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Abstract

The blessing of ubiquitous data also comes with a curse: the communication, storage, and labeling of
massive, mostly redundant datasets. In our work, we seek to solve the problem at its source, collecting
only valuable data and throwing out the rest, via active learning. We propose an online algorithm which,
given any stream of data, any assessment of its value, and any formulation of its selection cost, extracts
the most valuable subset of the stream up to a constant factor while using minimal memory. Notably,
our analysis also holds for the federated setting, in which multiple agents select online from individual
data streams without coordination and with potentially very different appraisals of cost. One particularly
important use case is selecting and labeling training sets from unlabeled collections of data that maximize
the test-time performance of a given classifier. In prediction tasks on ImageNet and MNIST, we show
that our selection method outperforms random selection by up to 5-20%.

1 Introduction

It is often infeasible to store and label large, real-world datasets in their entirety due to constraints on
memory capacity, annotation resources, and communication patterns. Consequently, methods for extracting
high-value subsets from large collections of data that incur low selection and memory cost are increasingly
indispensable. Within a learning framework, one natural method is to assign high value to those subsets of
the training data which improve a classifier’s performance at test time. In practice, however, identifying such
high-value training sets is challenging. Real-world datasets are often highly redundant (e.g., monotonous
camera footage from self-driving vehicles or sequential video frames), such that labels are costly to obtain
and of little marginal value.

Furthermore, in many settings (e.g., video streams, sensor data), the scale, velocity, and topology of
data generation make it infeasible to store data at a central site for post-processing. Indeed, data sets
may need to be processed in a distributed fashion across several machines or edge devices, necessitating
a federated approach to set selection. Simply extracting a subset at random is often a bad solution; in
particular, in data-imbalanced settings, rare classes will be under-represented in the training set. In many
high-stakes settings these are classes for which the classifier’s performance matters most. Consider medical
imaging data or footage from autonomous vehicles, where it is unlikely that training data will contain many
of the types of instances for which test-time accuracy is most critical (e.g., rare tumors or dangerous traffic
events). Consider also face-recognition systems for which the available data may be severely imbalanced
along demographic axes, yet which must perform fairly during deployment.

To address such challenges, we propose a general framework for selecting high-value subsets from a stream
of data (or a distributed set of streams) at low selection and memory cost. Considering first the case with a
single stream, let D = {x1, ..., xn} ∈ Xn denote a sequence of n points, where X is a feature space, and let
f be a function that takes as input a subset of D and outputs its value as a positive real number.1 Points
from D arrive sequentially and we must make an irrevocable decision at each time step to select the current
point or not.

1Henceforth, for ease of expression, we will employ set syntax for our sequential framework. In particular, by ‘subset’ we
will mean subsequence, by A ⊆ B, we will mean that A is a subvector of sequence B, and by 2A, we will mean the set of all
subvectors of sequence A.
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Figure 1: DMGT correcting class imbalance on ImageNet: In the imbalanced input stream D (left),
poodles and lizards are common, while sturgeons and saxophones are rare. DMGT selects a class-balanced
subset L (right).

Our goal is to select a subset L ⊆ D whose value is close to

max
S⊆D:C

f(S), (1)

where C denotes an arbitrary cost constraint. Suppose we define C : |S| = k. If we had access to all data
points in D simultaneously and if we had infinite computing resources, the optimal approach would be to
search over all feasible subsets of D according to C and select the value-optimal subset:

OPT(f,D, k)
4
= arg max
S⊆D:|S|=k

f(S).

Unfortunately, finding OPT requires solving a generally intractable combinatorial problem. We introduce
a dynamic-thresholding algorithm that achieves almost the same performance without storing D, simply
by selecting a point if its marginal value exceeds a time-specific threshold set by the analyst—we call the
algorithm dynamic marginal gain thresholding (DMGT — see Algorithm 1). Formally, at time step t, given
the currently selected set Lt−1, DMGT selects the current point xt if

f(Lt−1 ∪ {xt})− f(Lt−1) > τt,

where τt is a threshold chosen by the analyst at time t or any time prior. Under this selection rule, given any
submodular, nonnegative, monotone increasing value function f and schedule of thresholds, T = {τt}t∈|D|,
DMGT returns a set L ⊆ D such that

f(L) ≥ τmin

τmin + τmax
f(OPT(f,D, |L|)), (2)

where τmin and τmax are the minimum and maximum elements of T respectively. In words, DMGT selects a
set whose value is at least a τmin/(τmin + τmax)-approximation to the value of the optimal, same-sized set.
To exemplify this result, consider the case in which T is chosen to be a uniform sequence of thresholds such
that τmin = τmax. Then the multiplicative factor in (2) becomes 1/2. Consequently, in an uniform-threshold
setting, our method performs at least 1/2 as well as OPT. Finally, running DMGT requires only O(|L|) memory,
the minimum amount needed for any online selection algorithm, as it is simply the memory needed to store
the selected set L. The generality of our method (namely that for any choice of T , the threshold-dependent

2



bound in (2) holds) is particularly useful in distributed settings. Consider a scenario in which multiple agents
(or nodes in the distributed system) individually aim to select a high-value, cost-sensitive subset from their
own data streams. Furthermore, suppose the agents have different labeling resources: some agents have a
large capacity for selecting and labeling data, and can afford to set low thresholds, while others are more
cost-constrained and thus must set their thresholds higher. Even in this highly uncoordinated setting, our
method returns a pooled subset from the agents whose value is at least a constant factor of the value of the
optimal same-sized set; we develop an explicit counterpart to the bound in (2) for the distributed setting
later in this work.

The simple thresholding technique of DMGT can apply to a large range of practical problems in which an
analyst wants to extract high-value subsets from streams of data at low cost. In Section 2.3.1, we demonstrate
its application to a class-imbalance correction problem, in which the goal is to extract and label a class-
balanced training set for a classifier from a class-imbalanced, unlabeled data stream. Figure 1 previews the
results on ImageNet. We set f to assign high value to class-balanced sets. Given an imbalanced input data
stream D with an abundance of common classes and paucity of rare ones, our algorithm selects a high-value
(i.e. class-balanced) training set L in a low-cost manner. That is, only the highest-value points which
facilitate class balance are selected, saving selection costs on low-value points, with the entire procedure
requiring minimal O(|L|) memory.

1.1 Related work

Solving (1) effectively and efficiently is a longstanding problem in submodular optimization since finding an
exact solution is NP-hard for most choices of submodular f [1]. For monotone increasing, nonnegative, and
submodular f , along with a cardinality constraint on the feasible sets, [2] proposed a greedy algorithm which
obtains a (1− 1/e)-approximation, and which has subsequently been augmented to several computationally
efficient variants [3–6]. However, these algorithms are non-streaming and require that all of D be maintained
in memory. In the streaming setting, [7] achieved a (1/2 − ε)-approximation for any ε > 0 in O(k log k/ε)
memory (where k is an upper bound on cardinality of feasible subsets). Subsequently, [8] achieved the same
approximation using only O(k/ε) memory. When D is a random rather than arbitrary (and thus potentially
adversarial) stream, tighter constant factors are achievable. In particular, [9] demonstrated the possiblity
of a greater-than-1/2-approximation in expectation, [10] precisely achieved a (1− 1/e− ε)-approximation in
O(k2poly(1/ε)) memory, and most recently [11] achieved the same constant-factor approximation in improved
O(k/ε) memory. Motivated by applications to team formation, [12] introduced a simple and efficient stream-
ing algorithm which approximates an unconstrained, cost-diminished version of (1) for arbitrary D and
submodular, nonnegative f in O(k) memory. Though our optimization objective is fundamentally different
from theirs (we optimize a submodular function while their objective is the difference between a submodular
value function and an additive cost function), our selection rule and theoretical guarantees are inspired by
their approach. Online greedy selection rules—whereby points are selected if their marginal gain under some
function exceeds a given threshold—have been known and used in streaming submodular optimization for
a long time. Indeed, all the aforementioned works use threshold schedules of various design to obtain L.
However, our algorithm is more flexible, gives constant-factor approximations for a wider class of thresholds.

Another line of work we build on is distributed submodular maximization. Parallelization of submodular
optimization algorithms across different machines in the MapReduce framework is the focus of [4, 6, 13–17].
Closer to our setting of interest is [18] which explores the multi-agent regime. In particular, they show
that for non-streaming, k-cardinality-constrained optimization of a submodular, nonnegative objective and
M agents, its possible to achieve a O(1/min(M,k)) constant approximation to the value of the optimal
subset from the agents’ pooled original sets. All the aforementioned distributed selection approaches are
non-streaming. To the best of our knowledge, we present the first proposal for a streaming distributed
submodular maximization algorithm, accompanied by theoretical guarantees. Furthermore, we attain the
same scaling in M even though we are restricted to the streaming setting.

We also draw inspiration from the extensive literature on submodular optimization [19] for real-world
applications, such as representation, summarization, and network modeling [20–35]. In particular, [36, 37]
introduced a general framework for pool-based active learning with submodular information measures [38, 39]
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(combinations of submodular functions which generalize information-theoretic quantities such as mutual and
conditional information and conditional entropy beyond random variables to arbitrary sets). Importantly,
they focused on correcting real-world cases of class imbalance, presence of out-of-distribution samples, and
redundancy in unlabeled datasets with active labeling. However, their framework is non-streaming and
requires that the entire unlabeled dataset be stored in random-access memory, which is infeasible for many
real-world applications.

1.2 Our contribution

We present a general online, threshold-based selection procedure that (1) given any arbitrary (and possibly
adversarial) data stream D, (2) any submodular, nonnegative, monotone increasing value function f , and
(3) any set of thresholds T chosen by the analyst, returns a subset L ⊆ D whose value is at least a fraction
τmin/(τmin + τmax) of the value of the optimal same-sized set. Our algorithm has no memory requirements
beyond what is needed to store L, and it gives a lower bound on the value of L in terms of T , for any T that
the analyst chooses to implement. We highlight that our theoretical analysis gives constant-factor guarantees
for a broad set of selection algorithms, substantially enlarging the space of labeling rules that the analyst
can deploy with confidence. We obtain similar constant-factor optimality guarantees for federated selection,
in which multiple uncoordinated agents select separately from different data streams with different threshold
sets. To our knowledge, this is the first proposal for a distributed submodular maximization algorithm in
the streaming setting. Finally, we conduct experiments for the problem of class-imbalance correction in both
the standard and federated settings. When training a convolutional neural network on sets selected by our
algorithm versus randomly selected same-size subsets, we demonstrate up to 20% prediction accuracy gains
on MNIST and up to 5% gains on ImageNet. The code for all of our experiments is available on GitHub.

2 Theory and Methods

In this section, we present our proposed methodology and supporting theory. Section 2.1 establishes setting,
notation, and fundamental properties of our value function and selection rule, Section 2.2 introduces our
online selection method, DMGT, Section 2.3 demonstrates how we can use DMGT to correct for class imbalance
in data streams, and finally, Section 2.4 introduces a federated version of DMGT with associated theoretical
guarantees.

2.1 Submodularity

Let D = {x1, ..., xn} ∈ Xn denote a sequence of data with X a feature space. Our objective is to extract in
an online fashion a high-value subset, L, of D at low cost, where we let f : 2D → R+ quantify the value of
subsets of D.

The value of a set of points depends on the application or the objectives of the analyst. For instance, if
the objective is to extract a class-balanced subset, then f would assign high value to class-balanced subsets of
the data stream D. If the objective is to maximize diversity in selected sets, such that the data are separated
in the feature space, subsets of D with this property have high value. Since our selection decisions boil down
to determining whether, given the currently selected set, the value gained from adding the current point
exceeds a particular threshold, the first quantity of relevance to our setting is marginal gain, essentially a
measure of how much one set adds to another under a specified function.

Definition 1 (Marginal gain). The marginal gain under function g of set S given set T is

g(S|T )
4
= g(S ∪ T )− g(S).

Regardless of how large the already selected set is, if a new point adds sufficient value, it will be included.
However, for most reasonable value functions, adding a point to a set should always count more than adding
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it to a superset of that set. This diminishing returns property, wherein the amount of gain from adding new
points to a set changes inversely with the size of that set, can be formalized by taking the value function to
be submodular [19, 38].

Definition 2 (Submodularity). A set function f : 2X → R is submodular if for all sets S ⊆ T ⊆ X and
x ∈ X\T , we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

Importantly, appraising value with submodular functions helps to regulate selection costs. Namely, the
diminishing returns property controls the size of the selected subset and penalizes the addition of points that
don’t contribute sufficient value.

2.2 DMGT: Dynamic Marginal Gain Thresholding

We now present our main algorithm along with its optimality guarantee. The algorithm is simple: at each
time step, we compare the marginal value of the incoming point, given the already selected set, to a threshold
value which can either be set at the current time step or any time in advance of it. We then select the point
if its marginal value exceeds the corresponding threshold. Our framework and analysis can handle any
threshold schedule, even those set adaptively in an online fashion.

We denote the threshold schedule as T = {τt}t∈|D| ∈ R|D|, where τt may depend on any information
observed in the algorithm by the analyst prior to time step t. Formally, τt = A(x1, ..., xt, τ1, ..., τt−1), where
A is a threshold-setting routine that, at the current time step, is allowed to depend on the current point, all
prior points in the stream, and all prior thresholds, and outputs a threshold value for the current time step.
When DMGT is used to decide points to label (e.g. Section 2.3), then A may also depend on prior queried
labels. After discussing Theorem 1, we present one canonical way to design A.

Algorithm 1 DMGT: Dynamic Marginal Gain Thresholding

Input Stream of arbitrary data D ⊂ X ; value function f : 2D → R+

1: Set of currently selected points L0 = ∅
2: Set of thresholds T = ∅
3: for t = 1, ..., |D| do
4: Receive point xt and set threshold τt = A(x1, ..., xt, τ1, ..., τt−1).
5: T ← T ∪ {τt}
6: if f(Lt−1 ∪ {xt})− f(Lt−1) > τt then
7: Lt ← Lt−1 ∪ {xt}
8: else
9: Lt ← Lt−1

10: return L = L|D|, T

Theorem 1 (Near optimality of DMGT). Suppose DMGT takes as input an arbitrary data stream D, a submod-
ular, nonnegative, monotone increasing value function f , and constructs threshold schedule T . Then

f(L) ≥ τmin

τmin + τmax
f(OPT(f,D, |L|))︸ ︷︷ ︸

constant-factor optimal

+
τminτmax

τmin + τmax
|OPT(f,D, |L|) ∩ L|︸ ︷︷ ︸
≥0

, (3)

where τmin and τmax are the minimum and maximum elements of T respectively, and L is the set selected by
DMGT.

The first term in the bound of (3) is the important one for understanding the performance of DMGT.
It bounds the value of L in terms of the value of the same-sized optimal set. If, in advance of running
DMGT, the analyst constrains thresholds to fall in a bounded interval [τmin, τmax], then DMGT ensures an a
priori constant-factor approximation to the value of the same-sized optimal set. One special case is when
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the values in T are set to be uniform, i.e., τmax = τmin = τ∗. Then the constant factor τmin/(τmin + τmax)
reduces to 1/2. Therefore, if aiming for a 1/2 approximation, the analyst may simply set a uniform threshold
across the selection horizon. If they want a large volume of points to be selected, they should set τ∗ to a low
value; otherwise, they should set it higher. Suppose the analyst sets T adaptively (rather than in advance),
based on information acquired from the data stream. Then DMGT still gives an instance-specific bound based
on the threshold values chosen during its implementation. Finally, the second term in the bound of (3), a
relic of the proof, is always positive and only improves the optimality of f(L).

We now briefly discuss an intuitive way to design T and an extension of DMGT to the batch setting.

Setting thresholds based on cost. DMGT is a general framework for threshold-based online selection that
guarantees the bound in (3), regardless of how T is chosen. One intuitive way to set T , given the motivating
themes of value and cost in this paper, is as a sequence of marginal costs. To understand this, let us first
define cost in a more formal sense as a function c : 2D → R+ which takes in a subset of D and assigns a
cost to that subset in the form of a real nonnegative number. For the practitioner who wants to train a
classifier on the selected data, one intuitive choice for c would be cardinality, or a positive-constant scaling
of cardinality. In this setting, larger sets should be more costly to select because they contain more points
which require expensive labeling. Given this formal notion of cost, we can define a sequence of thresholds.
One reasonable approach might be as follows: at time step t, given the currently selected set Lt−1, only
select the current point xt if the marginal value of doing so outweighs the marginal cost; that is, if

f(Lt−1 ∪ {xt})− f(Lt−1) > c(Lt−1 ∪ {xt})− c(Lt−1).

Deploying this rule, the analyst obtains a set whose value obeys (3), while ensuring that at every time step,
they never pay more for selecting a point than the value it contributes. In this case, the threshold-setting
routine A depends on the prior-observed data and an external cost function decided by the analyst. While
marginal costs are one intuitive way to construct T , we again emphasize that the guarantee of DMGT in (3)
holds for any choice of T .

DMGT in batch mode In practice, we might want to implement DMGT in batch mode in order to update f
with information from previously selected points (see the example in Section 2.3.1). In this case, f changes
across batches, and the guarantee in Theorem 1 only holds per batch; i.e., for the value function and selected
set in each batch. To cover this setting, we present an extension of DMGT in Appendix B, along with a
guarantee on the value of the cumulative selected set (i.e., a union of selected sets over batches). In short,
a constant-factor threshold-dependent approximation that scales as O(1/B) is still achievable in the batch
setting, where B is the number of batches.

2.3 DMGT for learning

Up to this point, we have been concerned with the abstract task of selecting a subset from some feature space
X that has maximal value. We now show how DMGT can be used for learning. Given a feature space X , a set
of classes Y = {1, ...,K}, a classifier π̂, and D = {(Xi, Yi)}i∈[n] ∈ Xn × Yn a set of feature-class pairs, we’d
ideally like to select the subset of D on which to train π̂ that maximizes the predictive performance of π̂ on
test-time data. Intuitively, the more closely the selected training set L ⊆ D resembles the test-time data, the
better we’d expect the test-time accuracy of π̂ to be. Therefore, within our value-function framework, we
assign more value to sets which resemble the expected test-time data. We now present a detailed example
to show how DMGT can be deployed for learning in this type of setting. This example also provides the
theoretical basis of our experiments in Section 3.

2.3.1 Example: Correcting class imbalance

We consider an example where the training data, D, is significantly class-imbalanced, and we’d nonetheless
like π̂ to predict well on all classes at test time. We assume that feature-class pairs from D arrive sequentially.
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Furthermore, we assume that Xi in each pair can be observed upon arrival, but its label Yi can only be
known if actively queried (e.g., sought out by a human). Selecting a sequence for annotation at random from
D preserves class imbalance, leaving π̂ under-exposed to rare classes in training and thus a poor classifier of
them at test time. We can deploy DMGT in this setting to select a high-value (i.e. class-balanced) subsequence
L from D, whose Y coordinates we then query to form a class-balanced training set for π̂.

To do this, we split D into B batches, run DMGT sequentially on each batch, and between batches update
π̂ on the newly selected points. This induces a sequence of value functions {fπ̂b}b∈[B], where π̂b denotes π̂
at the start of batch b. In batch b at the current time step, given the currently labeled set, Lb, we define the
value of adding a new point and its class label (x, y) to Lb to be

fπ̂b(Lb ∪ {(x, y)}) 4=
∑
k∈[K]

π̂bk(x)g

 ∑
z∈Lb∪{(x,y)}

π̂bk(zx)

 . (4)

We allow g to be any concave increasing function, which ensures submodularity of fπ̂b (see Appendix A),
and use the notation zx to denote the first coordinate of the tuple z = (x, y). With this choice of value
function, we see that the label, y, of x is queried by DMGT if

∑
k∈[K]

π̂bk(x)

g
 ∑
z∈Lb∪{(x,y)}

π̂bk(zx)

− g(∑
z∈Lb

π̂bk(zx)

) > τ b(x,y). (5)

Here we take τ b(x,y) to be the threshold corresponding to the arrival of point x in batch b. For ease of

notation, we drop reference to b, though it is to be assumed. Since g is concave, the left-hand side of (5)
will be small (assuming sufficient model accuracy) when the currently labeled set already contains many
instances with the same label as the current point x, and large when it doesn’t, thus favoring class balance.
In practice, we observe that assuming access to labels of previously selected points in our value function
improves performance. (Note that having access to labels of points we’ve previously elected to label is a
very light assumption.) Therefore, in our experiments in Section 3, given currently labeled set L, we label
the current point x if∑

k∈[K]

π̂k(x)
[
g(1 + |{(x, y) ∈ L : y = k}|)− g(|{(x, y) ∈ L : y = k}|)

]
> τ(x,y). (6)

The value function in this formulation, fπ̂(L ∪ {(x, y)}) =
∑
k∈[K] π̂k(x)g(1 + |{(x, y) ∈ L : y = k}|), is also

submodular (see Appendix A).

2.3.2 Setting thresholds for class balance

Depending on g, we can leverage the form of fπ̂ to construct a threshold set T that controls how many
instances of each class are selected for labeling. Note that with perfect model accuracy (i.e., for every input,
the softmax vector encoding π̂ has a 1 in the correct class entry and 0 everywhere else), the marginal gain
quantity on the left-hand side of (6) simplifies to

fπ̂(L ∪ {(x, y)})− fπ̂(L) = g(1 + |{z ∈ L : zy = y}|)− g(|{z ∈ L : zy = y}|),

where zy is the second coordinate of the tuple z = (x, y). We consider the particular case where g(x) =
√
x,

a natural scaling. Suppose we’d like to have n samples from each class in our training set and there are
K classes. We can approximately achieve this desired class balance in the training set, regardless of any
imbalance in the input stream, by setting a uniform threshold τ∗ across the selection horizon such that τ
satisfies √

n+ 1−
√
n = τ. (7)

Figure 2 displays how closely DMGT achieves this ideal balance for different threshold values on ImageNet
after running for six rounds of point selection and classifier updates. We see that for most threshold values
in the given range the number of selected rare instances and selected common instances are nearly equal.
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Figure 2: Rare/Common class balance on ImageNet as a function of threshold values: For
thresholds 0.1 and greater, selected rare classes achieve the ideal amount, while selected common classes
converge to the correct level slightly more slowly.

2.4 FED-DMGT: DMGT for federated selection

We now show the utility of DMGT for federated selection. Consider a scenario in which there are M agents
or devices (e.g. phones, laptops) each receiving their own streams of data. If each agent separately deploys
DMGT on their stream, we show that the value of pooled selected subsets from the agents has a O(1/M)-
approximation to the value of the optimal same-sized set from the pooled original streams. To obtain such
a subset, we introduce FED-DMGT, which simply runs DMGT separately for each agent and then combines the
agents’ selected subsets.

Algorithm 2 FED-DMGT: Federated Dynamic Marginal Gain Thresholding

Input M streams of data {Dj}j∈[M ], with Dj ⊂ X ; value function f : 2D → R+ (where D = ∪j∈[M ]Dj)
1: for j = 1, ...,M do
2: Lj , Tj ← DMGT(Dj , f)

3: return L = ∪j∈[M ]Lj , T = ∪j∈[M ]Tj .

Theorem 2 (Near optimality of FED-DMGT). Suppose FED-DMGT runs on M separate arbitrary data streams
{Dj}j∈[M ], each with submodular, nonnegative, monotone increasing, value function f , and constructs thresh-
old sets {Tj}j∈[M ]. Define

D 4= ∪j∈[M ]Dj .

Then
f(L) ≥ τmin

M(τmin + τmax)
f(OPT(f,D, |L|)) +

τminτmax

M(τmin + τmax)
|OPT(f,D, |L|) ∩ L|, (8)

where τmin and τmax are the minimum and maximum elements respectively of T .

The bound in (8) holds regardless of how different agents choose their individual threshold sets. Indeed,
agents may have very different cost functions or resources for labeling which inform how they set their
thresholds. Given any such divergent choices, FED-DMGT still guarantees a constant-factor approximation
which depends only on the number of agents and the minimum and maximum values observed in the agents’
combined threshold sets.

If M = 1, FED-DMGT reduces to DMGT and consequently (8) reduces to (3). As the number of agents
increases, the potential for subsets to be selected by agents that individually have high value but collectively
have low value arises (e.g., consider the extreme case in which all agents individually select very similar sets),
thus potentially decreasing the value of the pooled labeled set relative to the optimal set and weakening
the bound in (8). The scaling in M here is the same as that observed in offline distributed submodular
maximization.
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3 Experiments

In this section, we report results from a variety of image classification experiments for the class-imbalance
correction example from Section 2.3.1. We take X to be images from MNIST and ImageNet, and we let Y
be the corresponding labels for those images. We define our value function fπ̂ as in equation (6), setting
g(x) =

√
x, and we take T to be a uniform sequence of thresholds for all experiments. For MNIST, we

initialize π̂ to be an untrained ResNet50 classifier from the torchvision [40] repository, and for ImageNet,
we use the same base model, but pre-train it on SimCLR feature embeddings [41] for efficiency. For training
π̂, we use an SGD optimizer with learning rate 10−3, momentum 0.9, and weight-decay 5−4. We follow the
same general recipe for all experiments:

1. Partition the set of classes [K] into R, rare classes, and C, common classes. For all experiments
on MNIST, we set R to be classes {0, 1, 2, 3, 4} and C to be classes {5, 6, 7, 8, 9}. For ImageNet, we
populate R and C with 5 randomly selected classes each.

2. Set an imbalance parameter β and from Xn×Yn, sample D, an β×-imbalanced sequence of image-label
pairs. By a β×-imbalanced sequence, we mean that D should contain β times as many points whose
Y coordinate belongs to C as to R.

3. Warm-start train π̂ on a randomly chosen, 1000-length subsequence, D0, of D, and set the currently
labeled set L = D0.

4. In 1000-point batches, {Db}1:B , pass the remainder of D to DMGT, which in each batch b selects a
subsequence Lb of Db whose labels are to be queried. Before the next batch commences, update π̂ on
Lb over 200 epochs or until training accuracy achieves 0.99, and add Lb to the set of selected points L.
Between batches, calibrate π̂ with isotonic regression on held-out validation data. For this purpose,
on ImageNet we use half of the validation set, and on MNIST half of the test set. The other halves
respectively are held back for prediction experiments.

5. Finally we demonstrate performance of DMGT on a variety of metrics like prediction accuracy and
class-balance convergence, reporting results both for all classes and just rare classes.

One hopes that after a few applications of DMGT, we will obtain a classifier which predicts well on all classes
at test time and a value function which selects class-balanced subsets from a continually class-imbalanced
stream. We demonstrate experimentally that this is indeed the case—and moreover that the number of
iterations needed to achieve these results can be as small as 1.

3.1 Experiment 1: Accuracy of DMGT vs. RAND on MNIST and ImageNet

In Figure 3, we benchmark DMGT’s performance against an algorithm RAND, which randomly selects a training
subset of D to label of the same cardinality as DMGT’s selected set. Setting the imbalance factor β = 5 and
taking a uniform threshold τ = 0.1, we track the prediction accuracy of DMGT and RAND over multiple
rounds (1000 points streamed per round) on held-out test data from MNIST and ImageNet. The first row
of the x-axis on our plots indicates the round, and the second row indicates the cardinality of L after the
corresponding round. Precisely, in Figure 3a, the procedure runs for 14 selection rounds plus the initial
warm-start training round, so D = 15K. We see that that by the end of the entire procedure, only about a
third of those points have been selected for labeling, while the prediction accuracy of DMGT on rare classes
exceeds that of RAND by around 20% on MNIST and 5% on ImageNet.

3.2 Experiment 2: Convergence to class balance on MNIST and ImageNet

In Figure 4, we compare how quickly DMGT and RAND start selecting class-balanced subsets from continuously
class-imbalanced streams of MNIST and ImageNet data. We run this experiment for the same imbalance
factor (β = 5) and uniform threshold value (τ = 0.1) as before. Given these parameters, the fact that
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(a) MNIST: prediction accuracy on all and rare classes
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Figure 3: Prediction accuracy on MNIST and ImageNet with DMGT: We show prediction accuracy
of DMGT vs. RAND after running both algorithms for 14 selection rounds on MNIST and 5 selection rounds
on ImageNet. Plots depict 95% confidence intervals around the mean accuracy value over 5 random
permutations of D.

|R| = |C| = 5 and g(x) =
√
x in our setting, and that our objective is class-balanced selection, we’d like

∼ 125 rare-class instances and ∼ 125 common-class instances to be selected during a pass over the stream
(see (7)). After approximately six selection and model-updating rounds on MNIST and just one on ImageNet
by DMGT, the selected rare-class amount achieves and sustains this desired level. Common classes converge
to 125 instances more slowly than rare classes for both datasets, but are significantly less abundant under
selection by DMGT than by RAND.
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Figure 4: Class Balance: Rare and common class amounts converge to the ideal amount of 125, given
g(x) =

√
x, τ = 0.1, and |R| = |C| = 5. Plots depict 95% confidence intervals around the mean amounts

over 5 random permutations of D.
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3.3 Experiment 3: Accuracy of FED-DMGT vs. RAND on MNIST and ImageNet

In Figure 5, we run FED-DMGT with three agents, whose streams each have different imbalance factors (β =
2, 5, and 10) and corresponding uniform threshold values (τ = 0.15, 0.1, and 0.05). In each selection round,
each agent runs DMGT on their individual stream and then sends their selected set to a global model, π̂, which
updates on the pooled selected sets from the agents. The updated model is then broadcast back to the agents
to be used for their selection decisions in the next round of DMGT. At each round, Figure 5 compares the
prediction accuracy of π̂ trained on the pooled DMGT-selected sets from the agents and a randomly selected,
same-sized set from the agents’ combined original streams. We see that despite the differences in stream
balance and threshold sets amongst the agents, DMGT still outperforms RAND. With a training set whose size
is only ∼ 30% of the original pooled data, DMGT achieves 10% accuracy gains when predicting on rare MNIST
classes and 1% gains on rare ImageNet classes.
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Figure 5: Prediction accuracy on MNIST and ImageNet with FED-DMGT: We show prediction
accuracy of FED-DMGT vs. RAND after running both algorithms for 10 selection rounds on MNIST and 6
selection rounds on ImageNet. Plots depict results for 3 agents selecting from differently imbalanced
streams with different threshold sets. We show 95% confidence intervals around the mean accuracy value
over 5 random permutations of D.

4 Discussion

We propose an algorithm, DMGT, which selects high-value subsets from streams of data at low selection and
memory cost. DMGT decides to select each point in the stream if its marginal value given the currently selected
set exceeds a threshold decided by the analyst at that time step. One natural choice for the thresholds, T ,
across the selection horizon are the marginal costs of the points in the stream under an appropriate cost
function. However, DMGT guarantees that, regardless of how T is set, the value of the selected set can always
be lower bounded by a T -dependent scaling of the value of the optimal same-sized set.

Our selection method is simple and efficient, passing only once over the data stream D and requiring only
enough memory to store the selected set L. A principal contribution of our algorithm is to the federated
setting in which multiple agents individually aim to select a high-value, cost-sensitive subset from their
own data streams, each according to different, uncoordinated threshold sets. For this setting our algorithm
also guarantees a constant-factor approximation to the optimal same-sized set. Finally, we experimentally
demonstrate the practical utility of our method for online active learning in a class-imbalanced regime: a
classifier trained on sets selected by our method in this context significantly outperforms one trained on
randomly selected training sets.
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A Proofs

Theorem 1. Theorem 1 is a consequence of Theorem 2, taking M = 1.

Submodularity, nonnegativity, and increasing monotonicity of fπ̂. As in (4), we define the value of adding a
new point (x, y) to the currently labeled set L to be

fπ̂(L ∪ {(x, y)}) =
∑
k∈[K]

π̂k(x)g

 ∑
z∈L∪{(x,y)}

π̂k(zx)

 .

Nonnegativity and increasing monotonicity of fπ̂ are obvious. Submodularity, which we now show, follows
from the concavity of g.

Let S ⊆ T ⊆ X × Y and x ∈ X × Y\T . Since g is a concave function, its secant lines have decreasing
slope. Therefore, ∀ π̂k∈[K](x) > 0,

g

(∑
z∈S∪{(x,y)} π̂k(zx)

)
− g
(∑

z∈S π̂k(zx)

)
π̂k(x)

≥
g

(∑
z∈T∪{(x,y)} π̂k(zx)

)
− g
(∑

z∈T π̂k(zx)

)
π̂k(x)

.

It then follows, using the definition of fπ̂ for the equalities, that

fπ̂(S ∪ {(x, y)})− fπ̂(S) =
∑
k∈[K]

π̂k(x)

g
 ∑
z∈S∪{(x,y)}

π̂k(zx)

− g(∑
z∈S

π̂k(zx)

)
≥
∑
k∈[K]

π̂k(x)

g
 ∑
z∈T∪{(x,y)}

π̂k(zx)

− g(∑
z∈T

π̂k(zx)

)
= fπ̂(T ∪ {(x, y)})− fπ̂(T ),

which proves submodularity of fπ̂. (Note that if π̂k(x) = 0 for any k ∈ [K], we simply remove that term
from the sums above and the argument still holds). Using the same sequence of steps, the slightly-modified
value function we use for our experiments,

fπ̂(S ∪ {(x, y)}) =
∑
k∈[K]

π̂k(x)g(1 + |{(x, y) ∈ S : y = k}|),

can be shown to be submodular.

Theorem 2. For each j ∈ [M ], let Dj be the j’th agent’s unlabeled data stream, let τj,x be the j’th agent’s
threshold value corresponding to arbitrary point x ∈ Dj , let

Lj = {lj,1, ..., lj,sj}

be agent j’s selected set under DMGT, let
L = ∪j∈[M ]Lj

and let
Vj = (OPT(D, |L|) ∩ Dj)\Lj = {vj,1, ..., vj,mj

}.
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Following an initial proof strategy used for Theorem 5.1 in [12],

0 >
∑
j∈[M ]

∑
i∈[mj ]

f(Lj<vj,i
∪ {vj,i})− f(Lj<vj,i

)− τj,vj,i Alg. 1(line 6); def. of V

≥
∑
j∈[M ]

∑
i∈[mj ]

f(Lj ∪ Vj<vj,i ∪ {vj,i})− f(Lj ∪ Vj<vj,i)− τj,vj,i submod. of f

≥
∑
j∈[M ]

f(Lj ∪ Vj)− f(Lj)− τmax|Vj | τmax ≥ τt ∀t ∈ [|D|]; telescope sum

≥ f(∪j∈[M ]Lj ∪ Vj)− τmax(|OPT(f,D, |L|)| − |OPT(f,D, |L|) ∩ L|)−
∑
j∈[M ]

f(Lj) subadd. of nonneg., submod. f

≥ f(OPT(f,D, |L|))− τmax(|OPT(f,D, |L|)| − |OPT(f,D, |L|) ∩ L|)−
∑
j∈[M ]

f(Lj). inc. mon. of f (9)

Note also that for all j ∈ [M ], we have

f(Lj) =

[ ∑
i∈[sj ]

f(L<lj,i ∪ {lj,i})− f(L<lj,i)
]

>

[ ∑
i∈[sj ]

τj,lj,i

]
Alg.1(line 6)

≥ τmin|Lj |. τmin ≤ τt ∀t ∈ [|D|] (10)

Combining (9) and (10),∑
j∈[M ]

f(Lj) ≥ τmin|L| by (10)

=
τmin

τmax
τmax|OPT(f,D, |L|)|

≥ τmin

τmax

[
f(OPT(f,D, |L|)) + τmax|OPT(f,D, |L|) ∩ L| −

∑
j∈[M ]

f(Lj)
]

by (9),

which implies that∑
j∈[M ]

f(Lj) ≥
τmin

τmin + τmax
f(OPT(f,D, |L|)) +

τminτmax

τmin + τmax
|OPT(f,D, |L|) ∩ L|. (11)

Finally, let j∗ = arg maxj∈[M ] f(Lj). Then

f(L) ≥ f(Lj∗) inc. mon. of f

≥ 1

M

∑
j∈[M ]

f(Lj) def. of j∗

≥ τmin

M(τmin + τmax)
f(OPT(f,D, |L|)) +

τminτmax

M(τmin + τmax)
|OPT(f,D, |L|) ∩ L|, by (11)

concluding the proof.

B Batch-DMGT

DMGT can be extended to a batch setting in which the value function changes between batches. This extension
is useful when the analyst wants to update the value function with information from past selection rounds.
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For instance, suppose f depends on a model which is being continually updated on selected data from earlier
batches, inducing a sequence of value functions over batches. We discuss such a setting in Section 2.3.

Algorithm 3 Batch-DMGT

Input Number of batches B; for each batch: data stream Db ⊂ X , value function fb : 2Db → R+

1: Set of selected points L = ∅
2: for b = 1, .., B do
3: Lb, Tb ← DMGT(Db, fb)
4: L ← L ∪ Lb
5: T ← T ∪ Tb
6: return L, T

Corollary 1 (Near-optimality of Batch-DMGT). Suppose Batch-DMGT runs on B arbitrary data streams
{Db}b∈[B] with accompanying value functions {fb}b∈[B], and constructs per-batch threshold sets {Tb}b∈[B].
Then for each b ∈ [B]

fb(Lb) ≥
τ bmin

τ bmin + τ bmax

f(OPT(fb,Db, |Lb|)) +
τ bminτ

b
max

τ bmin + τ bmax

|OPT(fb,Db, |Lb|) ∩ Lb|, (12)

where τ bmin and τ bmax are the minimum and maximum elements of Tb respectively, and

fB(L) ≥ τmin

B(τmin + τmax)
f(OPT(fB ,D, |L|)) +

τminτmax

B(τmin + τmax)
|OPT(fB ,D, |L|) ∩ L|, (13)

where τmin and τmax are the minimum and maximum elements of T respectively.

Corollary 1. Inequality (12) is a direct consequence of Theorem 1. The proof for inequality (13) is identical
to the proof of Theorem 2, with j indexing the batches [B] instead of agents [M ].

C Relevant Definitions and Theorems

Definition 3 (Monotonicity). A set function f : 2X → R is monotone increasing if ∀S ⊆ T with S, T ⊆ X

f(S) ≤ f(T )

and monotone decreasing if ∀S ⊆ T with S, T ⊆ X

f(S) ≥ f(T )

Definition 4 (Sub-additivity). A set function f : 2X → R is sub-additive if ∀S, T ⊆ X

f(S ∪ T ) ≤ f(S) + f(T )

Definition 5 (Equivalent definition of submodularity). A set function f : 2X → R is submodular if
∀S, T ⊆ X

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

Theorem C.1 (Sub-additivity of nonnegative submodular functions). All nonnegative submodular functions
are sub-additive.

Proof of Theorem C.1. Let f : 2X → R+ be a nonnegative submodular function. Then, by Definition 5,
∀S, T ⊆ X , we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) ≥ f(S ∪ T ).
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