the two summations with

(−1)𝑡
𝑡+2∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 = (−1)𝑡𝑃 0

𝑐→𝑑 + (−1)𝑡+1𝑃 1
𝑐→𝑑 + · · · − 𝑃 𝑡−1

𝑐→𝑑 + 𝑃 𝑡
𝑐→𝑑 − 𝑃 𝑡+1

𝑐→𝑑 + 𝑃 𝑡+2
𝑐→𝑑

This summation adds a non-negative amount to the 𝑡+1 term, so it is not lesser. It
also subtracts the term 𝑃 𝑡+1

𝑐→𝑑 − 𝑃 𝑡+2
𝑐→𝑑 from the 𝑡 expression. Lemma 6 implies that

this term is non-negative and thus the above summation cannot be larger than the
𝑡 expression. Combining everything together we conclude

(−1)𝑡
𝑡+1∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 ≤ (−1)𝑡

𝑡+2∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 ≤ (−1)𝑡

𝑡∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 (2.2)

We will now prove the upper and lower bound separately.
Upper Bound. Write the transition probability as

𝑤𝑐𝑑 =
𝑐+𝑑−𝑘−1∑︁

𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑

From (1), if 𝑐+ 𝑑− 𝑘 − 1 is odd, then

𝑤𝑐𝑑 ≤
𝑐+𝑑−𝑘−2∑︁

𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑
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Otherwise, if 𝑐+ 𝑑− 𝑘 − 1 is even, then

𝑤𝑐𝑑 ≤
𝑐+𝑑−𝑘−3∑︁

𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑

In both cases we showed that the probability is no greater than a summation that
goes to a smaller even index. We can repeat this procedure until we reach index 0,
which is equal to 𝑃 0

𝑐→𝑑.
Lower Bound. Write the transition probability as

𝑤𝑐𝑑 =
𝑐+𝑑−𝑘−1∑︁

𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑

From (1), if 𝑐+ 𝑑− 𝑘 − 1 is even, then

𝑐+𝑑−𝑘−2∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 ≤ 𝑤𝑐𝑑

Otherwise, if 𝑐+ 𝑑− 𝑘 − 1 is odd, then

𝑐+𝑑−𝑘−3∑︁
𝑖=0

(−1)𝑖𝑃 𝑖
𝑐→𝑑 ≤ 𝑤𝑐𝑑

In both cases we showed that the probability is no less than a summation that goes
to a smaller odd index. We can repeat this procedure until we reach index 1, which
is equal to 𝑃 0

𝑐→𝑑 − 𝑃 1
𝑐→𝑑.

2.3 Layout Graph Convergence

2.3.1 Overview

In this section we will prove that the ideal 𝑆-box and a mixing matrix with maximal
branching number are enough to obtain very fast convergence to pairwise indepen-
dence.

Recall that working with the layout graph is natural with the ideal 𝑆. Indeed, any
two ciphertext sums in the same layout are indistinguishable after one application of
the ideal 𝑆-box. As a result, we will only model the total probability of being inside
each layout.
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This observation allows us to decrease our state space from the total 2𝑘𝑏 − 1
ciphertext sums to the 2𝑘 − 1 possible layouts. There are two notable differences
that are important to keep in mind:

1. The uniform distribution over the ciphertext sums does not correspond to the
uniform distribution over the layouts. Indeed, the all-ones layout has way more
sums than a layout with weight 1. The stationary distribution of the layout
graph has the following probability for layout 𝑐

𝜋(𝑐) =
(2𝑏 − 1)|𝑐|

2𝑘𝑏 − 1

2. Once we reach 𝜖-close to the stationary distribution of the layout graph, this
does not directly mean that we are 𝜖-close to pairwise independent. This is
because Lemma 3 does not guarantee anything about the distribution of the
sum within the arriving layout 𝑑. Fortunately, one more application of the ideal
𝑆-box distributes the probability mass of each layout to its ciphertext sums and
thus makes our distribution 𝜖-close to pairwise independent. What this means,
is that if we need 𝑅 rounds to approximate the stationary distribution in the
layout graph, then we need 𝑅 + 1 rounds to reach pairwise independence.

Lemma 8. If 𝑅 rounds are enough to reach 𝜖-close to the stationary distribution of
the layout graph, then 𝑅+1 rounds are enough to reach 𝜖-close to pairwise indepen-
dence.

Proof. Denote by 𝑝𝑅(·) the distribution over the layouts after 𝑅 rounds in the layout
graph. Since we are 𝜖-close to the stationary distribution, this means that∑︁

layout 𝑐

|𝑝𝑅(𝑐)− 𝜋(𝑐)| ≤ 𝜖

Now write the distribution over the ciphertext sums after 𝑅 rounds as 𝑝′𝑅(·).
After one more application of the ideal 𝑆-box (which we will write as ‘round’ 𝑅+ 1

2
)

we know the probability of every ciphertext sum 𝑥 that belongs to layout 𝑐

𝑝′𝑅+1/2(𝑥) =
𝑝𝑅(𝑐)

(2𝑏 − 1)|𝑐|

Then the distance from pairwise independence is equal to∑︁
ciphertext 𝑥

⃒⃒⃒⃒
𝑝′𝑅+1/2(𝑥)−

1

2𝑘𝑏 − 1

⃒⃒⃒⃒
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=
∑︁

layout 𝑐

∑︁
𝑥∈𝑐

⃒⃒⃒⃒
𝑝𝑅(𝑐)

(2𝑏 − 1)|𝑐|
− 1

2𝑘𝑏 − 1

⃒⃒⃒⃒

=
∑︁

layout 𝑐

1

(2𝑏 − 1)|𝑐|

∑︁
𝑥∈𝑐

⃒⃒⃒⃒
𝑝𝑅(𝑐)−

(2𝑏 − 1)|𝑐|

2𝑘𝑏 − 1

⃒⃒⃒⃒
=
∑︁

layout 𝑐

|𝑝𝑅(𝑐)− 𝜋(𝑐)| ≤ 𝜖

We have just showed that one application of the ideal 𝑆-box makes the distance
from pairwise independence at most 𝜖. The remainder of round 𝑅 + 1, the mixing
step, cannot increase the distance from pairwise independence. Thus after 𝑅 + 1
rounds we are 𝜖-close to pairwise independence.

Intuition. To prove convergence to the stationary distribution, we will use two
important insights.

1. After one round of the cipher, which will correspond to one step of the walk
(ideal 𝑆-box + full-branch mixing), the probability mass in a layout with few
non-zero entries (will be denoted as a ‘sparse’ layout) is very low.

2. The ratio of the stationary probabilities of two layouts 𝑐, 𝑑 is equal to (2𝑏 −
1)|𝑐|−|𝑑|. For layouts with many non-zero entries (‘dense’ layouts), the ratio of
the probability of transitioning to layouts 𝑐 or 𝑑 is very close to (2𝑏 − 1)|𝑐|−|𝑑|.

The two insights above suggest the following strategy: Wait for one round until
the probability of a ‘sparse’ layout is low. Then during the next round, the transition
probabilities will move the probability mass (almost) according to their stationary
probability.

A tradeoff arises from our definition of ‘sparse’ layout. The higher the threshold
(more non-zero entries) for a layout to be sparse, the more probability mass ends
up in a ‘sparse’ layout and is not accounted for during step 2. On the other hand,
the lower the weight threshold for a ‘sparse’ layout, the more error we incur in the
transition probabilities, as they resemble less and less the stationary probabilities.

2.3.2 Technical Details

Definition 8. Consider an integer ℓ between ⌊𝑘−1
2
⌋ and 𝑘− 1. We call a layout with

at most ℓ non-zero entries to be a sparse layout. In contrast, a layout with more
than ℓ non-zero entries is said to be a dense layout.
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Lemma 9. (Few Sparse Layouts). After one step of the random walk, the probability
that we end up in a sparse layout is at most

𝛿(ℓ) =
2𝑘

(2𝑏 − 1)𝑘−ℓ

Proof. From the bounds of Lemma 7

𝑤𝑐𝑑 ≤
1

(2𝑏 − 1)𝑘−𝑑

Let 𝑋 𝑡 denote the probability distribution over all 2𝑘 − 1 valid layouts after 𝑡 steps.
Then the probability of arriving at a fixed sparse layout 𝑥 with 𝑑 non-zero entries
after 𝑡+ 1 steps is

P[𝑋 𝑡+1 = 𝑥] =
∑︁
𝑦

P[𝑋 𝑡 = 𝑦] · 𝑤𝑦𝑥

≤
∑︁
𝑦

P[𝑋 𝑡 = 𝑦] · 1

(2𝑏 − 1)𝑘−𝑑

=
1

(2𝑏 − 1)𝑘−𝑑

Note that the above probability is independent of the number of steps in our random
walk. Summing the above probability over all sparse layouts gives

ℓ∑︁
𝑑=1

1

(2𝑏 − 1)𝑘−𝑑
·
(︂
𝑘

𝑑

)︂
≤ 2𝑘

(2𝑏 − 1)𝑘−ℓ

Lemma 10. (Dense Layout Ratios are Close to Stationary). For a fixed dense layout
𝑐, the probabilities of transitioning to a dense layout 𝑑 decreases geometrically with
the number of zero entries

𝑤𝑐k

(2𝑏 − 1)𝛼
−
(︀
𝑘−1+𝑐−𝛼

𝑘−1

)︀
(2𝑏 − 1)𝑐

≤ 𝑤𝑐k−𝛼 ≤ 𝑤𝑐k

(2𝑏 − 1)𝛼
+

(︀
𝑘−1+𝑐−𝛼

𝑘−1

)︀
(2𝑏 − 1)𝑐
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Since 𝑐 is at least ℓ+ 1, we get that

𝑤𝑐k

(2𝑏 − 1)𝛼
−

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

≤ 𝑤𝑐k−𝛼 ≤ 𝑤𝑐k

(2𝑏 − 1)𝛼
+

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

Proof. Write the probability of transitioning to k−𝛼

𝑤𝑐k =
𝑐−1∑︁
𝑖=0

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝑖

Multiplying by (2𝑏 − 1)𝛼 gives

𝑤𝑐k

(2𝑏 − 1)𝛼
=

𝑐−1∑︁
𝑖=0

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝛼+𝑖

By splitting the summation at 𝑐− 𝛼− 1 we get

𝑤𝑐k

(2𝑏 − 1)𝛼
=

𝑐−𝛼−1∑︁
𝑖=0

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝛼+𝑖

+
𝑐−1∑︁

𝑖=𝑐−𝛼

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝛼+𝑖

The first term is exactly equal to 𝑤𝑐k−𝛼

𝑤𝑐k

(2𝑏 − 1)𝛼
= 𝑤𝑐k−𝛼 +

𝑐−1∑︁
𝑖=𝑐−𝛼

(−1)𝑖
(︀
𝑘−1+𝑖
𝑘−1

)︀
(2𝑏 − 1)𝛼+𝑖

The second term is upper and lower bounded by ±(𝑘−1+𝑐−𝛼
𝑘−1 )

(2𝑏−1)𝑐
, which implies the state-

ment of the claim.

Lemma 11. After two steps of the random walk on the layout graph, the statistical
distance from the stationary distribution is at most

2 · 2𝑘

(2𝑏 − 1)𝑘−ℓ
+

2𝑘+1(2𝑒)𝑘−1

(2𝑏 − 1)ℓ+1

Proof. We will consider the first two steps of the random walk.

Step 1. The walk distribution after 1 step is 𝑋1 and there is at most 𝛿(ℓ) probability
mass in a sparse layout. We consider the case we end up in a dense layout, which
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happens with probability at least 1− 𝛿(ℓ).

Step 2. For the second step, our walk distribution is 𝑋2. Even if we start from a
dense layout, we could end up in a sparse layout with at most 𝛿(ℓ) probability

However, we know that the probability distribution of each dense layout is ap-
proximately distributed geometrically according to the number of zero entries as the
following claim suggests.

Claim 4. Fix a dense layout k−𝛼 with 𝑘 − 𝛼 non-zero entries. Conditioned on the
event that we start from a dense layout in step 1.

1

(2𝑏 − 1)𝛼
·P[𝑋2 = k]−

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

≤ P[𝑋2 = k−𝛼] ≤
1

(2𝑏 − 1)𝛼
·P[𝑋2 = k]+

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

Proof. Upper Bound.

P[𝑋2 = k−𝛼] =
∑︁

dense layout 𝑐

P[𝑋1 = 𝑐] · 𝑤𝑐𝑘−𝛼

≤
∑︁

dense layout 𝑐

P[𝑋1 = 𝑐] ·

(︃
𝑤𝑐k

(2𝑏 − 1)𝛼
+

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

)︃

=
1

(2𝑏 − 1)𝛼

∑︁
dense layout 𝑐

P[𝑋1 = 𝑐] · 𝑤𝑐k +
∑︁

dense layout 𝑐

P[𝑋1 = 𝑐] ·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

=
1

(2𝑏 − 1)𝛼
· P[𝑋2 = k] +

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

Lower Bound.

P[𝑋2 = k−𝛼] =
∑︁

dense layout 𝑐

P[𝑋1 = 𝑐] · 𝑤𝑐k−𝛼

≥
∑︁

dense layout 𝑐

P[𝑋1 = 𝑐] ·

(︃
𝑤𝑐k

(2𝑏 − 1)𝛼
−

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

)︃

=
1

(2𝑏 − 1)𝛼

∑︁
dense layout 𝑐

P[𝑋1 = 𝑐] · 𝑤𝑐k −
∑︁

dense layout 𝑐

P[𝑋1 = 𝑐] ·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

=
1

(2𝑏 − 1)𝛼
· P[𝑋2 = k]−

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1
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Since the probability that we end up in a sparse layout after 2 steps is at most
𝛿(ℓ), we can deduce that ∑︁

dense layout 𝑐

P[𝑋2 = 𝑐] ≥ 1− 𝛿(ℓ)

By using the upper bounds of Claim 2, we can get a lower bound on the probability
of k after 2 steps.

P[𝑋2 = k] +
∑︁

dense layout k−𝛼

(︃
1

(2𝑏 − 1)𝛼
· P[𝑋2 = k] +

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

)︃
≥ 1− 𝛿(ℓ)

⇒ P[𝑋2 = k]

(︃
𝑘−ℓ−1∑︁
𝛼=0

(︀
𝑘
𝛼

)︀
(2𝑏 − 1)𝛼

)︃
≥ 1− 𝛿(ℓ)−

𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

⇒ P[𝑋2 = k] ≥
1− 𝛿(ℓ)−

∑︀𝑘−ℓ−1
𝛼=1

(︀
𝑘
𝛼

)︀
· (𝑘+ℓ−𝛼

𝑘−1 )
(2𝑏−1)ℓ+1∑︀𝑘−ℓ−1

𝛼=0

(𝑘𝛼)
(2𝑏−1)𝛼

This directly implies a lower bound for the probability of being in any dense
layout

⇒ P[𝑋2 = k−𝛼] ≥
1

(2𝑏 − 1)𝛼
· P[𝑋2 = k]−

(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

≥
1− 𝛿(ℓ)−

∑︀𝑘−ℓ−1
𝑖=1

(︀
𝑘
𝑖

)︀
· (𝑘+ℓ−𝑖

𝑘−1 )
(2𝑏−1)ℓ+1

(2𝑏 − 1)𝛼
∑︀𝑘−ℓ−1

𝑖=0

(𝑘𝑖)
(2𝑏−1)𝑖

−
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

This lower bound is lower than the stationary probability of layout k−𝛼. Hence
we can upper bound the statistical distance by summing over lower bound values
and subtracting them from the stationary probability. The sum of the lower bounds
above is equal to

P[𝑋2 = k] +
𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
P[𝑋2 = k−𝛼]

≥
1− 𝛿(ℓ)−

∑︀𝑘−ℓ−1
𝑖=1

(︀
𝑘
𝑖

)︀
· (𝑘+ℓ−𝑖

𝑘−1 )
(2𝑏−1)ℓ+1∑︀𝑘−ℓ−1

𝑖=0

(𝑘𝑖)
(2𝑏−1)𝑖

+
𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂⎛⎝1− 𝛿(ℓ)−
∑︀𝑘−ℓ−1

𝑖=1

(︀
𝑘
𝑖

)︀
· (𝑘+ℓ−𝑖

𝑘−1 )
(2𝑏−1)ℓ+1

(2𝑏 − 1)𝛼
∑︀𝑘−ℓ−1

𝑖=0

(𝑘𝑖)
(2𝑏−1)𝑖

−
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

⎞⎠
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We will collect the terms similar to the first term

=
1− 𝛿(ℓ)−

∑︀𝑘−ℓ−1
𝑖=1

(︀
𝑘
𝑖

)︀
· (𝑘+ℓ−𝑖

𝑘−1 )
(2𝑏−1)ℓ+1∑︀𝑘−ℓ−1

𝛼=0

(𝑘𝛼)
(2𝑏−1)𝛼

(︃
𝑘−ℓ−1∑︁
𝛼=0

(︀
𝑘
𝛼

)︀
(2𝑏 − 1)𝛼

)︃
−

𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

The denominator of the first term cancels with the factor next to it

= 1− 𝛿(ℓ)−
𝑘−ℓ−1∑︁
𝑖=1

(︂
𝑘

𝑖

)︂
·
(︀
𝑘+ℓ−𝑖
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

−
𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

Notice the last two terms are actually equal

= 1− 𝛿(ℓ)− 2
𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

As a result, the maximum statistical distance from the stationary distribution for
the dense layouts is at most the total probability of all layouts, which is at most 1,
minus the sum of the lower bounds, so at most

𝛿(ℓ) + 2
𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

The total statistical distance (including the loss we incurred during step 1 of the
walk) is at most

2𝛿(ℓ) + 2
𝑘−ℓ−1∑︁
𝛼=1

(︂
𝑘

𝛼

)︂
·
(︀
𝑘+ℓ−𝛼
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

Simplifying the expression. We now focus on simplifying the second term of the
statistical distance expression. The fraction in the summation is maximized when
𝛼 = 1

≤
2
(︀
𝑘+ℓ−1
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

𝑘−ℓ−1∑︁
𝛼=1

·
(︂
𝑘

𝛼

)︂
The sum of binomials is at most 2𝑘

≤
2
(︀
𝑘+ℓ−1
𝑘−1

)︀
(2𝑏 − 1)ℓ+1

· 2𝑘
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We now upper bound the binomial coefficient using known bounds

≤ 2𝑘+1

(2𝑏 − 1)ℓ+1
·
(︂
𝑒(𝑘 + ℓ− 1)

𝑘 − 1

)︂𝑘−1

Since ℓ is at most 𝑘 − 1, the fraction with the exponent is at most 2𝑒

≤ 2𝑘+1(2𝑒)𝑘−1

(2𝑏 − 1)ℓ+1

As a result, the total statistical distance from uniform is the distance from transition
from a dense to a dense plus the distance above

2 · 2𝑘

(2𝑏 − 1)𝑘−ℓ
+

2𝑘+1(2𝑒)𝑘−1

(2𝑏 − 1)ℓ+1

Theorem 1. The statistical distance of a substitution-permutation network with the
ideal 𝑆-box and a linear mixing layer of maximal branching number from pairwise
independence after 2𝜌+ 1 steps is

𝑑(2𝜌+ 1) ≤ 2𝜌𝑘−1(2𝑒)𝜌(𝑘−1)/2

(2𝑏 − 1)𝜌𝑘/2

Proof. We will choose the best value of ℓ in Lemma 11 to achieve the minimum dis-
tance from the stationary distribution and drive it down using the [KNR05] Amplifi-
cation Lemma. Finally, we will translate our bound from the stationary distribution
of the layout graph to a pairwise independence result using Lemma 8.

We start by optimizing the value of ℓ. Note that the product of the two terms is
constant in ℓ, so by setting the two terms equal will give us the optimal value of ℓ.

2 · 2𝑘

(2𝑏 − 1)𝑘−ℓ
=

2𝑘+1(2𝑒)𝑘−1

(2𝑏 − 1)ℓ+1

Exchange numerators and denominators to get

(2𝑏 − 1)2ℓ−𝑘+1 = (2𝑒)𝑘−1

Multiply both sides with (2𝑏 − 1)𝑘+1

(2𝑏 − 1)2(ℓ+1) = (2𝑒)𝑘−1(2𝑏 − 1)𝑘+1
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Invert and take the square root gives

1

(2𝑏 − 1)ℓ+1
=

1

(2𝑒)(𝑘−1)/2(2𝑏 − 1)(𝑘+1)/2

Multiply with 2𝑘(2𝑒)𝑘−1 to match the expression for the statistical distance

2𝑘(2𝑒)𝑘−1

(2𝑏 − 1)ℓ+1
=

2𝑘(2𝑒)(𝑘−1)/2

(2𝑏 − 1)(𝑘+1)/2

Hence the total distance is twice that value

≤ 2𝑘+1(2𝑒)(𝑘−1)/2

(2𝑏 − 1)(𝑘+1)/2

Actually, recall that the value of ℓ has to be an integer. By rounding our optimal
value of ℓ to the closest integer, we might lose a factor of at most (2𝑏 − 1)1/2. Hence
the true statistical distance is at most

𝑑(2) ≤ 2𝑘+1(2𝑒)(𝑘−1)/2

(2𝑏 − 1)𝑘/2

The KNR Amplification Lemma implies that 2𝜌 steps on the layout graph satisfy
𝑑(2𝜌) ≤ 2𝜌−1 ·𝑑(2)𝜌. Substituting our value for 𝑑(2) and applying Lemma 8 completes
the proof.
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Pairwise Independence of Censored AES

3.1 Exact Calculation for Ideal 𝑆-box

In the previous section we gave a result for the almost-pairwise independence for any
block cipher with an ideal 𝑆-box and a full-branch mixing layer after 2𝜌+ 1 rounds.

We can directly apply Theorem 1 to the specific parameters of AES, which has
𝑘 = 16 blocks, with 𝑏 = 8 bits in each block. Then we get that 11 rounds are enough
to reach almost pairwise independence, that is

𝑑(11) < 2−128

Turns out that we can do better, as we show below.

Theorem 2. The AES cipher with a maximal branching mixing layer and the ideal
𝑆-box is 2−128-close to pairwise independent in 5 rounds.

Proof. The proof will be computational, meaning we will compute the transition
matrix of the layout graph after a few steps and calculate the distance from stationary
exactly. An important observation, which will make our calculations more efficient,
is the fact that the transition probabilities of the layout graph are only related to
the number of non-zero entries in each layout and not their exact position. Thus, we
can define a new smaller layout graph 𝐺′ = (𝑉 ′, 𝐸 ′), whose vertex 𝑢 corresponds to
all layouts of weight 𝑢. Indeed, since after the first step any mass that goes to layout
𝑐 will also transition to layout 𝑑, as long as |𝑐| = |𝑑|, we can also coalesce the edges
together and sum their weights. This will restrict the size of this new layout graph
from 2𝑘 − 1 vertices to a mere 𝑘 = 16! In the light of this new grouping, the edge
weights correspond to the probability of transitioning from any layout 𝑐 of weight 𝑢
to any layout of weight 𝑣 and are equal to

𝑤′
𝑢𝑣 =

∑︁
𝑑: |𝑑|=𝑣

𝑤𝑐𝑑 =

(︂
𝑘

𝑑

)︂
· 𝑤𝑐𝑑
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Number of Steps Distance from Stationary Distribution
2 2−87.2785

3 2−119.700

4 2−180.9897

Table 3.1: Statistical distance from stationary distribution after a few steps of the
AES layout graph with an ideal 𝑆-box.

Now, using Lemma 3, we can construct the 16×16 transition matrix and compute
the exact distance for a few steps using matrix exponentiation. The results are shown
in Table 3.1, where we can see that 3 steps are really close to the distribution that we
want. However, to reach sufficient distance from the stationary distribution we need
to perform 4 steps of the random walk. Lemma 8 implies that one extra application
of the ideal 𝑆-box is enough to bring our cipher close to pairwise independent. Thus,
5 rounds suffice for pairwise independence.

3.2 From Ideal 𝑆-box to INV 𝑆-box

3.2.1 Warm-Up: > 100 Rounds

The ideal 𝑆-box was a great abstraction of the true 𝑆-box that allowed a direct and
exact analysis of the block cipher. But, what can we say about the INV 𝑆-box?

The first observation is that we can ‘simulate’ the ideal 𝑆-box by repeating the
INV 𝑆-box multiple times, without mixing in between. Indeed, since the 𝑆-box only
applies within each layout, applying it more times will make each non-zero block
look uniform

It is easy to compute the distance of a few consecutive INV 𝑆-boxes over F28 from
the ideal 𝑆-box over the same field. These distances can be found in Table 3.2.

Lemma 12. The ‘censored’ variant of AES repeated for 120 rounds is 2−128-close to
pairwise independent

Proof. Our direct analysis of Table 3.1 showed that 2 steps on the layout graph are
2−87-close to the stationary distribution. This implies that 3 rounds of AES with
the ideal 𝑆-box are 𝜖𝑖𝑑𝑒𝑎𝑙

def
= 2−87-close to pairwise independence. We schematically

represent these 3 rounds below, with 𝑆* being the ideal 𝑆-box and 𝑀 the mixing
layer.
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INV 𝑆-box Repetitions Statistical Distance to Ideal 𝑆-box
1 2−0.99

2 2−7

3 2−8.9

11 2−40

20 2−72

Table 3.2: Statistical distance from the ideal 𝑆-box after a few repetitions of the INV
𝑆-box over F28 .

𝑆* → 𝑀 → 𝑆* → 𝑀 → 𝑆* → 𝑀

We can now replace each 𝑆* by consecutive INV 𝑆-boxes. We can think of these
consecutive 𝑆-boxes as normal AES rounds, with the mixing layers ‘censored’. We
will call this variant of AES as the ‘censored’ AES, in which we skip some of the
mixing rounds. It is our understanding that mixing helps the block cipher achieve
pseudorandomness, so we expect that silencing some of these crucial operations can
only hurt our convergence to pairwise independence.

𝑆* ≡ INV → 𝑀 → · · · → INV → 𝑀

To simulate the ideal 𝑆-box sufficiently well, we need enough repetitions of the
INV 𝑆-box. We will use 𝑟 = 20 repetitions. Table 3.2 shows that 20 repetitions are
2−72-close to the ideal 𝑆-box. Recall that the 𝑆-box is applied to 𝑘 = 16 = 24 blocks
in parallel, hence we can use the Union Bound inequality to deduce that we can
simulate the ideal 𝑆-box with an error of at most 𝜖𝑠𝑖𝑚 = 2−68. The total distance
of ‘censored AES’ from pairwise independence is at most the sum of the ideal AES
distance and the error from simulating the three ideal 𝑆-boxes.

𝜖𝑖𝑑 + 3𝜖𝑠𝑖𝑚 = 2−87 + 3 · 2−68 < 2−65

We conclude that 3𝑟 = 60 rounds of this censored cipher are 2−65 close to pairwise
independent. Using the Amplfication Lemma [KNR05] once we get that 120 ‘censored
AES’ rounds are < 2−128-close to pairwise independent.

3.2.2 Improved Analysis

From the previous analysis, there are a number of inefficiencies. We focus on sim-
ulating the first ideal 𝑆-box. Recall from the analysis of Lemma 11 that the first
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round was used to bound the probability of a sparse layout. But we actually do not
need the ideal 𝑆-box to do this, even the INV 𝑆-box can give us a bound on the
sparse layouts after one INV 𝑆-box and one full-branch mixing step. In particular we
can use exponential sums to obtain an upper bound for the transition probabilities
after one application of the INV 𝑆-box and one mixing step.

Lemma 13. For any two layouts 𝑐 and 𝑑, the probability of transitioning from a
fixed input of layout 𝑐 to any input of layout 𝑑 after one application of the INV 𝑆-box
and one mixing step is at most

PINV[𝑐→ 𝑑] ≤ 3

2
· 2(𝑏−2)(|𝑑|−𝑘)

If we replace the ideal 𝑆-box with the INV one, the ciphertext sums in the same
layout do not need to behave in the same way. Indeed, two inputs in the same layout
𝑐 can reach any layout 𝑑 with different probabilities. Still, we can obtain an upper
bound of these probabilities that depends only on the weight of 𝑑. This will allow us
to avoid simulating the first of the three ideal 𝑆-boxes of Lemma 12.

Theorem 3. Consider a ‘censored’ variant of the AES cipher with a maximal branch-
ing mixing layer, in which a specific subset of the mixing layers is not performed.
Then ‘censored’ AES is 2−128-close to pairwise independent in 92 rounds, where a
round could be normal, or without mixing.

Proof. We prove the following two Claims.

Claim 5. After one round of AES (one application of the INV 𝑆-box and one full-
branch mixing), the probability that we are in a layout with less than 8 non-zero
entries is

𝛿INV(7) ≤ 2−42.5

Proof. The proof is the same as in Lemma 9, but now using the probability bound
from Lemma 13.

Claim 6. The distance of the layout graph from the stationary distribution after two
rounds, one with the INV 𝑆-box and one with the ideal 𝑆-box is at most

𝑑INV, ideal(2) ≤ 2−37.9

Proof. The proof is the same as the proof of Lemma 11. To get this tight bound
we use 𝛿INV(7) from the claim above and substitute the parameters 𝑘 = 16, 𝑏 = 8
without any simplifications.
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This means that adding another ideal 𝑆-box and mixing step makes the following
block cipher 𝜖𝑖𝑑 = 2−37.9-close to pairwise independent from Lemma 8.

INV → 𝑀 → 𝑆* → 𝑀 → 𝑆* → 𝑀

We again have to figure out how many times to repeat the INV 𝑆-box to simulate
the ideal 𝑆-boxes. We will use 𝑟 = 11 repetitions and we can see from Table 3.2 that
they are 2−40-close to the ideal 𝑆-box. The 𝑆-box is applied to 𝑘 = 16 = 24 blocks
in parallel, which means that the error from simulating the ideal 𝑆-box is at most
𝜖𝑠𝑖𝑚 = 2−36. The total distance of ‘censored AES’ from pairwise independence is at
most the sum of the ideal AES distance and the error from simulating the two ideal
𝑆-boxes.

𝜖𝑖𝑑 + 2𝜖𝑠𝑖𝑚 < 2−34

We conclude that 1 + 2𝑟 = 23 rounds of this censored cipher are 2−34-close to
pairwise independent. Using the Amplification Lemma of [KNR05] we repeat the
cipher 4 times and we get that 92 rounds of ‘censored AES’ are < 2−128-close to
pairwise independent.

3.3 Transition Probabilities for INV 𝑆-box via Ex-
ponential Sums

In this section we will bound the transition probabilities between layouts for the INV
𝑆-box, instead of the ideal 𝑆-box.

Lemma 13. For any two layouts 𝑐 and 𝑑, the probability of transitioning from a
fixed input of layout 𝑐 to any input of layout 𝑑 after one application of the INV 𝑆-box
and one mixing step is at most

PINV[𝑐→ 𝑑] ≤ 3

2
· 2(𝑏−2)(|𝑑|−𝑘)

Note. The lemma above is useless for bounding the probability of transitioning to
a dense layout. Indeed, setting |𝑑| = 𝑘 gives us a probability bound of 3

2
. However,

when it comes to sparse layouts we can use the lemma to bound the probability of a
sparse layout after one round of the true AES.

Proof. To do this, consider two layouts 𝑐, 𝑑 and the transition between them. With-
out loss of generality, we will represent 𝑐 to have the first |𝑐| entries to be non-zero.
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⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1
. . .
𝑥|𝑐|
0
. . .
0

⎤⎥⎥⎥⎥⎥⎥⎦
After one round of 𝑆-box, we will sample random keys 𝑟1, . . . , 𝑟𝑘 and in combi-

nation with the INV 𝑆-box we will get⎡⎢⎢⎢⎢⎢⎢⎣
𝑆(𝑥1)
. . .

𝑆(𝑥|𝑐|)
0
. . .
0

⎤⎥⎥⎥⎥⎥⎥⎦
For the sake of brevity, we write 𝑆 as the inverse over F2𝑏 and

𝑆(𝑥𝑖) := 𝑆(𝑥𝑖 + 𝑟𝑖) + 𝑆(𝑟𝑖)

Now for our ciphertext sum to transition to layout 𝑑, it must hold that after
applying the mixing

1. we get zero entries where 𝑑 has zeros

2. we get non-zero entries where 𝑑 has non-zero entries

Since we are interested in the maximum probability of transitioning, we will
only consider condition 1, which is a weaker condition and can only increase the
probability of going from 𝑐 to 𝑑.

For condition 1 to hold, we can apply the multiplication with the mixing matrix
and obtain 𝑘−|𝑑| equations for our |𝑐| variables. Let the number of possible solutions
(𝑟1, . . . , 𝑟|𝑐|) to this system of 𝑘 − |𝑑| equations be at most 𝑇 for any ciphertext sum
in 𝑐 (meaning for any non-zero 𝑥1, . . . , 𝑥|𝑐|). Then the transition probability is at
most the number of solutions divided by the possible choice of random keys.

PINV[𝑐→ 𝑑] ≤ 𝑇

2𝑏|𝑐|
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As we will show in Lemma 14 below, the value of 𝑇 can be bounded using the
theory of exponential sums

𝑇 ≤ 6 · 2𝑏(|𝑐|+|𝑑|−𝑘) · 22(𝑘−|𝑑|−1)

This directly implies a bound for the probability of transitioning from layout 𝑐
to layout 𝑑

PINV[𝑐→ 𝑑] ≤ 6 · 2𝑏(|𝑐|+|𝑑|−𝑘) · 22(𝑘−|𝑑|−1)

2𝑏|𝑐|

= 6 · 2𝑏(|𝑑|−𝑘) · 22(𝑘−|𝑑|−1)

=
3

2
· 2(𝑏−2)(|𝑑|−𝑘)

Lemma 14. Consider the following full-rank system of equations with 𝑐 variables
taken from the image of the INV 𝑆-box and 𝑘 − 𝑑 = 𝑑 equations.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑃1 : 𝐴11𝑆(𝑥1) + 𝐴12𝑆(𝑥2) + · · ·+ 𝐴1𝑐𝑆(𝑥𝑐) = 0

𝑃2 : 𝐴21𝑆(𝑥1) + 𝐴22𝑆(𝑥2) + · · ·+ 𝐴2𝑐𝑆(𝑥𝑐) = 0

. . .

𝑃𝑑 : 𝐴𝑑1𝑆(𝑥1) + 𝐴𝑑2𝑆(𝑥2) + · · ·+ 𝐴𝑑𝑐𝑆(𝑥𝑐) = 0

The maximum number of random keys that satisfy this system for any non-zero
(𝑥1, . . . , 𝑥𝑐) is at most

6 · 2𝑏(𝑐+𝑑−𝑘) · 22(𝑘−𝑑−1)

Note. If the variables 𝑆(·) were uniform over F2𝑏 , the number of solutions would
be equal to 2𝑏(𝑐+𝑑−𝑘). We can see that the number of solutions using the 𝑆-box has
increased by a factor of 6 · 22(𝑘−𝑑−1) approximately, due to the skewed distribution of
the 𝑆-box.

Proof. Consider the following system of equations with 𝑐 variables and 𝑘 − 𝑑 = 𝑑
equations. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑃1 : 𝐴11𝑆(𝑥1) + 𝐴12𝑆(𝑥2) + · · ·+ 𝐴1𝑐𝑆(𝑥𝑐) = 0

𝑃2 : 𝐴21𝑆(𝑥1) + 𝐴22𝑆(𝑥2) + · · ·+ 𝐴2𝑐𝑆(𝑥𝑐) = 0

. . .

𝑃𝑑 : 𝐴𝑑1𝑆(𝑥1) + 𝐴𝑑2𝑆(𝑥2) + · · ·+ 𝐴𝑑𝑐𝑆(𝑥𝑐) = 0
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Note that the variables here are the random keys 𝑟𝑖 that we are hiding inside the
𝑆(𝑥𝑖) = 𝑆(𝑥𝑖 + 𝑟𝑖) + 𝑆(𝑟𝑖). We can use Gaussian Elimination to reduce the system
to

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑅1 : 𝐴11𝑆(𝑥1) + 𝐴12𝑆(𝑥2) + · · ·+ 𝐴1𝑐𝑆(𝑥𝑐) = 0

𝑅2 : 𝐴22𝑆(𝑥2) + · · ·+ 𝐴2𝑐𝑆(𝑥𝑐) = 0

. . .

𝑅𝑑 : 𝐴𝑑𝑑𝑆(𝑥𝑑) + · · ·+ 𝐴𝑑𝑐𝑆(𝑥𝑐) = 0

For every solution (𝑟𝑑, . . . , 𝑟𝑐) ⇒ (𝑆(𝑥𝑑), . . . , 𝑆(𝑥𝑐)) of the last equation 𝑅𝑑, each
other equation can reduced by substitution to 𝑆(𝑥𝑖) = 𝛼𝑖 for 𝑖 < 𝑑 and some 𝛼𝑖. The
number of possible solutions to this equation is at most 4 from the analysis of 𝑆(·)
by Nyberg [Nyb93].

As a result, the number of solutions to this system of equations is at most

(# of solutions to 𝑅𝑑) · 4𝑑−1

= (# of solutions to 𝑅𝑑) · 22(𝑘−𝑑−1)

Solving 𝑅𝑑. We are now interested in the number of random keys (𝑟𝑑, . . . , 𝑟𝑐) that
satisfy

𝐴𝑑𝑑𝑆(𝑥𝑑) + · · ·+ 𝐴𝑑𝑐𝑆(𝑥𝑐) = 0

We can write the number of solutions 𝑇 using exponential sums. Let 𝜓 be the
additive character of F2𝑏

𝑇 =
∑︁

𝑟𝑑,...,𝑟𝑐

1

2𝑏

(︃∑︁
𝑧

𝜓𝑧

(︁
𝐴𝑑𝑑𝑆(𝑥𝑑) + · · ·+ 𝐴𝑑𝑐𝑆(𝑥𝑐)

)︁)︃

Since 𝜓 is an additive character

𝑇 =
∑︁

𝑟𝑑,...,𝑟𝑐

1

2𝑏

(︃∑︁
𝑧

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑)) . . . 𝜓𝑧(𝐴𝑑𝑐𝑆(𝑥𝑐))

)︃

Rearranging

𝑇 =
1

2𝑏

∑︁
𝑧

⎛⎝∑︁
𝑟𝑑

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑))

⎞⎠ . . .

(︃∑︁
𝑟𝑐

𝜓𝑧(𝐴𝑑𝑐𝑆(𝑥𝑐))

)︃
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The value of 𝑧 = 0 makes every one of the 𝑐− 𝑑+ 1 = 𝑐+ 𝑑− 𝑘 + 1 summations
equal to 2𝑏. Hence

𝑇 = 2𝑏(𝑐+𝑑−𝑘) +
1

2𝑏

∑︁
𝑧 ̸=0

⎛⎝∑︁
𝑟𝑑

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑))

⎞⎠ . . .

(︃∑︁
𝑟𝑐

𝜓𝑧(𝐴𝑑𝑐𝑆(𝑥𝑐))

)︃

The value of 𝑧 = 0 is equal to the expected number of solutions. We will now
compute the maximum deviation from the mean

⃒⃒
𝑇 − 2𝑏(𝑐+𝑑−𝑘)

⃒⃒
≤

⃒⃒⃒⃒
⃒⃒ 12𝑏 ∑︁

𝑧 ̸=0

⎛⎝∑︁
𝑟𝑑

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑))

⎞⎠ . . .

(︃∑︁
𝑟𝑐

𝜓𝑧(𝐴𝑑𝑐𝑆(𝑥𝑐))

)︃⃒⃒⃒⃒
⃒⃒

We will move the absolute values inside the summation using the triangle in-
equality

≤ 1

2𝑏

∑︁
𝑧 ̸=0

⃒⃒⃒⃒
⃒⃒∑︁

𝑟𝑑

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑))

⃒⃒⃒⃒
⃒⃒ . . .

⃒⃒⃒⃒
⃒∑︁

𝑟𝑐

𝜓𝑧(𝐴𝑑𝑐𝑆(𝑥𝑐))

⃒⃒⃒⃒
⃒

We will use the following exponential sums result from [EHN94] to bound the
absolute values.

Lemma 15. ([EHN94]) Let d ∈ F𝑠
2𝑏

with d ̸= 0 and let e = (𝑒1, . . . , 𝑒𝑠) ∈ F𝑠
2𝑏

be
such that 𝑒1, . . . , 𝑒𝑠 are distinct. If 𝜓 is a non-trivial additive character of F2𝑏, then⃒⃒⃒⃒

⃒⃒ ∑︁
𝑛∈F

2𝑏

𝜓

(︃
𝑠∑︁

𝑗=1

𝑑𝑗𝑆(𝑛+ 𝑒𝑗)

)︃⃒⃒⃒⃒
⃒⃒ ≤ (2𝑠− 2)2𝑏/2 + 𝑠+ 1

To apply the above lemma, we will rewrite one absolute value. First, since 𝐴 is
a full-rank system of equations, we know that 𝐴𝑑𝑖 ̸= 0. Thus⃒⃒⃒⃒

⃒⃒∑︁
𝑟𝑑

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑))

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒∑︁

𝑟𝑑

𝜓𝑧(𝐴𝑑𝑑𝑆(𝑥𝑑 + 𝑟𝑑) + 𝐴𝑑𝑑𝑆(𝑟𝑑))

⃒⃒⃒⃒
⃒⃒

To use the lemma, we will rewrite 𝑟𝑑 with 𝑛, 𝑠 = 2 and d = (𝐴𝑑𝑑, 𝐴𝑑𝑑). Also
e = (𝑥𝑑, 0). Since 𝐴𝑑𝑑 ̸= 0 and 𝑥𝑑 ̸= 0 and 𝑧 ̸= 0, the conditions of the lemma are
satisfied, which means that the absolute value is bounded by 2 · 2𝑏/2 + 3.

We can now write the deviation from the expected value⃒⃒
𝑇 − 2𝑏(𝑐+𝑑−𝑘)

⃒⃒
≤ 1

2𝑏

∑︁
𝑧 ̸=0

(︀
2 · 2𝑏/2 + 3

)︀𝑐+𝑑−𝑘+1
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≤
(︀
2 · 2𝑏/2 + 3

)︀𝑐+𝑑−𝑘+1

For 𝑏 ≥ 8, we can upper bound the expression as

≤ 5 · 2𝑏(𝑐+𝑑−𝑘)

Putting everything together, we know that the number of solutions to equation
𝑅𝑑 is ⃒⃒

𝑇 − 2𝑏(𝑐+𝑑−𝑘)
⃒⃒
≤ 5 · 2𝑏(𝑐+𝑑−𝑘)

We are mostly interested in the upper bound, which gives

𝑇 ≤ 6 · 2𝑏(𝑐+𝑑−𝑘)

As a result, the number of solutions to a system of equations with 𝑐 variables and
𝑘 − 𝑑 equations is at most (︀

6 · 2𝑏(𝑐+𝑑−𝑘)
)︀
· 22(𝑘−𝑑−1)
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𝑡-Wise Independence of MiMC over Prime
Field

4.1 Overview

In the second part of this thesis, we will extend our study to the 𝑡-wise independence
of the MiMC cipher. The MiMC cipher is a substitution-permutation network with
one block 𝑘 = 1 and the cube function as the 𝑆-box.

MiMC was introduced to work over large fields of prime order F𝑝 or a power of
2, F2𝑏 . We will restrict our attention to prime field case.

We will make a similar assumption with AES. That is, we will assume that we
have independently and uniformly sampled keys for each round of MiMC. Below is
a schematic representation of 𝑛 rounds of MiMC, with input 𝑥 and output 𝑦, for
𝑥, 𝑦 ∈ F𝑝.

𝑥
ARK−−→ 𝑢1

Cube−−→ 𝑣1
ARK−−→ 𝑢2

Cube−−→ . . .
ARK−−→ 𝑢𝑛

Cube−−→ 𝑣𝑛 = 𝑦

To show that 𝑛 rounds of MiMC are close to 𝑡-wise independent, we will show
that for any 𝑡-tuple of distinct inputs (𝑥1, . . . , 𝑥𝑡), the distribution of the 𝑡-tuple of
outputs is close to the uniform distribution over all 𝑡-tuples of distinct outputs.

Representing intermediate values. Since total variation distance is convex, with-
out loss of generality we can assume that our input is deterministic. Let the random
key in round 𝑖 be 𝑟𝑖 and uniformly sampled from F𝑝. Then the trail of 𝑡 distinct
plaintexts in MiMC looks like below
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𝑥1
𝑥2
...
𝑥𝑡

→

(𝑥1 + 𝑟1)
3

(𝑥2 + 𝑟1)
3

...
(𝑥𝑡 + 𝑟1)

3

→ · · · →

(︁
. . .
(︀
(𝑥1 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3(︁
. . .
(︀
(𝑥2 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3
...(︁

. . .
(︀
(𝑥𝑡 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3
For simplicity, we will write the intermediate steps as 𝐹 (𝑗)

𝑖 where

𝐹
(𝑗)
𝑖 =

(︁
. . .
(︀
(𝑥𝑖 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑗

)︁3
Note that each 𝐹

(𝑗)
𝑖 is a 𝑗-variate polynomial. To quantify what it means to be

‘close’ to 𝑡-wise independence, we will use pointwise distance. Note that this is a
stronger notion and implies total variation distance.

Definition 9. A distribution 𝑃 is pointwise 𝜖-close to distribution 𝑄 if for all ele-
ments 𝑥 of their state space

P[𝑃 = 𝑥] ≤ (1 + 𝜖) · P[𝑄 = 𝑥]

We will have 𝑄 to be the uniform distribution over all 𝑡-tuples with distinct
elements and 𝑃 to be the joint distribution of the 𝑡 polynomials after 𝑛 rounds of
MiMC. Since 𝑄 is uniform over all

(︀
𝑝
𝑡

)︀
𝑡! possible tuples with distinct elements we

can write the pointwise condition for 𝑃 as follows.

Corollary 1. The distribution 𝑃 is pointwise 𝜖-close to 𝑡-wise independent if for all
𝑡-tuples (𝑦1, . . . , 𝑦𝑡)

P[𝑃 = (𝑦1, . . . , 𝑦𝑡)] ≤

{︃
1+𝜖

(𝑝𝑡)𝑡!
all 𝑦𝑖 are distinct

0 otherwise

From distributions to solutions to systems of equations. The randomness of
𝑃 comes exclusively from the set of random keys (𝑟1, . . . , 𝑟𝑛). Thus we can relate
the probability of the tuple (𝑦1, . . . , 𝑦𝑡) under 𝑃 to the number of solutions to the
following system of 𝑡 equations and 𝑛 unknowns.
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𝐹
(𝑛)
1 = 𝑦1

𝐹
(𝑛)
2 = 𝑦2

. . .

𝐹
(𝑛)
𝑡 = 𝑦𝑡

In particular, if there are 𝑁(𝑦1, . . . , 𝑦𝑡) solutions to this system, the probability
of the (𝑦1, . . . , 𝑦𝑡) tuple appearing is equal to

𝑁(𝑦1, . . . , 𝑦𝑡)

𝑝𝑛

So we can again rewrite the condition of pointwise 𝜖-close to 𝑡-wise independent
using the number of solutions to the system of equations above.

Corollary 2. The distribution 𝑃 is pointwise 𝜖-close to 𝑡-wise independent if for all
𝑡-tuples (𝑦1, . . . , 𝑦𝑡)

𝑁(𝑦1, . . . , 𝑦𝑡) ≤

{︃
(1+𝜖)𝑝𝑛

(𝑝𝑡)𝑡!
all 𝑦𝑖 are distinct

0 otherwise

Below we formalize how pointwise distance implies total variation distance.

Claim 7. If 𝑃 is pointwise 𝜖-close to 𝑄, then

‖𝑃 −𝑄‖𝑇𝑉 ≤ 𝜖

Proof. We can write the total variation distance between two probability distribu-
tions as

‖𝑃 −𝑄‖𝑇𝑉 = sup
𝐴∈Ω

𝑃 (𝐴)−𝑄(𝐴)

Where Ω is the set of all 𝑡-tuples. If a 𝑡-tuple 𝑦 = (𝑦1, . . . , 𝑦𝑡) does not have
distinct elements, then 𝑃 (𝑦) = 𝑄(𝑦) = 0. So we can consider only subsets 𝐴 that do
not include such tuples.

The pointwise guarantee gives that any 𝑡-tuple 𝑦 with distinct elements satisfies

𝑃 (𝑦)−𝑄(𝑦) ≤ 𝜖(︀
𝑝
𝑡

)︀
𝑡!
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Since |𝐴| ≤
(︀
𝑝
𝑡

)︀
𝑡! we deduce that

‖𝑃 −𝑄‖𝑇𝑉 ≤ |𝐴| 𝜖(︀
𝑝
𝑡

)︀
𝑡!

≤ 𝜖

4.2 Polynomial Decomposition

To use exponential sums, we will first decompose a linear combination of the poly-
nomials that represent our ciphertexts by isolating the random keys.

Lemma 16. (Polynomial Decomposition Lemma). For any 𝑏1, . . . , 𝑏𝑡 ∈ F𝑝, we can
write the linear combination of the ciphertexts as

𝑏1𝐹
(𝑛)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛)
𝑡 = 𝐶3(𝑟𝑛) + 𝐶9(𝑟𝑛−1) + · · ·+ 𝐶3𝑛(𝑟1) +

(︀
𝑏1𝑥

3𝑛

1 + · · ·+ 𝑏𝑡𝑥
3𝑛

𝑡

)︀
where each 𝐶3𝑗(𝑟𝑛+1−𝑗) is a degree-3𝑗 polynomial in 𝑟𝑛+1−𝑗, whose coefficients depend
on 𝑟𝑛−𝑗, . . . , 𝑟1 and 𝑥1, . . . , 𝑥𝑡 and 𝑏1, . . . , 𝑏𝑡.

Proof. We will expand 𝐹
(𝑛)
𝑖 as a cubic function of 𝑟𝑛. Indeed, 𝐹 (𝑛)

𝑖 is expanded to(︁
𝐹

(𝑛−1)
𝑖 + 𝑟𝑛

)︁3
= 𝑟3𝑛 + 3𝑟2𝑛𝐹

(𝑛−1)
𝑖 + 3𝑟𝑛

(︁
𝐹

(𝑛−1)
𝑖

)︁2
+
(︁
𝐹

(𝑛−1)
𝑖

)︁3
and we have.

𝑏1𝐹
(𝑛)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛)
𝑡 = 𝑟3𝑛(𝑏1 + · · ·+ 𝑏𝑡)

+ 3𝑟2𝑛

(︁
𝑏1𝐹

(𝑛−1)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛−1)
𝑡

)︁
+ 3𝑟𝑛

(︂
𝑏1

(︁
𝐹

(𝑛−1)
1

)︁2
+ · · ·+ 𝑏𝑡

(︁
𝐹

(𝑛−1)
𝑡

)︁2)︂
+

(︂
𝑏1

(︁
𝐹

(𝑛−1)
1

)︁3
+ · · ·+ 𝑏𝑡

(︁
𝐹

(𝑛−1)
𝑡

)︁3)︂

We will write 𝐶3(𝑟𝑛) as the cubic function that includes the 𝑟3𝑛, 𝑟2𝑛 and 𝑟𝑛 terms.

The constant term can be expanded to isolate 𝑟𝑛−1. The
(︁
𝐹

(𝑛−1)
1

)︁3
terms are a

polynomial of degree 9 in terms of 𝑟𝑛−1
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𝑏1𝐹
(𝑛)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛)
𝑡 = 𝐶3(𝑟𝑛) +

(︂
𝑏1

(︁
𝐹

(𝑛−1)
1

)︁3
+ · · ·+ 𝑏𝑡

(︁
𝐹

(𝑛−1)
𝑡

)︁3)︂
= 𝐶3(𝑟𝑛)

+ 𝑟9𝑛−1 (𝑏1 + · · ·+ 𝑏𝑡)

+ 9𝑟8𝑛−1

(︁
𝑏1𝐹

(𝑛−2)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛−2)
𝑡

)︁
. . .

+ 9𝑟𝑛−1

(︂
𝑏1

(︁
𝐹

(𝑛−2)
1

)︁8
+ · · ·+ 𝑏𝑡

(︁
𝐹

(𝑛−2)
𝑡

)︁8)︂
+

(︂
𝑏1

(︁
𝐹

(𝑛−2)
1

)︁9
+ · · ·+ 𝑏𝑡

(︁
𝐹

(𝑛−2)
𝑡

)︁9)︂

We will write 𝐶9(𝑟𝑛−1) as the degree-9 function that includes the 𝑟9𝑛−1, . . . , 𝑟𝑛−1

terms. The constant term can be again expanded to isolate 𝑟𝑛−2. In fact, we can
repeat the following procedure 𝑛 times to decompose the expression as

𝑏1𝐹
(𝑛)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛)
𝑡 = 𝐶3(𝑟𝑛) + 𝐶9(𝑟𝑛−1) + · · ·+ 𝐶3𝑛(𝑟1) +

(︀
𝑏1𝑥

3𝑛

1 + · · ·+ 𝑏𝑡𝑥
3𝑛

𝑡

)︀
where each 𝐶𝑘 (for 𝑘 a power of 3) looks like below. Here we write 𝑗 = 𝑛− log3 𝑘.

𝐶𝑘(𝑟) = 𝑟𝑘(𝑏1 + · · ·+ 𝑏𝑡) +

(︂
𝑘

1

)︂
· 𝑟𝑘−1

(︁
𝑏1𝐹

(𝑗)
1 + · · ·+ 𝑏𝑡𝐹

(𝑗)
𝑡

)︁
+ . . .

+ 𝑟 ·
(︂

𝑘

𝑘 − 1

)︂
·
(︂
𝑏1

(︁
𝐹

(𝑗)
1

)︁𝑘−1

+ · · ·+ 𝑏𝑡

(︁
𝐹

(𝑗)
𝑡

)︁𝑘−1
)︂

4.3 Solutions to System of Equations and Exponen-
tial Sums

In this section we sketch a possible way to prove 𝑡-wise independence of MiMC. A
desirable result would be of the following form:
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Consider the MiMC cipher over F𝑝 repeated for 𝑛 rounds with a new
uniform and independent random key sampled for each round. The dis-
tribution of the ciphertexts of 𝑡 distinct plaintexts is pointwise 𝜖-close to
𝑡-wise independent, for

𝜖 ≤ 𝑝−𝑂(𝑛)+𝑡.

Such a statement would imply that in particular, for large enough 𝑝, 𝑛 = 𝑂(𝑡)
rounds of MiMC are enough to reach 𝑝−1-close to 𝑡-wise independent.

We hope to achieve this result by bounding the number of solutions to a sys-
tem of polynomial equations, and this will imply a bound on the distance to 𝑡-wise
independence.

Conjecture 1. The number of solutions to the system of equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︁
. . .
(︀
(𝑥1 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3
= 𝑦1(︁

. . .
(︀
(𝑥2 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3
= 𝑦2

. . .(︁
. . .
(︀
(𝑥𝑡 + 𝑟1)

3 + 𝑟2
)︀3

+ · · ·+ 𝑟𝑛

)︁3
= 𝑦𝑡

over the finite field F𝑝, for 𝑝 prime, is at most(︀
1 + 𝑝−𝑂(𝑛)+𝑡

)︀
· 𝑝𝑛(︀

𝑝
𝑡

)︀
𝑡!

Ideas towards a proof. We will use exponential sums to bound the number of
solutions. For a non-trivial additive character 𝜓 : F𝑝 → C

𝑁(𝑦1, . . . , 𝑦𝑡) =
∑︁

𝑟1,...,𝑟𝑛

(︃
1

𝑝

∑︁
𝑏1

𝜓
(︁
𝑏1(𝐹

(𝑛)
1 − 𝑦1)

)︁)︃
. . .

(︃
1

𝑝

∑︁
𝑏𝑡

𝜓
(︁
𝑏𝑡(𝐹

(𝑛)
𝑡 − 𝑦𝑡)

)︁)︃
Rearranging gives

𝑁(𝑦1, . . . , 𝑦𝑡) =
1

𝑝𝑡

∑︁
𝑏1,...,𝑏𝑡

𝜓(−𝑏1𝑦1 − · · · − 𝑏𝑡𝑦𝑡)
∑︁

𝑟1,...,𝑟𝑛

𝜓
(︁
𝑏1𝐹

(𝑛)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛)
𝑡

)︁
As is typical in exponential sums, we will compute the summation with 𝑏1 =

· · · = 𝑏𝑡 = 0 separately. In that case the polynomial in the second summation is
identically zero and the second sum is equal to 𝑝𝑛.
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⇒ 𝑁(𝑦1, . . . , 𝑦𝑛)− 𝑝𝑛−𝑡

=
1

𝑝𝑡

∑︁
𝑏1,...,𝑏𝑡 ̸=(0,...,0)

𝜓 (−𝑏1𝑦1 − · · · − 𝑏𝑡𝑦𝑡)
∑︁

𝑟1,...,𝑟𝑛

𝜓
(︁
𝑏1𝐹

(𝑛)
1 + · · ·+ 𝑏𝑡𝐹

(𝑛)
𝑡

)︁
Note that 𝑏1𝐹

(𝑛)
1 + · · · + 𝑏𝑡𝐹

(𝑛)
𝑡 is an 𝑛-variate polynomial. Typically, we can

bound the character sums of such polynomials using Deligne’s theorem [Del74, Del80].
Unfortunately, our polynomial does not necessarily satisfy the smoothness conditions
to apply Deligne’s theorem.

We will try to use the polynomial decomposition of the previous section to create
polynomials that satisfy them.

⇒𝑁(𝑦1, . . . , 𝑦𝑛)− 𝑝𝑛−𝑡 =
1

𝑝𝑡∑︁
𝑏1,...,𝑏𝑡 ̸=(0,...,0)

𝜓
(︀
𝑏1(𝑥

3𝑛

1 − 𝑦1) + · · ·+ 𝑏𝑡(𝑥
3𝑛

𝑡 − 𝑦𝑡)
)︀∑︁

𝑟1

𝜓 (𝐶3𝑛(𝑟1)) · · ·
∑︁
𝑟𝑛

𝜓 (𝐶3(𝑟𝑛))

Let us now turn our attention to Deligne’s theorem for univariate polynomials

Lemma 17. (Deligne [Del74, Del80]). Let 𝑓 be a polynomial in F𝑝[𝑥] of positive
degree 𝑑. For a non-trivial additive character 𝜓, define the complete exponential sum

𝑆(𝑓 ; 𝑝) =
∑︁
𝑥∈F𝑝

𝜓(𝑓(𝑥))

For prime 𝑝 that satisfies (𝑝, 𝑑) = 1 we can bound the absolute value of this exponen-
tial sum by

|𝑆(𝑓 ; 𝑝)| ≤ (𝑑− 1)𝑝1/2

Deligne’s theorem provides us with sharp bounds on the exponential sums of
𝐶3𝑗(𝑟𝑛+1−𝑗) as long as two conditions are met

• 𝐶3𝑗(𝑟𝑛+1−𝑗) is not the zero polynomial

• The total degree of 𝐶3𝑗(𝑟𝑛+1−𝑗) and the size of the field are coprime, that is
(3𝑗, 𝑝) = 1.

Since 𝑝 is a prime number larger than 3, then (3𝑗, 𝑝) = 1 and thus the second
condition will hold. When it comes to the first condition, it turns out that for large
enough 𝑗, 𝐶3𝑗(𝑟𝑛+1−𝑗) cannot be the zero polynomial.
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Claim 8. The polynomial 𝐶3𝑗(𝑟𝑛+1−𝑗) can never be zero for 𝑡 ≤ 3𝑗 < 𝑝, unless
𝑏1 = · · · = 𝑏𝑡 = 0.

Proof. For 𝐶3𝑗(𝑟𝑛+1−𝑗) to be the zero polynomial, we want the coefficients of all
powers of 𝑟𝑛+1−𝑗 to equal 0. Since 3𝑗 < 𝑝, the binomial coefficients are non-zero.
What remains is 3𝑗 equations in terms of 𝑏1, . . . , 𝑏𝑡 and 𝐹 (𝑛−𝑗)

1 , . . . , 𝐹
(𝑛−𝑗)
𝑡 , which can

be conveniently written as a matrix vector product.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

𝐹
(𝑛−𝑗)
1 𝐹

(𝑛−𝑗)
2 . . . 𝐹

(𝑛−𝑗)
𝑡(︁

𝐹
(𝑛−𝑗)
1

)︁2 (︁
𝐹

(𝑛−𝑗)
2

)︁2
. . .

(︁
𝐹

(𝑛−𝑗)
𝑡

)︁2
...

... . . . ...(︁
𝐹

(𝑛−𝑗)
1

)︁3𝑗−1 (︁
𝐹

(𝑛−𝑗)
2

)︁3𝑗−1

. . .
(︁
𝐹

(𝑛−𝑗)
𝑡

)︁3𝑗−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝑏1
𝑏2
...
𝑏𝑡

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦

The matrix on the left is a 3𝑗 × 𝑡 Vandermonde matrix. Assuming 3𝑗 ≥ 𝑡, we can
restrict our attention to the first 𝑡 equations, which give the square Vandermonde
matrix 𝑉𝑡. This matrix is invertible as long as the 𝐹 (𝑗)

𝑖 are distinct. The 𝐹 (𝑗)
𝑖 are the

intermediate MiMC ciphertexts for different plaintexts, so they are distinct. Thus,
we can multiply both sides by 𝑉 −1

𝑡 on the left to obtain

𝑉 −1
𝑡 𝑉𝑡b = 𝑉 −1

𝑡 0

⇒ 0 = 0

As a result, 𝐶3𝑗(𝑟𝑛+1−𝑗) is the zero polynomial iff 𝑏1 = · · · = 𝑏𝑡 = 0.

This allows us to bound the individual 𝐶3𝑗(𝑟𝑛+1−𝑗) for 𝑗 ≥ log3 𝑡. The question
that remains is whether we can use these to bound the quantity 𝑁(𝑦1, . . . , 𝑦𝑛).
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Proof of Lemma 5

Lemma 5. For positive integers 𝛼, 𝑘 with 𝛼 ≤ 𝑘

𝛼−1∑︁
𝑖=0

(−1)𝑖 ·
(︂

𝑘

𝛼− 𝑖

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
= (−1)𝛼−1

(︂
𝑘 + 𝛼− 1

𝑘 − 1

)︂
In particular, when expanding the summation the equality looks as follows(︂
𝑘

𝛼

)︂(︂
𝑘 − 1

𝑘 − 1

)︂
−
(︂

𝑘

𝛼− 1

)︂(︂
𝑘

𝑘 − 1

)︂
+· · ·+(−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
= (−1)𝛼−1

(︂
𝑘 + 𝛼− 1

𝑘 − 1

)︂
Proof. We will prove this by induction on 𝛼.

Base case 𝛼 = 1. The base case is trivial since

𝐿𝐻𝑆 =

(︂
𝑘

1

)︂(︂
𝑘 − 1

𝑘 − 1

)︂
= 𝑘 =

(︂
𝑘 − 1 + 1

𝑘 − 1

)︂
= 𝑅𝐻𝑆

Inductive Argument. Assume that the statement holds for 𝛼 − 1. We will call
𝐿𝐻𝑆𝛼−1 the left-hand side of the lemma statement with 𝛼− 1.

Back to our statement for 𝛼, we will rewrite the first 𝛼−1 terms using the identity(︂
𝑘

𝛼

)︂
=
𝑘 − 𝛼 + 1

𝛼
·
(︂

𝑘

𝛼− 1

)︂
The left-hand side becomes(︂

𝑘

𝛼

)︂(︂
𝑘 − 1

𝑘 − 1

)︂
−
(︂

𝑘

𝛼− 1

)︂(︂
𝑘

𝑘 − 1

)︂
+

(︂
𝑘

𝛼− 2

)︂(︂
𝑘 + 1

𝑘 − 1

)︂
−· · ·+(−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂

=
𝑘 − 𝛼 + 1

𝛼
·
(︂

𝑘

𝛼− 1

)︂(︂
𝑘 − 1

𝑘 − 1

)︂
−· · ·+(−1)𝛼−2𝑘 − 1

2
·
(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 3

𝑘 − 1

)︂
+(−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
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Notice that the first 𝛼 − 1 terms look like 𝐿𝐻𝑆𝛼−1. The difference is that the
coefficients in front of them are not all the same, they are increasing from left to
right. The 𝑖𝑡ℎ coefficient (starting from 0 on the left) is

𝑐𝑖 =
𝑘 − 𝛼 + 1 + 𝑖

𝛼− 𝑖

It is clear that the first term has the smallest coefficient 𝑐0. We will thus split all
other coefficients 𝑐𝑖 = 𝑐′𝑖+𝑐0. This way, we can group the 𝑐0 terms to obtain 𝐿𝐻𝑆𝛼−1

and perform the induction.

For 𝑖 > 0, the value of 𝑐′𝑖 is

𝑐′𝑖 =
𝑘 − 𝛼 + 1 + 𝑖

𝛼− 𝑖
− 𝑘 − 𝛼 + 1

𝛼

=
𝛼𝑘 − 𝛼2 + 𝛼 + 𝛼𝑖− 𝛼𝑘 + 𝛼2 − 𝛼 + 𝑖𝑘 − 𝛼𝑖+ 𝑖

𝛼(𝛼− 𝑖)

=
𝑖(𝑘 + 1)

𝛼(𝛼− 𝑖)

After replacing the 𝑐0 terms with 𝐿𝐻𝑆𝛼−1, the left-hand side of our lemma be-
comes

=𝑐0 · 𝐿𝐻𝑆𝛼−1 − 𝑐′1 ·
(︂

𝑘

𝛼− 2

)︂(︂
𝑘

𝑘 − 1

)︂
+ . . .

+ (−1)𝛼−2𝑐′𝛼−2 ·
(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 3

𝑘 − 1

)︂
+ (−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
The remainder of the proof will coalesce the middle terms with 𝑐′. Note that the

first and last term are of the same magnitude as our desired result, so we will deal
with them at the end.

Middle Terms. We will write these middle terms as 𝑓𝑖 with the 𝑖𝑡ℎ term being the
left-most (starting from 1)

𝑓𝑖 = (−1)𝑖
𝑖(𝑘 + 1)

𝛼(𝛼− 𝑖)
·
(︂

𝑘

𝛼− 1− 𝑖

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
Turns out that the partial sums of these 𝑓𝑖’s follow a specific pattern.
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Claim 9. For positive integers 𝑘, 𝛼, 𝑖 such as 𝑖 < 𝛼 and 𝛼− 1− 𝑖 < 𝑘, define 𝑓𝑖 as

𝑓𝑖 = (−1)𝑖 · 𝑖(𝑘 + 1)

𝛼(𝛼− 𝑖)
·
(︂

𝑘

𝛼− 1− 𝑖

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
For any 𝛿 < 𝛼, consider the partial sum of the 𝑓𝑖’s from 1 to 𝛿. This partial sum has
the following form

𝛿∑︁
𝑖=1

𝑓𝑖 = (−1)𝛿 · 𝛿(𝑘 + 𝛿)

𝛼(𝛼− 1)
·
(︂

𝑘

𝛼− 1− 𝛿

)︂
·
(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
Using Claim 9 we deduce that the sum of all 𝛼− 2 𝑓𝑖’s is equal to

𝛼−2∑︁
𝑖=1

𝑓𝑖 = (−1)𝛼−2 (𝛼− 2)(𝑘 + 𝛼− 2)

𝛼(𝛼− 1)
·
(︂
𝑘

1

)︂
·
(︂
𝑘 + 𝛼− 3

𝑘 − 1

)︂
Thus, we can write the equation

= 𝑐0·𝐿𝐻𝑆𝛼−1+(−1)𝛼−2 (𝛼− 2)(𝑘 + 𝛼− 2)

𝛼(𝛼− 1)
·
(︂
𝑘

1

)︂
·
(︂
𝑘 + 𝛼− 3

𝑘 − 1

)︂
+(−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
Remaining Terms. We will now add the three remaining terms together. We start
by making their binomial coefficients the same. We can change the binomial of the
second term to look like the last term using the fraction in front

= 𝑐0 · 𝐿𝐻𝑆𝛼−1 + (−1)𝛼−2 (𝛼− 2)

𝛼
·
(︂
𝑘

1

)︂
·
(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
+ (−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
We now substitute 𝐿𝐻𝑆𝛼−1 and 𝑐0

=
𝑘 − 𝛼 + 1

𝛼
·(−1)𝛼−2

(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
+(−1)𝛼−2 (𝛼− 2)

𝛼
·
(︂
𝑘

1

)︂
·
(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
+(−1)𝛼−1

(︂
𝑘

1

)︂(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
Factorize their common binomial coefficient

=

[︂
𝑘 − 𝑘 − 𝛼 + 1 + 𝑘(𝛼− 2)

𝛼

]︂
(−1)𝛼−1

(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂

=

[︂
𝛼𝑘 − 𝑘 + 𝛼− 1− 𝛼𝑘 + 2𝑘

𝛼

]︂
(−1)𝛼−1

(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
=

[︂
𝑘 + 𝛼− 1

𝛼

]︂
(−1)𝛼−1

(︂
𝑘 + 𝛼− 2

𝑘 − 1

)︂
61



Again, we can transform the binomial coefficient to the one we want using the
fraction in front.

= (−1)𝛼−1

(︂
𝑘 + 𝛼− 1

𝑘 − 1

)︂
This completes the proof.
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Proof of Claim 9

Claim 9. For positive integers 𝑘, 𝛼, 𝑖 such as 𝑖 < 𝛼 and 𝛼− 1− 𝑖 < 𝑘, define 𝑓𝑖 as

𝑓𝑖 = (−1)𝑖 · 𝑖(𝑘 + 1)

𝛼(𝛼− 𝑖)
·
(︂

𝑘

𝛼− 1− 𝑖

)︂(︂
𝑘 − 1 + 𝑖

𝑘 − 1

)︂
For any 𝛿 < 𝛼, consider the partial sum of the 𝑓𝑖’s from 1 to 𝛿. This partial sum has
the following form

𝛿∑︁
𝑖=1

𝑓𝑖 = (−1)𝛿 · 𝛿(𝑘 + 𝛿)

𝛼(𝛼− 1)
·
(︂

𝑘

𝛼− 1− 𝛿

)︂
·
(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
Proof. We will prove the claim by induction.

Base Case 𝛿 = 1. It is trivial to verify that for 𝛿 = 1 the claim is correct.

Inductive Argument. Assume that the statement holds for 𝛿 − 1. To obtain the
value of the summation for 𝛿, we will just add the last term

𝛿∑︁
𝑖=1

𝑓𝑖 =
𝛿−1∑︁
𝑖=1

𝑓𝑖 + 𝑓𝛿

From the inductive hypothesis, we can replace the summation on the right hand
side

= (−1)𝛿−1 (𝛿 − 1)(𝑘 + 𝛿 − 1)

𝛼(𝛼− 1)
·
(︂

𝑘

𝛼− 𝛿

)︂
·
(︂
𝑘 − 2 + 𝛿

𝑘 − 1

)︂
+(−1)𝛿

𝛿(𝑘 + 1)

𝛼(𝛼− 𝛿)
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
The binomial coefficients of the first term are a constant factor away from the

binomials of the second term.(︂
𝑘

𝛼− 𝛿

)︂
=
𝑘 − 𝛼 + 𝛿 + 1

𝛼− 𝛿
·
(︂

𝑘

𝛼− 1− 𝛿

)︂
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(︂
𝑘 − 2 + 𝛿

𝑘 − 1

)︂
=

𝛿

𝑘 − 1 + 𝛿
·
(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
Hence we can substitute the above equations into our original equation and fac-

torize the binomial coefficients out to get

= (−1)𝛿
[︂
−(𝛿 − 1)(𝑘 + 𝛿 − 1)

𝛼(𝛼− 1)
· 𝑘 − 𝛼 + 𝛿 + 1

𝛼− 𝛿
· 𝛿

𝑘 − 1 + 𝛿
+
𝛿(𝑘 + 1)

𝛼(𝛼− 𝛿)

]︂
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
We can now compute the term in the brackets

= (−1)𝛿
[︂
−𝛿(𝛿 − 1)(𝑘 − 𝛼 + 𝛿 + 1)

𝛼(𝛼− 1)(𝛼− 𝛿)
+
𝛿(𝑘 + 1)

𝛼(𝛼− 𝛿)

]︂
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂

= (−1)𝛿
[︂
−𝛿 ((𝛿 − 1)(𝑘 − 𝛼 + 𝛿 + 1)− (𝑘 + 1)(𝛼− 1))

𝛼(𝛼− 1)(𝛼− 𝛿)

]︂
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
= (−1)𝛿

[︂
−𝛿 ((𝛿 − 1)(𝑘 + 1) + (𝛿 − 1)(𝛿 − 𝛼)− (𝑘 + 1)(𝛼− 1))

𝛼(𝛼− 1)(𝛼− 𝛿)

]︂
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
= (−1)𝛿

[︂
−𝛿 ((𝛿 − 𝛼)(𝑘 + 1) + (𝛿 − 1)(𝛿 − 𝛼))

𝛼(𝛼− 1)(𝛼− 𝛿)

]︂
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
Factorizing and cancelling the common terms results in the statement of our

claim.
= (−1)𝛿

[︂
𝛿(𝑘 + 𝛿)

𝛼(𝛼− 1)

]︂
·
(︂

𝑘

𝛼− 1− 𝛿

)︂(︂
𝑘 − 1 + 𝛿

𝑘 − 1

)︂
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Proof of Lemma 4 - Diagonal Equality

Lemma 4. (Diagonal Equality). The value of 𝑇 (𝑐, 𝑑) only relies on the sum |𝑐|+ |𝑑|
and not on the exact values of |𝑐| and |𝑑|. In particular, ‘exchanging’ all zero entries
of 𝑑 with non-zero entries of 𝑐 does not change the value of 𝑇 (·, ·).

𝑇 (𝑐𝑑−𝑘,k) = 𝑇 (𝑐, 𝑑)

Proof. We will re-write 𝑇 (𝑐, 𝑑) as a system of 𝑘 linear equations with 2𝑘 variables
and some additional constraints (such as some variables equal to 0 and some other
variables not equal to 0). For now let’s focus on the linear equations.

𝑀 ·

⎡⎢⎢⎢⎣
𝑥1
𝑥2
...
𝑥𝑘

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑦1
𝑦2
...
𝑦𝑘

⎤⎥⎥⎥⎦
We rearrange everything to the LHS

⇒
[︀
𝑀 𝐼

]︀
·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
...
𝑥𝑘
𝑦1
...
𝑦𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣0...
0

⎤⎥⎦

Now, we will rename the variables according to whether they are equal to 0 or
unequal to 0. We will denote 𝑧𝑖 to be the 𝑖𝑡ℎ zero variable (in arbitrary order) and
𝑛𝑖 to be the 𝑖𝑡ℎ non-zero variable. We have a total of |𝑐|+ |𝑑| > 𝑘 non-zero variables.
We will also rearrange our variable vector from above
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⇒
[︀
𝑀 ′]︀ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑛1
...

𝑛|𝑐|+𝑘

𝑧1
...

𝑧𝑘−|𝑐|

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣0...
0

⎤⎥⎦

Note that matrix 𝑀 ′ is a permutation of the columns of [𝑀 𝐼]. We can now
apply Gaussian Elimination to our system of equations to obtain

⇒
[︀
𝐼 𝑀 ′′]︀ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑛1
...

𝑛|𝑐|+𝑘

𝑧1
...

𝑧𝑘−|𝑐|

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣0...
0

⎤⎥⎦

And now we can move the first identity matrix to the RHS to match the format
of our original equation

⇒ 𝐼 ·

⎡⎢⎣𝑛1
...
𝑛𝑘

⎤⎥⎦+𝑀 ′′ ·

⎡⎢⎣𝑛𝑘+1
...

𝑧𝑘−|𝑐|

⎤⎥⎦ =

⎡⎢⎣0...
0

⎤⎥⎦

⇒𝑀 ′′ ·

⎡⎢⎣𝑛𝑘+1
...

𝑧𝑘−|𝑐|

⎤⎥⎦ =

⎡⎢⎣𝑛1
...
𝑛𝑘

⎤⎥⎦
As a result, the number of solutions to our original system with constraints is

equal to the number of solutions to this new system with constraints. But because
we arranged the variables in such a way, all the variables on the RHS are non-zero.
Thus, if 𝑀 ′′ is a matrix with a full-branching number, then the number of solutions
to this system is equal to 𝑇 (𝑐𝑑−𝑘,k).

But 𝑀 ′′ has to be full branch. Otherwise, if we could find two vectors 𝑢, 𝑣 such
that |𝑢|+|𝑣| < 𝑘+1 and𝑀 ′′𝑢 = 𝑣, then we could invert our procedure above to obtain
an equality 𝑀𝑢′ = 𝑣′ for some vectors 𝑢′, 𝑣′ such that |𝑢′| + |𝑣′| = |𝑢| + |𝑣| < 𝑘 + 1.
This contradicts the maximal branching number of 𝑀 . As a result, 𝑀 ′′ is a matrix
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with a maximal branching number and thus the number of solutions to this system
of equations with additional constraints is 𝑇 (𝑐𝑑−𝑘,k). This concludes that moving
zero entries from the LHS to the RHS does not change the number of values that
make the specific transition.

𝑇 (𝑐𝑑−𝑘,k) = 𝑇 (𝑐, 𝑑)
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