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The variables &, «--, & have a joint normal distribution. We are con-
cerned with the calculation or approximation of max(%, ---, &). Current
analyses and tables handle the case in which the % are independently
distributed with common expected values and common variances. This
paper presents formulas and tables for the most general case with n=2.
When n>2, the problem becomes cumbersome. This paper presents
formulas and tables that permit approximations to the moments in case
n>2. The moments are approximated by iteration of a three-parameter
computation or, alternatively, through successive use of a three-parameter
table, which is given. Recent applications of the theory are described.

HE GREATEST of two or more random variables enters many opera-

tions-research analyses. For example, the number of sorties available
at a SAC base is the greatest of the number of bombers available, the num-
ber of crews available, and other random variables such as refueling capa-
bility. Two further illustrations are described below in the introductory
paragraphs of sections 4 and 5; these paragraphs can be read at this point
because they do not use the notation developed in the intervening discussion.

If &, - -+, & are independently and normally distributed with a common
expected value and variance, the maximum of the » variables is simply the
extreme value of a sample of size n from a normal distribution. Hence the
literature on order statistics gives considerable information about the
maximum. This literature is outlined in the bibliography listed in refer-
ences 3 and 4. Numerical tables of moments of this maximum appear in
references 2 and 4. If one considers this same maximum when the dis-
tribution is not normal, analytic results concerning the moments are given
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146 Charles E. Clark

in reference 5 and in the bibliography listed in that paper. However
numerical tables are not available for the nonnormal case.

In problems of operations research one often considers independently
distributed variables. Moreover it is sometimes legitimate to assume
normality. But in many problems the variables do not have a common
expected value, variances are unequal, or correlation exists. In such cases
available theory and numerical tables are not available. This gap is filled
by the present paper.

This paper approximates the first four moments of max(&, - -, &)
where the £’s have a joint normal distribution. This joint normal distribu-
tion is unrestricted; the expected values, variances, and correlations are
arbitrary. Applications to nonnormal distributions are discussed. The
analytic results are stated in the section following this introduction. Dis-
cussions of two important recent applications follow. The errors in the
approximations are discussed. A numerical table is presented, and the
discussion terminates with the mathematical derivations.

1. THE ANALYTIC RESULTS

Ler £ %, and 7 be normally distributed with expected values ui, pe, and
E(r), respectively, and with variances ¢,’, o2, and V(7). The expected
value and variance of 7 are not specified because all results to be obtained
involve 7 only in statements concerning correlations, and the results are
independent of the expected value and variance of 7. If r denotes the
coefficient of linear correlation, we write (& n)=p, (& 7)=p1, and
r(n, 7)=ps. We shall use the notation ¢(z)=(2x)""*exp(—2"/2) and
CI)(.L) = ff-w e(t) dt.

If o—oe=p—1=0, (1)
¢ and 7 differ by a constant. The analysis developed below does not apply
under this restriction. However, much simpler computations will handle
the special case. These computations are omitted. In Table III below,
the special case is included.

Let »; be the 7th moment (about zero) of the random variable max (£, 5).

We shall use the notation
CL2 = 0'12+0'22—2 g1 02 P.

This expression is positive because we assume that (1) does not hold.

Introducing the notation
o= (u—u)/a,
we can prove (see Sec. 7) that

n=mum®(a)+tud(—a)tae(a), (2)
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2= (M12+0'12) <I>(a)+(u22+a22) P(—a)+ (mtu) aola), (3)
va= (' +3 pr o) B(a) + (e’ +3 p2 00’) B(—a)
Fl(p' i patpe) at (2 o' o’ o’ +200" (4)
—20 0 p—201 00 p—ai’os o) @] p(a),
ve= (' +6 1’ 0’ +3 01') B(e) + (' +6 ' 0’ +3 ') ®(—a)
H{ (gt p’ Hpe’) a—3 a(or'—oo')
+4 1 0’ [3 (e1—02 p) /a— (s1—02 p)*/d’]
+4 pp 02’ [3 (02—0a1 p) /a— (a2—01 p)"/a’]} o(a),
rlr, max(g, 1)]=[o1 pr ®() +02 p ®(— )]/ (ra— ") " (6)

The formulas for the »; permit calculations related to the greater of two
normal variables. Formula (6) is used in estimating moments of the
greatest of more than two normally distributed variables. This fact will
be illustrated next.

(5)

2. THE EXPECTED VALUE AND VARIANCE OF THE GREATEST
OF A FINITE SET OF NORMALLY DISTRIBUTED VARIABLES

We suALL illustrate the utility of the formulas of Sec. 2, especially formula
(6). Suppose that we know the expected values, variances, and coeffi-
cients of linear correlation for four normally distributed variables £, #, ¢,
and w. We wish to estimate the first four moments of max(¢, 7, ¢, w).
We consider

max (&, n, {) =max[max(, ), {]. (7)

If max(§, ) were normally distributed, we could calculate the moments of
(7) in the following manner. Let I and V denote expected value and
variance, respectively. To calculate the first four moments of (7) with
use of (2) through (5), we need E[max({, )], which is obtained by use
of (2), Vimax(§, )], which is obtained from (3), E(¢), which is given,
V(¢), which is given, and r[max(%, 1), ¢]. This coefficient of correlation
can be obtained from (6). With these results, one would use (2) through
(5) to calculate the first four moments of (7).

This last calculation would be inaccurate because max(£, 9) is not nor-
mally distributed. However, we shall accept the results of the calculation
as approximations. The errors in the approximations will be discussed
below in Sec. 5.

Next we consider

max(é, 7§ "-’) =max[max(£, M, ?)} "‘)]' (8)
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To obtain the expected value of this last variable by use of (2), we need
rlmax (&, », {), @]=r{max[max(&, ), {], }. (9)

To estimate the right side of this equation by use of (6) we need r(w, {),
which is given, and 7w, max(§ 7)], which is approximated as was
r[¢, max(§, 1)] in the analysis above. Thus (9) can be approximated.
Hence, we can get approximations to the moments of (8) with use of (9)
together with the expected value and variance of (7) as calculated above.
The errors of approximation result from applying formulas for normally
distributed variables to max (g, 1), max(&, », {), ete.

Clearly, this approximate calculation can be extended to any finite
number of normal variables. The use of such approximations in opera-
tions analysis is illustrated in the next two sections.

3. APPLICATION TO AN ASSEMBLY-LINE PROBLEM

THE rESULTS of this paper have found application to the following problem.
An assembly line has n stations through which each fabricated article must
pass in succession. As soon as all n stations complete their tasks, the n—1
partially fabricated articles are moved to more advanced stations, and a
new article is started at the first station. The problem is to estimate the
expected value and standard deviation of the time between shifts. This is
the expected value and standard deviation of the greatest of n random
times, and normality assumptions lead us to apply the results of this paper.

The n times would be correlated if manpower would be transferred from
a station ahead of schedule to a station behind schedule. In the real prob-
lem studied by the author and his colleagues, it was legitimate to assume
zero correlation.

4. A SECOND APPLICATION: PARTIALLY ORDERED SETS OF ACTIVITIES

Tue NETWORK of Fig. 1 represents a partially ordered set of activities.
The time required for activity @ is uncertain, being normally distributed
with expected value E(a) and variance V(a). Similar notation is used for
the other activities b through e. The five activity times are independent.
Activities @ and b start at time zero. As soon as b is completed at time B,
both ¢ and e commence. As soon as both a and ¢ are completed at time C,
activity d commences. 'The problem is to estimate the expected value and
variance of D, the time at which both d and ¢ are completed. The time
of D is the greater of two times, the time of C plus the time of d, and the
time of B plus the time of e. An important feature of the problem is that
the times of B and C are correlated. Indeed, both of these times are in-
fluenced by the time of b. The analysis of the correlation will require
formula (6) as we shall show below.
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There are two computational procedures that might be followed in this
problem. As a matter of notation, if  denotes an activity, the same sym-
bol x denotes the time of the activity. The time of D is the greatest of the
three random variables a+d, b4+c+d, and b+e. The correlations among
these three sums could be calculated by the procedures described below in
this section. Since the expected values and variances of the three sums
are easily calculated, we would have the requisite information for the esti-
mation of the expected value and variance of D =max(a+d, b+c+d, b+e);
we could compute as in Sec. 2.

However, this calculation requires a study of all the ‘paths’ from start
to finish in the network of activities. If there were thousands of activities,
this number of paths could be intractably large. Hence, we are led tousea

Figure 1

different calculation, which may not be so efficient for the present problem,
but which is better for large problems. The combinatorial magnitude of
the following analysis is at worst that of the number of pairs of events, and
in many cases this is much smaller than the number of paths.

The alternative procedure is the following: The nodes 4, B, C, and D
of Fig. 1 are called events. The symbol for an event will also denote the
time of the event. In the course of the calculation we shall estimate the
expected value and variance of the time of each event. Furthermore, the
coefficient of correlation will be estimated for some pairs of event times.
The required pairs will be indicated later.

The exposition of this section will be more ponderous than required for
the analysis of Fig. 1. Our objective is to indicate that a network with
greater detail can be analyzed by the same procedure.

The first step is to arrange the events in a linear order such that in the
linear order each event is preceded by all the events that must occur prior
to it. In the case of Fig. 1, there is only one such ordering, namely,

A, B, C, D. (10)

For example, event C could not occur until both A and B have occurred;
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hence, A and B must precede C in the linear ordering. In more complex
networks the linear ordering is not uniquely determined, and the construc-
tion of a specific linear ordering requires some manipulation.*

The expected value and variance of each event time will be estimated,
the events being studied one-by-one in the order in which they appear in
the linear ordering (10). As we analyze an event we must consider all its
immediately preceding events. - The events immediately preceding D in
Fig. 1 are Band C. In general, an event X is an immediate predecessor of
an event Y if the geometric model of the network contains an arrow leading
from X to ¥. In Fig. 1 the event A precedes D but is not an immediate
predecessor. We shall see below that before estimating the expected value
and variance of an event time, we must estimate the coefficients of correla-
tion between the times of each pair of immediately preceding events.

The first event in the linear ordering (10) is A. Clearly, E(4)=
V(A)=0. The next event in the linear ordering is B. We must select all
the immediately preceding events, and these include the single event A.
Since B has only one immediate predecessor, we see directly that E(B)=
E(A)+E(@®)=E(b), V(B)=V(4)+V(b)=V(b).

The next event in the linear ordering (10) is C. We recognize that the
time of C is max(a, B+c). To estimate the expected value and variance
of C by the method of this paper, we need E(a), which is given, V(a),
which is given, E(B-+c) =E(B)+E(c), which is known because E(B) was
computed above and E(c) is given, V(B+c¢)=V(B)+V(c), which is
known because V(B) was computed above and V(c¢) is given, and
r(a, B+c), which is zero because a is independent of B-c. Since all
necessary information is available, we can estimate K(C) and V(C).

The next event in the linear ordering (10) is D. The time of D is
max(B-+e, C+d). We shall estimate the expected value and variance of
D by regarding it as the greater of two random variables. We estimate the
expected values and variances of B+e¢ and C-+d in the manner illustrated
above. In addition we shall estimate r(B-+e¢,C+4d), but this requires some
statistical analysis which is developed next.

We digress momentarily to prove an elementary relation involving
correlations. Let C(P, Q) denote the covariance of any pair of random
variables P and Q. Given four random variables, X, ¥, 4, and B, such
that each of A and B is independent of the other three we shall prove that

r(X+A.Y+B) =V X)V*(Y)r(X,Y)/V*(X+A)V*(Y+B). (11)

We shall use the fact that the coefficient of linear correlation between two
random variables is the covariance divided by the product of the standard
deviations. Our first use of this fact enables us to write

r(X+A4,Y+B)=C(X+A4, Y+B)/V*(X+4) V"*(Y+B). (12)

* This ordering problem is solved in reference 1.
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The definition of the covariance implies that
C(X+4,Y+B)=C(X, Y)+C(X, B)+C(4,Y)+C(4, B)=C(X, 1),

the three covariances dropping out because of the hypothesis of independ-
ence. Substitution reduces (12) to (11).

We return to the estimation of #(B-+e, C+d). Since ¢ and d are inde-
pendent of each other and of both B and C, formula (11) is applicable. To
complete the estimation of r(B+e, C+d) by formula (11), we need only
determine (B, C) because all other required factors are readily determined.

The estimation of (B, C)=r[b, max(a, b+c)] proceeds as follows. We
shall use (6) with 7 replaced by b and with £ and 5 replaced by @ and b+c.
As a preliminary step let us estimate using (11) that

(b, b4-¢) =V"*(b) V() r(b,b)/VA(b) V2(b+c) =V(b)/ V' (b+c).

The numerator and denominator of this last fraction are readily calculated.
On the other hand, clearly r(b, @) and r(a, b+c) are zero because of inde-
pendence. With these results we recognize that for the three random
variables a, b+c¢, and b, we know all three expected values and variances,
and we know all three coefficients of correlation. Hence, as indicated in
Sec. 3, we can use (6) to estimate r[b, max(a, b+c)]. But this is (B, C).

The reader will recognize that we have outlined a computational pro-
cedure that produces estimates of the first four moments of D.

5. ACCURACY OF THE NORMAL APPROXIMATION TO
NONNORMAL VARIABLES

It HAS been suggested that the results obtained above for normal distribu-
tions can be used with adequate accuracy in some cases involving non-
normal distributions. The present section illustrates this fact numerically.

Suppose that we wish to approximate the moments of max(&, &) where
£ and & are not normally distributed. Let #;, 7=1, 2, be normally distrib-
uted with the same expected value and variance as £. We shall show that
in many cases the moments of max(&, &) are adequately approximated by
the moments of max (g, 12).

If the difference E (&) —E(&) is large relative to the greater of V(&)
and V'*(&), the random variable max(&, &) is practically identical with
£ . Insuch a case, no computations are required in order to approximate
the first two moments of max (&, &). Certainly there would be no signifi-
cant error involved in replacing £ and & by normal approximations (this
would not be true if one were to consider moments of higher order than the
second).

However, if E(&)—E(&) is small relative to the standard deviations,
max (%, &) differs considerably from both & and &. In this case, the use
of normal approximations for & and & could conceivably produce serious
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errors in the approximation of the expected value and variance of the
greater of the two variables. Intuitively, the most serious situation is
that in which the expected values are equal. This fact, in part, motivates
the consideration of the following numerical illustrations.

Consider two variables each of which is distributed as the greatest of
500 standard normal variables. It is shown in reference 2 that the ex-
pected value and standard deviation of each of these variables are 3.03670

TABLE I TABLE 1II
THE EXPECTED VALUE OF THE GREATEST ToneE EXPECTED VALUE OF THE GREATEST
OF # STANDARD NORMAL VARIABLES OF # VARIABLES WITH EXPECTED
VALUE o AND VARIANCE I

w | Eimeste, bl | Approsimation | gty | Gniemly
2 0.5642 0.5042 2 0.5000 0.5774
3 0.8463 0.8476 3 0.8333 0.8660
4 1.0204 1.0310 4 1.0833 1.0392
5 1.1630 1.1643 5 1.2833 1.1547
6 1.2072 1.2679 6 1.4500 1.2372
7 1.3522 1.3522 7 1.5029 1.20990
8 1.4236 1.4230 8 1.7179 1.3472
9 1.4850 1.4837 9 1.8290 1.3856
10 1.5388 1.5367 10 1.92Q90 1.4171

and 0.3704, respectively. These variables are not normally distributed.
Indeed, their skewness is 0.570 and their kurtosis is 1.003; these numbers
are given in reference 2. Approximating these two variables by normal
variables with the same expected value and variance, we can apply (2) to
approximate the expected value of the greater as 3.2457. The correct
value is given in reference 2 as 3.24144.

As a second illustration, consider the greatest of n standard normal
variables &, &, - - -, £,.  The middle column of Table I is the expected value
of max(&, -+, &). These numbers are obtained from reference 2. We
can approximate these expected values in the following manner. For
n=2, the expected value is given exactly by (2). Furthermore, the vari-
ance of the greater of two standard normal variables is given exactly by (3).
Let 52 be normally distributed with expected value E[max (&, &)] and vari-
ance V[max(&, &)]. We use the moments of max(n,, £) as approxima-
tions for those of max (&, &, &). Let n; be normally distributed with ex-
pected value and variance equal to the corresponding moments of
max(ne, &). We use the moments of max(ns; &) as approximations for
the moments of max(&, - - -, &). In this way, one obtains the last column
of Table I. There are few if any problems in operations analysis that re-
quire smaller errors of approximation.
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The errors in the method of this paper result from the replacement of
nonnormal distributions by normal approximations. Some intuitive feel-
ing for the magnitudes of these errors can be obtained. Let us consider
the distribution with probability density e(x)=exp[— (z+1)], z=—1,
and with probability density zero for x<—1. The expected value and
variance of this distribution are 0 and 1 respectively. The third central
moment divided by the cube of the standard deviation isy;=2. When one
subtracts 3 from the fourth central moment divided by the fourth power of
the standard deviation, one obtains vy.=6. Since y;=v.=0 for normal
distributions, these y’s measure the obvious fact that e(x) is far from
normal. If #;, ¢=1, - - -, n, are independently distributed with probability
density e(z), it is easy to calculate the moments of 7™ =max(ny, - - -, 7.).
Indeed, the distribution function of each 75;is 1—exp[— (z+1)] for x=—1,
and the distribution function of 7™ is the nth power of the distribution
function of #;,. In this way one obtains the second column of Table IT. Let
us next approximate these expected values of the n'™ by the method of this
paper. Since the expected value and variance of each 7; are 0 and 1
respectively, the approximating normal distributions are those used in the
calculations of Table I. Hence the numbers in the column ‘Approxima-
tion’ in Table I are the approximations by the method of this paper of the
numbers in the second column of Table II. The errors of approximation
can be observed by comparing the two tables. These errors of approxi-
mation range from 413 per cent to —20 per cent.

We recall that for a normal distribution y;=v2=0. In view of the
numerical results concerning e(z), it appears that the errors of approxima-
tion increase from nearly zero to roughly 20 per cent as v; and v, increase
from y;=v:=0 to y;=2, v2=6. In the light of this statement we remark
that it is unusual for the greater of two normal variables to have v’s exceed-
ing 2 and 6 respectively; this will appear below in Table III.

To give an illustration involving negative v, we consider the distribution
with probability density u(z) = (12)"* for —3"* <2 <3"* and u(x) =0 for
|z|>3"%.  The expected value and variance of this distribution are 0 and 1,
and we have v;=0, yo=—1.2. If the independently distributed variables
¢i, 7=1, - - -, n, have the probability density w(x), the distribution function
of max({y, - -+, &) is easily obtained as the nth power of the quotient of
243" divided by 2(3)"2.  Numerical values of max ({1, - - -, ¢») are given
in the last column of Table II. Comparison with the last column of Table
I shows that there is serious but not huge error in using the normal approxi-
mation to a distribution with uniform probability density; the errors in the
tabulated results range up to 8 per cent. We might say very roughly that
to apply the approximations of this paper, one should have distributions
with v, greater than —1.
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To terminate this discussion of error we can state only subjective atti-
tudes. As far as the author is aware, in most applications the procedures
of this paper constitute the only way of avoiding costly computations if
one wishes to approximate the expected value of the greater of a set of
random variables. The numerical illustrations suggest situations in which
the error of approximation is great. However for many applications these
numerical results have satisfied the author that, relative to accuracy and
cost of computation, the procedure of this paper is the best available. In
case of doubt concerning accuracy, the author would make an ad hoc ap-
praisal of error in consideration of the specific distributions involved.

6. A NUMERICAL TABLE

TasLe III presents numerical results that can be obtained from the formu-
las of this paper.* The table applies when u; =0, 61=1, and 62<1. There
is no loss of generality in this restriction because a linear transformation can
be applied to any pair of normally distributed variables with the result that
the variables reduce to a pair satisfying this restriction. Indeed, for arbi-
trary wi, ps, 01, 02, and p, one can use the larger o as the unit of measure-
ment, and the u corresponding to the larger o can be transformed into zero;
in case o;=o03, either u can be transformed into zero.

In Table III, the parameters ue and o are written u and o, respectively.
The standard deviation of max(&, n) is written u,"* and is equal to
(vo—v")"*.  Furthermore, v; denotes the third central moment of max(£, 5)
divided by us” and vs is —3 plus the fourth central moment divided by us.
Finally, the table uses the notation

A=3(—ps/a)/(m—n")"", B=0y®(m/a)/(n—v")", C=A%+B,

C being defined only if p= =41, and the ambiguous sign in the definition of C'
is taken as plus if p=1 and minus if p=—1.

The utility of A and B is apparent from (6), which implies that
rlr, max(§, n)]=Ap+Bpe. If p=+£1, it follows that py=4p.. Hence, if
p= =1, the last expression becomes (A =+£B)p;, and r[r, max(¢, 7)]=Cp;.

The table includes results for the limiting case in which ¢2=0. The
analysis of this special case is relatively simple, and it is omitted.

The arguments of u, o, and p in the table were chosen as follows. Con-
sider negative values of u. If u were less than —5, the second variable 5
would almost never be greater than £, and max (¢, ) would have a distribu-

* Some of the numbers in Table III were obtained from a table prepared for
internal use by Project PERT, Special Projects Office of the U. S. Navy, Mr. WILLARD
Fazar, Director. This PERT table was constructed under the author’s supervision
as part of the study reported in reference 1.
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tion almost identical with the distribution of £; the expected value »; of
max (&, n) would be slightly greater than 0, the expected value of &.

In Table III there are no entries with x negative and »,<0.005. How-
ever, all combinations of u= — «© (0.5)0, ¢=0(0.2)1, and p=—1(0.5)1 are
included for which »,=0.005 (except that p must be zero when o is zero).
Hence, a bound is known for » in cases of missing tabular arguments.

If uis positive and large, »; will be slightly greater than u. For positive
v the tabular arguments are chosen so that corresponding to any missing
set of arguments, the value of » is between pu and u+0.005.

7. DERIVATIONS

THaE DERIVATIONS of the analytic results are long and tedious. We shall indicate
the course of these derivations and present milestones that turn up enroute. We
continue to use notation introduced at the beginning of Sec. 1.

The probability density of ¢ and 7 is

_ 1 -1 r z—p1\? T—pm \f Y—p y—p2 \?
@(x,y)— 2may oy (1—92)”2 exp{z (1—p? L( o1 >—2p( o1 )( [ )+< o2 )]}

0 0
We write vi= f f [max(z, Y o@,y) dx dy=viti,
— QV—00

where

1 * y—m )2
= e i —1 d
Vi1 Imor o2 (1—p)ii2 f_wy exp[ % P ] Y
[onls 2t [z =T o
’ -0 P 2 (1—112) o1 i (4] ’

and »;, is obtained from »;; by interchanges of z and y and of the subscripts 1 and 2.

Calculation of the inner integral followed by the substitution y=ps+0, 2 gives

m=f (pat0:2)? o(2) ® [(—63%%;&] dz.
| 1 (L=

Let v;1(x) be ;1 with u; replaced by . The derivative of this function with respect
to z will be denoted by a prime. The calculation of »;i(u1), followed by the substi-
tution z=[o1 (1—p2)V%/a) u— (us—u1)(ea—oip)/a?, followed by the substitution
ui=pst+am gives

vir(m) = —<p(m)f [”H_n (7= 1p) m—{-m o (=p)' u]i o(w) du.

a a

One can observe that »;:(»)=0. Hence

()= — f via(n) dn.

m



StaTisTicS RELATED TO max(£,7) AND #[r, max (£, )]

TABLE IIT

Iz P 41 pi' 7 V2 A4 C B

—4.5 —1.0 0.0085 0.9807 o0.116 —0.84 .0047
—4.0 —I1.0 0.0083 ©0.9809 ©0.116 —o0.72 0054
—1.0 o0.0170 0.9653 ©0.186 —1.28 0.9888

—o0.5 0.0062 0.9876 ©0.066 —o0.I2 1.0020 0.0106
—3.5 —1.0 0.0081 o0.9810 o©0.1I7 —o0.061 .0959
—1I1.0 o0.0177 0.9635 ©0.196 —I.I3 0.9804

—o0.5 ©0.0068 0.9857 ©0.078 —o0.14 1.0018 0.0102
—1I1.0 0.0323 ©0.094I1 0.282 —1.86 L0774

—o0.5 0.0I30 ©0.9753 ©0.II3 —O.I5 I1.0032 0.0222
—3.0 —1.0 0.0080 ©0.9810 o0.118 —o0.50 0.9965
—1.0 0.018¢9 0.9610 ©0.210 —0.97 0.9899

—o0.5 o0.0080 ©0.9826 ©0.098 —0.18 1.0014 0.0098
—I.0 ©0.0357 ©0.935I1 ©0.310 —1I.05% L9774

—o0.5 o0.0164 0.9699 ©0.142 —O0.I9 I.0028 0.0226
—1.0 0.0586 ©0.9059 ©0.403 —2.59 .9563

—0.5 0.0293 0.9546 0.179 —O0.I7 1.0040 0.0436

0.0 0.0086 0.9869 o©0.050 —0.06 ©0.9961 0.0172
—2.5 —1.0 0.0081 ©0.9807 ©0.120 —0.38 0.9969
—I.0 ©0.0207 0.9574 ©0.228 —o0.8I .0903

—o0.5 o0.0106 ©0.9770 ©0.I31 —0.23 I1.0004 0.0092
—1I1.0 0.0406 0.9268 0.346 —1.43 .9769

—o0.5 ©0.0207 ©0.9613 ©0.186 —o0.24 I1.0018 0.0232

0.0 0.0067 0.9864 o©0.072 —0.I2 ©0.9975 0.0097
—1.0 0.0076 0.8926 0.457 —2.30 L0541

—o0.5 0.0363 ©0.9425 ©0.232 —O0.20 I1.0030 0.0464

0.0 ©0.0123 ©0.9797 ©0.085 —O0.I0 ©0.9047 0.0208
—1.0 o.1012 0.8584 ©0.547 —3.52 .9188

—0.5 ©0.0577 ©0.9233 ©0.258 —o0.I3 1.0024 0.0806

0.0 0.0219 0.9720 ©0.088 —o0.07 0.9891I 0.0397

—2.0 0.0 0.0085 ©0.9799 ©0.I25 —O0.25 0.90973 0.0000
—1.0 0.0238 0.9518 0.255 —o0.061I .0904

—o0.5 o0.0161 0.9658 ©0.189 —o0.30 0.9978 0.0076

0.0 0.0096 ©0.9781 ©0.130 —o0.24 ©0.9969 0.0051
—I.0 0.0482 0.9149 ©0.397 —I.I§ .9759

—o0.5 0.028¢9 0.9462 ©0.259 —0.29 ©0.9990 0.0232

0.0 0.0I33 ©0.9729 ©0.I42 —O0.22 0.9953 0.0130
—1.0 o0.0809 ©0.8740 ©0.530 —I.04 .9507

—0.5 0.0482 0.9232 ©0.3I5 —0.23 1.0002 0.0498

0.0 ©0.0206 0.9648 ©0.153 —o0.I7 ©0.99I7 0.0268
—1.0 0.1208 0.8341 0.635 —3.08 .QII3

—0.5 0.074I 0.900I 0.343 —O0.I3 0.9996 0.089o

0.0 0.0326 0©0.9553 ©0.152 —o0.II 0.9849 0.0496
—I.0 0.I1666 0.7904 ©0.702 —4.66 .8540

—o0.5 0.1066 0.8806 ©0.338 —o0.04 ©0.9046 0.I4I0

0.0 0.0503 ©0.9471 0.133 —o0.05 0.9728 0.0830

0.5 ©0.0085 ©0.9914 ©0.021 —o0.02 0.9856 0.0230

i
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TABLE III—Continued

157

u p » py' 7 Vs A C B
—1I.5 0.0 ©0.0293 ©0.9425 ©0.295 —o0.36 0.990I .0000
—I.0 0.0607 0.8966 o.471 —o0.78 .9740
—o0.5 ©0.0458 ©0.9185 0.381 —0.33 0.9918 .0104
0.0 0.0319 0.9398 0.206 —o0.33 0.9889 .0I50
0.5 ©0.0195 ©0.9600 ©0.214 —o0.31 ©0.9888 .0106
1.0 0.0094 ©0.9780 0.136 ~—oO.II .9976
—1.0 o0.1016 0.8473 0.632 —1I.44 .0456
—o0.5 0.0609 ©0.8909 ©0.448 —o0.22 0.9936 .0516
0.0 ©0.040I ©0.9324 ©0.292 —O0.25 0.9847 .0351
0.5 ©0.0152 ©0.9702 ©0.152 —o0.22 0.9868 .0176
—I.0 0.1499 ©0.8007 0.757 —2.48 . Qo007
—o.5 o.1016 0.8639 0.476 —o0.07 0.9932 .0986
0.0 ©0.0547 ©0.9228 0.273 —o0.I14 0.9762 .0045
0.5 ©0.0152 ©0.9745 ©0.108 —o0.13 0.9824 .0262
—1.0 0©0.2039 ©0.7613 0.828 —3.97 .8351
—0.5 0.1403 0.8422 0.455 0.05 0.9874 . 1600
0.0 0.0762 0.9146 0.228 —o0.05 0.9614 .1056
0.5 ©0.0I195 ©0.9757 ©.074 —o0.06 0.9728 .0416
—1.0 0.2623 0.7333 0.847 —5.85 . 7456
—o.5 0.1851 0.8206 0.398 o0.10 0.9726 .2330
0.0 ©0.1048 o0.9120 0.167 0.00 0.9381 L1584
0.5 0.02903 ©0.9773 ©0.040 —0.0I 0.9548 .0684
—I.0 0.0 0.0833 0.8067 o0.582 —o0.24 ©0.9708 } .0000
—1.0 o0.1360 o0.8070 0.784 —o0.69 .0383
—o.5 o.1122 0.8354 ©0.669g —o0.08 0.9760 .0442
0.0 0.0882 0.8644 ©0.564 —o0.19 ©0.9678 .0378
0.5 ©0.0040 0.8943 0.464 —o0.28 0.9644 .0308
I.0 0.0405 ©0.9255 ©0.368 —o0.03 0.9892
—1.0 ©0.1952 ©0.7531 ©0.935 —I.§5I 0.8863
—o0.5 o©0.1500 0.8061 0.604 o.12 0.9780 . 1050
0.0 o0.1026 0.8594 ©0.507 —o0.07 ©0.9582 .0822
0.5 0.0545 ©0.9I49 0.342 —0.2I 0.9556 .0550
1.0 o0.0119 0.9736 0.181 0.04 0.9977
—1.0 ©0.2591 0.7096 1.010 —2.85 0.8095
—o0.5 0.1952 0.7840 0.643 0.27 0.9726 .1818
0.0 0.1205 0.8557 ©0.408 0.04  0.9400 L1371
0.5 ©0.0545 ©.9285 ©0.230 —0.I0 0.9416 .0812
—1.0 0.3261 0.6807 1.004 —4.60 . 7042
—o0.5 0.2467 0.7736 0.534 0.30 0.9552 . 2700
0.0 o0.1592 0.8586 0.284 0.08 o0.9114 .2026
0.5 ©0.0040 ©0.9393 ©0.129 —0.02 0.9180 L1172
—1.0 0.3956 ©0.6693 o0.950 —6.3I .5722
—0.5 0.303I 0.7779 0.416 0.2I 0.9232 .3624
0.0 0.1996 0.8721 o©0.174 o0.05 0.8718 .2749
0.5 ©0.0833 0.9538 o©0.052 o.0o0 0.8820 .1664
—o0.5 0.0 0.1978 0.7439 1.0I4 0.46 0.9295 . 0000
—I.0 0.2097 0.6837 1.210 o.1I .8685
—o0.5 0.2383 0.7144 1.003 0.72  0.9424 L0914
0.0 0.2048 0.7458 0.943 0.47 ©0.9226 .0837
0.5 0.1687 0.7786 0.842 0.24 ©0.9084 L0752
1.0 o0.1295 0.8143 ©0.774 0.48 .90667




TABLE II1—Continued
StaTisTics RELATED TO max(¢,7) AND 7[r, max(¢,7)]

© 4 I3 21 pi’? 71 Ya A C B
—0.5 0.4 —1.0 0.3438 0.6381 1.201 —o0.78 L7763
—o0.5 0.2877 0.6957 ©0.9064 0.86 o0.09422 0.1980
0.0 0.2252 0.7529 ©0.750 0.46 o0.9oIg 0.1707
0.5 0.1535 ©0.8136 0.603 0.14 0.8812 0.1392
1.0 0.0680 0.889g6 o0.578 0.35 0.9876
0.6 —I.0 0.4I192 o0.6109 1.237 —2.2I 0.6487
—o0.5 0.3438 0.6923 0.756 0.74 0.9238 0.3124
0.0 0.2574 o0.76g0 o0.501 0.36 0.8660 0.2607
0.5 ©0.1535 0.8476 0.355 o.10 0.8458 0.2004
1.0 0.0202 o0.960r 0.380 0.20 0.9975
0.8 —I.0 0.4956 0.6049 1.102 —3.66 0.4909
—0.5 0.4048 0.7063 ©0.534 0.47 0.8856 0.4242
0.0 0.2093 ©0.7971 o0.280 o.19 0.8178 0.3494
o.5 0.1687 0.8842 o0.153 0.06  0.8000 0.20648
1.0 —1.0 0.5727 0.6210 0.99I1 —4.35 .3179
—o0.5 0.4606 0.7380 0.393 o0.25 0.8314 0.5236
0.0 0.3491 0.8388 o0.153 o.07 0.7608 0.4314
0.5 0.1978 0.9284 0.044 0.0I  0.7448 0.3324
0.0 .0 0.0 0.3989 0.5838 1.641 2.41 0.8504 0.0000
.2 —I.0 0.4787 0.5393 1.766 3.15 L7417
—0.5 0.4442 0.5680 1.556 2.52 0.8802 0.1760
0.0 0.4068 0.5954 1.418 2.06 0.8398 0.1680
0.5 0.3656 0.6215 1.340 1.72 ©0.8044 0.1608
1.0 0.3I192 0.6466 1.374 1.36 .9279
0.4 —1.0 0.5585 o.5177 1.62% 3.00 .5704
—o0.5 0.4983 0.5759 1.163 1.91 0.83682 0.3472
0.0 0.4297 0.6288 o0.925 1.29 0.7952 0.3181
0.5 0.3478 0.6775 0.837 0.93 0.7380 0.2952
1.0 0.23904 ©0.7230 I.217 0.35 .9682
0.6 —I1.0 0.6383 0.5221 I.323 2.14 .3831
—0.5 0.5585 0.6067 o0.727 1.03 0.8242 0.4944
0.0 0.4652 0.6808 o©0.470 0.58 0.7344 0.4406
0.5 0.3478 0.7477 0.380 0.37 0.6688 0.4012
1.0 0.1506 0.8090 1.233 —o0.25 .0888
0.8 —1.0 0.7181 ©0.5517 1.075% 1.19 0.1813
—o0.5 0.6232 0.06570 0.454 0.42 o0.7610 0.6088
0.0 0.5I09 ©0.7477 ©0.209 0.17 0.6688 0.5350
0.5 0.3656 0.8284 o.111 0.09 0.6036 0.4828
1.0 0.0798 ©0.9g020 1.378 —0.34 0.9978
I.0 —I.0 0.7979 0.6028 0.995 0.8y 0.0000
—o0.5 0.6910 0.7229 0.375 0.24 0.6917 0.6917
0.0 0.5042 0.8256 o0.137 0.06  0.6056 0.6056
0.5 0.3989 ©0.9170 ©0.035 0.0I  0.5453 0.5453
0.5 .0 0.0 0.6978 0.4129 2.583 7.25  0.7472 0.0000
.2 —I1.0 0.7607 0.3967 2.407 15.13 .5197
—o0.5 0.7383 o0.4215 2.068 5.7  0.7750 0.3104
0.0 0.7048 0.4418 1.897 4.93 ©0.7062 0.3II5
0.5 0.6687 o0.4562 1.870 4.63 0.6416 0.3100
1.0 0.6295 0.4624 2.122 —0.39 0.8927
0.4 —1.0 0.8438 0.41560 1.712 16.69 0.2519
—o0.5 0.7877 ©0.4720 1.104 2.54 ©0.7298 0.55560
0.0 0.7252 0.5163 0.800 1.83 0.6222 0.5259
0.5 0.6535 ©0.5455 0.837 1.64 0.5190 0.5256
1.0 0.5680 0.5308 1.613 —4.13 .9660
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TABLE III—Continued

u o P v uy'? 7 Ve 4 c B
0.5 0.6 —I.0 0.9192 0.4049 1.167 12.89 0.0080
—o0.5 0.8438 0.5483 0.539 0.78 0.6574 0.6998
0.0 0.7574 0.6155 0.304 0.45 0.5427 0.6491
0.5 0.6535 0.6640 0.246 0.36  0.42064 0.6478
I.0 0.5202 0.6458 0.986 —3.34 0.9045
0.8 —I1.0 0.9956 ©0.5350 ©0.975 8.74 —o0.1809
—0.5 0.9048 0.03091 0.367 o0.25 0.5858 0.7830
0.0 0.7993 ©0.7253 0.130 0.08 0.4800 0.7190
0.5 0.6687 0.7953 ©0.047 0.04 0.3680 0.7114
1.0 —I.0 1.0727 0.6210 0.99I 6.05 —0.3179
—o0.5 0.9696 0.7380 0.303 0.25 0.5230 0.8314
0.0 0.8491 0.8388 0.153 0.07 0.4314 0.7608
0.5 0.6978 0.9284 o0.044 0.0I 0.3324 0.7448
1.0 .0 o.0 1.0833 0.2015 4.115 19.94 0.60066 ©0.0000
.2 —I1.0 1.1360 0.2825 2.763 59.97 0.151I5
—0.5 I.II22 0.3039 2.22§ 9.04 0.6074 0.5366
0.0 1.0882 0.3177 2.020 7.90 0.5I43 0.5266
0.5 1.0040 0.3225 2.058 7.94 0.42068 0.5348
I.0 1.0405 ©0.3I51 2.544 —17.1§ 0.9028
0.4 —I.0 I.I952 0.3552 I.3IQ 41.63 —o0.1899
—0.5 I.I500 0.4066 0.716 1.77 0.5200 0.7754
0.0 1.1026 0.4418 o0.510 I1.32 0.3997 0.7456
0.5 I.0545 ©0.4562 0.504 1.29 0.2754 0.7666
I.0 TI.0IIQ 0.4337 o©o.gor —8.81 0.9884
0.6 —I.0 I.250I 0.45I7 ©0.903 22.35 —o0.3861
—o0.5 I.I1952 ©0.5279 ©0.344 0.30 0.4500 0.8666
0.0 1.1265 0.5854 o©0.140 0.17 0.334I 0.8245
0.5 I.0545 0.6189 ©0.088 0.I4 ©0.2030 0.8476
0.8 —1.0 1.326r o0.5582 0.878 12.47 —0.5004
—o0.5 1.2467 0.6530 0.332 0.13 0.3998 0.9052
0.0 I1.1592 ©0.7306 ©0.109 0.02 0.2976 0.8569
0.5 1.06040 0.7883 o.o17 0.01  0.1746 0.8752
1.0 —I.0 1.3956 0.66093 ©0.950 7.72 —0.5722
—0.5 I1.3031 0.7779 ©0.416 0.21 0.30624 0.9232
0.0 1.1996 0.8721 o©o.174 0.05  ©0.2749 0.8718
0.5 1.0833 0.9538 o0.052 0.00 0.1604 0.8820
1.5 .0 0.0 1.52093 ©0.1483 6.865 57.58 0.4505 0.0000
.2 —I1.0 1.5607 0.2161 2.048 146.92 —0.3389
—0.5 1.5458 0.2336 1.50% 7.58 0.3810 o.%7800
0.0 I1.53I1Q9 ©0.2427 1.338 6.69 0.2011 0.7657
0.5 I.5I95 ©0.2432 I1.377 6.91  0.2002 0.7806
1.0 1.5004 ©0.2344 1.674 —40.84 0.9570
0.4 —I.0 1I.6016 ©0.3413 ©0.788 50.16 —0.5895
—o0.5 I1.5609 0.3830 0.329 0.56 0.3000 0.9244
0.0 1.5401 0.4086 ©0.181 0.46  0.2003 0.8088
0.5 I.5I152 0.4158 0.168 0.45 0.1026 0.9210
0.6 —I.0 1.6490Q9 0.4734 ©.700 21.17 —0.6785
—o0.5 1.6016 0.5367 ©0.244 0.04 0.2046 0.9592
0.0 1.5547 0.5818 0.065 0.03 0.170§5 0.9290
0.5 I.5152 0.6036 0.018 0.03 0.0706 0.9516
0.8 —I1.0 1.7039 ©0.6044 ©0.765 10.99 —o0.7210
—o0.5 1.6403 0.6859 0.308 0.04 0.2456 0.9698
0.0 1.5762 0.7506 ©0.098 —o0.01 o©0.1609 0.9371
0.5 1.5I195 ©0.7929 ©.0IO 0.00 0.0642 0.9576
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TABLE III—Continued
StaTisTics RELATED TO max(£,5) AND 7[r, max (£, 7]s

4 p 2 ui’? 7 Vs A C B
1.5 1I.0 —1.0 1.7623 0.7333 0.847 6.65 —0.7456
—o0.5 1.6851 0.8296 0.308 0.10 .2330 0.9726
0.0 1.6048 o©0.9120 ©0.167 0.00 .1584 0.9381
0.5 1.5203 ©0.9773 ©0.040 —o0.0I .0684 0.9548
2.0 o 0.0 2.0085 ©0.0755 12.323 189.16 .3014 0.0000
2 —1.0 2.0238 o0.1942 0.855 I55.25 —0.7344
—0.5 2.0161 ©0.2000 0.543 2.66 .1760 0.9358
0.0 2.0096 ©0.2113 ©0.463 2.46 .1180 0.923I
0.4 —I1.0 2.0482 0.3544 0.474 36.11 —0.8262
—o.5 2.0289 0.3837 0.152 0.05 .1424 0.9856
0.0 2.0133 0.30998 ©0.046 0.09 .0792 0.9689
0.6 —1.0 2.0809 ©0.509I ©0.535 14.76 —o0.84653
—o.5 2.0482 o.5570 0.185 —o0.06 L1374 0.9946
0.0 2.0206 0.5883 0.038 —o.01 .0734 0.9759
0.8 —I.0 2.1208 0.6571 0.621 7.80 —0.8525
—0.5 2.074I 0.7227 0.259 —O0.00 .1386 0.9960
0.0 2.0326 0.7714 ©0.077 —0.03 .0767 0.9756
1.0 —1.0 2.1666 0.7994 ©0.702 4.82 —o0.8540
—0.5 2.1006 0.8806 0.338 —o0.04 .14I0 0.9946
0.0 2.0503 0.947I ©0.133 —O0.0§ .0830 0.9728
0.5 2.0085 ©0.99I4 ©0.02I —0.02 .0230 0.9856
2.5 0.2 —1.0 2.5081 ©0.1936 ©0.202 88.51 —0.9177
4 —I.0 2.5207 0.3727 0.203 20.56 —0.9339
—o0.5 2.5106 ©0.3905 ©0.080 —0.05 .0580 1.00I0
0.6 —1.0 2.5406 0.5428 0.381 9.01 —o0.9312
—0.5 2.5207 0.5758 0.128 —o.10 .0044 1.0034
0.0 2.5067 ©0.5046 ©0.021 —o0.02 .0270 0.9930
0.8 —1.0 2.56076 0.7043 ©0.468 5.02 —0.9252
—o0.5 2.5363 0.7535 ©0.190 —O.I2 .0726 1.0036
0.0 2.5124 ©0.7862 ©0.049 —0.04 .0324 0.9916
1.0 —1.0 2.6012 0.8584 ©0.547 3.21 —0.9188
—o0.5 2.5577 ©0.9233 0.258 —o0.13 .0806 1.0024
0.0 2.5219 ©0.9720 ©0.088 —o0.07 .0397 0.9891
3.0 4 —1.0 3.0080 0.3864 0.167 10.48 —o0.9770
0.6 —1.0 3.0189 0.5679 0.247 5.14 — 0.9709
—o0.5 3.0080 0.5883 0.076 —o0.09 .0274 1.0036
0.8 —I.0 3.0357 ©0.74009 0.327 3.06 —0.9637
—o0.5 3.0164 ©0.7749 ©0.I124 —O0.I3 .0354 1.0040
1.0 —1.0 3.0586 0.90509 ©0.403 2.02 —0.9563
—0.5 3.0203 ©0.9546 0.179 —o0.17 .0436 1.0040
0.0 3.0086 ©0.9869 ©0.050 —o0.00 .0172 0.9961
3.5 .6 —1.0 3.5081 0.5838 o0.145 2.76 —0.9885
.8 —1.0 3.5177 0.7662 0.213 1.78 —0.9833
—o0.5 3.5068 0.7878 o.o71 —o.II .0158 1.0028
1.0 —I.0 3.5323 0.094II 0.282 1.22 —0.9774
—0.5 3.5I39 ©0.9753 ©0.II3 —O.I§ .0222 1.0032
4.0 0.8 —1.0 4.0083 0.7821 0.128 0.99 —0.9927
1.0 —I1.0 4.0170 0.9653 0.186 0.71 —0.9888
.5 4.0062 0.9876 0.066 ~—o.I2 .0106 1.0020
4.5 1.0 —1.0 4.5085 0.9807 0.116 0.39 —0.9047
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A separate calculation for each i=1, ..., 4 produces, with, again, a= (u1—u2)/a,
vii=ps P(—a)+loz (62—01p)/a] p(a),
va1=(u2?+04?) B(—a)+I[2 p2 02 (02—01p)/a+ (w1—p2) 022 (02—01p)%/ 0% 0(a),
v31= (k2?43 us 09?) ®(—a)+[3 (u22402?) 02 (62—01p)/a—02® (02—01 p)?/a?
+3ps (u1—p2) 022 (02—01p)%/ a3+ (u1—p2)? 09° (02—01p)%/a%] o(a),
var= (o6 wo? 022+3 04') ®(—a)+[(4 p3+12 ps 09?) 03 (ca—01p)/a
—4 p209® (09—01p)3/a@3+6 (w22+09?) wi—ps) 09® (02—01p)%/ad
=3 (u1—p2) 02 (02—01p)/a+4 py (u1—p2)? 02® (62—01p)3/ P
+(w1—n2)? 02! (62—01p)!/a"] ple).

In obtaining these results, one makes use of the identities a?=0:2+022—2 01 g2 p=
(62—01p)2+01? (1—p?)=(01—02p)?+0s? (1—p?) =01 (c1—02p)+0os (62—01p). As ob-
served above, v;2 can be written immediately fromw;:, and the sumv;=p;14»;, is avail-
able. These sums can be reduced respectively to (2) through (5).

It remains to calculate the coefficient of correlation (6). We assume that the
expected value and variance of 7 are 0 and 1, respectively. This involves no loss of
generality because a linear transformation of  will not alter any of the correlations
among the random variables considered. The probability density of £, 5, and 7 is

e, y, )= Q2r)™2 (01 02)" R™V2 exp(—14 Q),
where

R=1+42pp1 ps—p*—p1—p2?,
=|R[ [Q1—p2?) X24(1—p®) Y24 (1—p?) 1242 (p1p2—p) XY
+2 (opa—p1) Xt+2 (op1—p2) Yi],
with r=p1+o1 X, y=usto: Y
The expected value of the product r max(¢, 1) is

Elr max (¢, 7)]=(2m) 3% (01 05)"! B7112

f [ max(x, y) exp[2 - (Xz—{—Y2 2pXY)_' dz dy
®© — — 2
. [w ¢ exp{ 2Rp ll: e X—}-Bfl:? Y] } dt,

Ey=(2m (1-—p2)‘3’2f (m+eo X) dX

which reduces to Ei+E,; with

(p1—pa+01X) /o [-
f [(or—pp2) X+ (p2—pp1) Y] expL2(1

and E; obtained from E; by an interchange of X and ¥ and of the subscripts 1 and 2.
From this point the calculation, although not brief, involves manipulations simi-

(X2+ Y2—2pX Y):ll dy,
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lar to those used to obtain the »;. One obtains the surprisingly simple result
Eflr max(¢, n)]=01p1®(a)+02 p2 B(—a).

Since E(r)=0 and V(r)=1, we divide by the standard deviation of max(, ) to
obtain (6).
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