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Abstract 

An algorithm for technology mapping of combinational and 
sequential logic networks is proposed and applied to mapping 
into K-input lookup-tables (K-LUTs). The new algorithm avoids 
the hurdle of computing all K-input cuts while preserving the 
quality of the results, in terms of area and depth. The memory and 
runtime of the proposed algorithm are linear in circuit size and 
quite affordable even for large industrial designs. For example, 
computing a good quality 6-LUT mapping of an AIG with 1M 
nodes takes 150Mb of RAM and 1 minute on a typical laptop. An 
extension of the algorithm allows for sequential mapping, which 
searches the combined space of all possible mappings and 
retimings. This leads to an 18-22% improvement in depth with a 
3-5% LUT count penalty, compared to combinational mapping 
followed by retiming.  

1 Introduction 
Technology mapping transforms a technology-independent 

logic network, called the subject graph, into a network of logic 
nodes. For Field-Programmable Gate Arrays (FPGAs) each logic 
node is represented using a K-input look-up table (LUT) 
implementing any Boolean function up to K inputs. The subject 
graph is often represented as an AND-Inverter Graph (AIG) 
composed of two-input ANDs and inverters. 

Most structural methods of FPGA mapping [6][12] start by 
computing all, or nearly all, K-feasible cuts for each AIG node.  
Similar methods exist for standard cell mapping. The number of 
such cuts in a network with n nodes is O(nK) [3]. Next, the AIG 
nodes are traversed in a topological order and a dynamic 
programming approach is used to find an optimum-depth LUT 
mapping of the AIG. This mapping is transformed by applying 
area-recovery heuristics [3][11][12], which reduce the number of 
logic nodes while preserving the depth of the LUT network.  

It should be noted that some structural FPGA mapping 
algorithms, e.g. FlowMap [2] and CutMap [4], do not compute all 
cuts. Instead, one good cut is found at each node using the 
maximum-flow algorithm, but this approach tends to have higher 
computational complexity and relatively poor area. As a result, a 
recent state-of-the-art mapper produced by that same research 
group [6] is based on cut enumeration rather than maximum flow. 

In a large class of programmable architectures, the LUT size, K, 
varies between 3 and 6. For these relatively small LUT sizes, the 
traditional methods for LUT mapping based on cut enumeration 
work well. For K equal to 4 or 5, exhaustive cut enumeration 
[14][5] can be applied, resulting in an average of 10-40 cuts stored 
at each node. When the LUT size is 6, exhaustive cut enumeration 
may lead to 100+ cuts per node. As a result, cut representation 
takes substantial memory when mapping large Boolean networks. 
To remedy this, a partial cut enumeration can be used to prune the 
cuts resulting in reduced memory requirements [5]. However, cut 
pruning may result in losing good cuts, so that depth-optimality of 
mapping is not guaranteed. 

Another class of modern programmable architectures realizes 
logic networks using macro-cells, which typically contain LUTs 
and other logic gates. A straight-forward way of mapping logic 
into programmable macro-cells starts by computing all K-input 
cuts for each node where K is the number of macro-cell inputs. 
Unlike a K-input LUT, a K-input macro-cell cannot implement all 
logic functions of K inputs. Therefore, the local function of each 
cut is computed as a function of the cut inputs, and only those cuts 
whose logic function can be expressed by the macro-cell are used 
for mapping. However, methods based on cut enumeration cannot 
be applied because a macro-cell often has 8 or more inputs, and 
the number of 8-input cuts is extremely large and can be 
computed only for the smallest benchmarks.  

This paper presents a new algorithm for high-quality mapping 
whose runtime and memory requirements are linear in the number 
of nodes in the subject graph. The proposed algorithm avoids 
exhaustive cut enumeration by computing only a small fixed 
number (typically, 5-10) of “good” K-feasible cuts at each node.  

These are called priority cuts. The criteria used to prioritize the 
cuts differ depending on the mapping goals. For example, when 
mapping for depth, the cuts are prioritized first by depth, then by 
the number of inputs, and finally by area. Experiments indicate 
that such prioritization gives a depth-optimum mapping for 95% 
of all benchmarks and LUT sizes, even if only one cut is stored at 
each node! Increasing the number of priority cuts to 8 allows the 
algorithm to avoid area penalty due to not enumerating all cuts, 
while still offering dramatic improvements in memory and 
runtime, compared to exhaustive cut enumeration. 

For 6-input LUTs, with 8 priority cuts stored, memory is 
reduced 10x and runtime 5x, compared to previous approaches, 
while depth and area are comparable or better. For 8-input and 
larger LUTs, the reduction in memory and runtime is about 50x. 

The proposed algorithm is extended to sequential mapping, 
which searches a combined space of combinational K-LUT 
mapping and retiming of the resulting LUT network. This 
integrated mapping leads to a 20% reduction in depth, compared 
to the combinational LUT mapping followed by retiming 
performed as a post-processing step. 

We emphasize that although this paper was written with FPGA 
mapping in mind and the experiments were done as such, cut-
based mapping for standard cells, macro-cells, super-gates, etc. is 
similar. The use of priority cuts in this and other applications (e.g. 
rewriting) should be equally applicable and similar improvements 
can be expected. 

The rest of the paper is organized as follows. Section 2 
describes some background. Section 3 reviews the traditional 
FPGA mapping algorithm. Section 4 describes the new algorithm. 
Section 5 presents the extension to sequential mapping. Section 6 
reports experimental results. Section 7 concludes the paper and 
outlines future work. 

 
 



2 Background 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. The terms Boolean 
network and circuit are used interchangeably in this paper. 

A node n has zero or more fanins, i.e. nodes that are driving n, 
and zero or more fanouts, i.e. nodes driven by n. The primary 
inputs (PIs) are nodes without fanins in the current network. The 
primary outputs (POs) are a subset of nodes of the network. If the 
network is sequential, it contains registers whose inputs and 
output are treated as additional PIs/POs in combinational 
optimization and mapping. It is assumed that each node has a 
unique integer called its node ID. 

A network is K-bounded if the number of fanins of any node 
does not exceed K. A subject graph is a K-bounded network used 
for technology mapping. Any combinational network can be 
expressed as an AND-INV graph (AIG), composed of two-input 
ANDs and inverters. In the rest of the paper, the subject graph is 
assumed to be an AIG. 

A cut C of node n, called root, is a set of nodes of the network, 
called leaves, such that each path from a PI to n passes through at 
least one leaf. A trivial cut of node n is the cut {n} composed of 
the node itself. A non-trivial cut covers all the nodes found on the 
paths from the root to the leaves, including the root and excluding 
the leaves. A trivial cut does not cover any nodes. A cut is 
K-feasible if the number of nodes in it does not exceed K. A cut is 
said to be dominated if there is another cut of the same node, 
which is contained, set-theoretically, in the given cut.  

A fanin (fanout) cone of node n is a subset of all nodes of the 
network reachable through the fanin (fanout) edges from the given 
node. A maximum fanout free cone (MFFC) of node n is a subset 
of the fanin cone, such that every path from a node in the subset to 
the POs passes through n. Informally, the MFFC of a node 
contains all the logic used exclusively by the node. When a node 
is removed or substituted, the logic in its MFFC can be removed. 

The level of a node is the length of the longest path from any PI 
to the node. The node itself is counted towards the path lengths 
but the PIs are not. The network depth is the largest level of an 
internal node in the network. The depth and area of FPGA 
mapping is measured by the depth of the resulting LUT network 
and the number of LUTs in it.  

A mapping assigns one K-feasible cut, called representative cut, 
to each non-PI node of the subject graph. The procedure also 
computes and incrementally updates a subset of nodes whose 
representative cuts cover all non-PI nodes in the graph. These 
nodes are said to be used in the mapping. 

In this paper, a starting mapping is found by assigning one 
“good” cut at each node in the graph. Next, the mapping is 
updated by modifying the representative cut of one node at a time. 
Each such modification may change the set of used nodes. These 
changes may propagate recursively from the node towards the PIs. 

The area of the mapping is the number of nodes used in the 
mapping. Heuristic area recovery discussed in this paper is greedy 
in the sense that it modifies the representative cuts of the nodes, 
one at a time, in such a way that the area of the current mapping is 
reduced or remains the same.   

 
 
 
 
 
 
 

3 Traditional FPGA mapping 
Figure 3.0 outlines of the traditional FPGA technology mapping 

algorithm [2][6], as implemented in [12]. 
 

           

ttrraaddiittiioonnaallMMaapp((  aaiigg,,  KK  ))    {{             

          ////  ccoommppuuttee  aallll  KK--ffeeaassiibbllee  ccuuttss  aatt  eeaacchh  nnooddee  aanndd  ssaavvee  tthheemm    
        ttrraaddiittiioonnaallMMaappCCuuttEEnnuummeerraattiioonn((  aaiigg,,  KK  ));;  
           

          ////  ffiinndd  aa  mmiinn--ddeepptthh  ccuutt  aanndd  ssaavvee  iitt  aass  tthhee  rreepprreesseennttaattiivvee  aatt  eeaacchh  nnooddee  
          ttrraaddiittiioonnaallMMaappDDeepptthhOOrriieenntteedd((  aaiigg,,  KK  ));;  
           

          ////  uuppddaattee  tthhee  rreepprreesseennttaattiivvee  ccuutt  aatt  eeaacchh  nnooddee  ttoo  ssaavvee  aarreeaa  
          ttrraaddiittiioonnaallMMaappAArreeaaRReeccoovveerryy((  aaiigg,,  KK  ));;  
           

          ////  rreettuurrnn  tthhee  sseett  ooff  nnooddeess  uusseedd  iinn  tthhee  ffiinnaall  mmaappppiinngg  
          ttrraaddiittiioonnaallMMaappDDeerriivveeFFiinnaallMMaappppiinngg((  aaiigg,,  KK  ));;  
}}  

Figure 3.0. The traditional FPGA mapping. 
 

3.1 Cut enumeration 
Here we review the cut enumeration method from [14][5].  
Let A and B be two sets of cuts. For convenience we define the 

operation A ◊ B as:  
A ◊ B = { u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ k } 

Let Φ(n) denote the set of K-feasible cuts of node n. If n is an 
AND node, let n1 and n2 denote its fanins. The set of cuts of node 
n is computed using sets of cuts of its fanins:  

1 2

{{ }} : PI
( )

{{ }} ( ) ( ) : otherwise
n n

n
n n n

∈ 
Φ =  ∪ Φ ◊Φ 

. 

Performing cut computation for the nodes in a topological order 
guarantees that the fanin cuts, Φ(n1) and Φ(n2), are available when 
the node cuts, Φ(n), are computed. The set of computed cuts is 
filtered by removing dominated cuts. This helps reduce runtime 
and memory without sacrifiying quality of mapping. 

3.2 Depth-oriented mapping 
Figure 3.1 shows the pseudo-code of depth-oriented mapping 

performed in the traditional FPGA mapping. 
 

ttrraaddiittiioonnaallMMaappDDeepptthhOOrriieenntteedd((  aaiigg,,  lluutt__ssiizzee  ))  {{  
          ffoorr  eeaacchh  aaiigg  nnooddee  nn  iinn  ttooppoollooggiiccaall  oorrddeerr  {{  
                    ccuutt  ==  ffiinnddCCuuttMMiinniimmiizziinnggDDeepptthh((  nn  ));;  
                    sseettLLeevveell((  nn,,  ggeettLLeevveell((ccuutt))  ));;        sseettRReepprreesseennttaattiivveeCCuutt((  nn,,  ccuutt  ));;  
          }}  
}}  
 

ffiinnddCCuuttMMiinniimmiizziinnggDDeepptthh((  nnooddee  ))  {{  
          ccuutt__bbeesstt  ==  NNUULLLL;;  
          ffoorr  eeaacchh  ccuutt  cc  ooff  nnooddee    
                    iiff  ((  ccuutt__bbeesstt  ====  NNUULLLL  oorr  ggeettLLeevveell((ccuutt__bbeesstt))  >>  ggeettLLeevveell((cc))  ))  
                              ccuutt__bbeesstt  ==  cc;;  
          rreettuurrnn  ccuutt__bbeesstt;;  
}}  
 

ggeettLLeevveell((  ccuutt  ))  {{  
          lleevveell__mmaaxx  ==  --∞∞;;  
          ffoorr  eeaacchh  nnooddee  mm  iinn  ccuutt    
                    lleevveell__mmaaxx  ==  mmaaxx((  lleevveell__mmaaxx,,  ggeettLLeevveell((mm))  ));;  
          rreettuurrnn  11  ++  lleevveell__mmaaxx;;  
}}  

Figure 3.1. Depth-oriented traditional FPGA mapping. 

The AIG nodes are considered in a topological order. At each 
node, all cuts are enumerated and an optimum-depth cut is found. 
This cut along with its level is stored at the node. The level of a 
cut is computed by adding 1 to the largest level of the cut fanins. 



3.3 Area recovery 
Figure 3.3.1 shows the pseudo-code of the area recovery 

performed as part of the traditional FPGA mapping.  
 

ttrraaddiittiioonnaallMMaappAArreeaaRReeccoovveerryy((  aaiigg,,  lluutt__ssiizzee  ))  
{{  
          ccoommppuutteeRReeqquuiirreeddTTiimmeess((  aaiigg  ));;  
          ffoorr  eeaacchh  aaiigg  nnooddee  nn  iinn  ttooppoollooggiiccaall  oorrddeerr  {{  
                    ccuutt  ==  ffiinnddCCuuttMMiinniimmiizziinnggAArreeaaFFllooww((  nn  ));;  
                    sseettLLeevveell((  nn,,  ggeettLLeevveell((ccuutt))  ));;        sseettRReepprreesseennttaattiivveeCCuutt((  nn,,  ccuutt  ));;  
          }}  
          ccoommppuutteeRReeqquuiirreeddTTiimmeess((  aaiigg  ));;  
          ffoorr  eeaacchh  aaiigg  nnooddee  nn  iinn  ttooppoollooggiiccaall  oorrddeerr  {{  
                    ccuutt  ==  ffiinnddCCuuttMMiinniimmiizziinnggEExxaaccttLLooccaallAArreeaa((  nn  ));;  
                    sseettLLeevveell((  nn,,  ggeettLLeevveell((ccuutt))  ));;        sseettRReepprreesseennttaattiivveeCCuutt((  nn,,  ccuutt  ));;  
          }}  
}}  

Figure 3.3.1. Area recovery in traditional FPGA mapping. 

Previous work [12] has shown that applying two 
complementary heuristics in a given order produces good practical 
results. The first heuristic (area flow) has a global view and 
selects logic cones with more shared logic. The second heuristic 
(exact local area) provides a missing local view by minimizing the 
area exactly at each node. The following subsections give an 
overview of these heuristics. 

Figure 3.3.2 shows the pseudo-code of the required time 
computation used in the above area recovery procedure.  
 

ccoommppuutteeRReeqquuiirreeddTTiimmeess((  aaiigg  ))  
{{  
          ////  ffiinndd  tthhee  gglloobbaall  rreeqquuiirreedd  ttiimmeess    
          ttiimmee__mmaaxx  ==  ffiinnddLLaatteessttPPooAArrrriivvaallTTiimmee((  aaiigg  ));;  
           

          ////  iinniittiiaalliizzee  tthhee  rreeqquuiirreedd  ttiimmeess    
          ffoorr  eeaacchh  nnooddee  nn    
                      sseettRReeqquuiirreeddTTiimmee((  nn,,  ++∞∞  ));;  
          ffoorr  eeaacchh  PPOO  nnooddee  nn    
                      sseettRReeqquuiirreeddTTiimmee((  nn,,  ttiimmee__mmaaxx  ));;  
           

          ////  pprrooppaaggaattee  tthhee  rreeqquuiirreedd  ttiimmeess    
          ffoorr  eeaacchh  aaiigg  nnooddee  nn  iinn  rreevveerrssee  ttooppoollooggiiccaall  oorrddeerr  {{  
                    ttiimmee__rreeqq__nneeww  ==  ggeettRReeqquuiirreeddTTiimmee((  nn  ))  ––  11;;  
                    ccuutt  ==  ggeettRReepprreesseennttaattiivveeCCuutt((  nn  ));;  
                    ffoorr  eeaacchh  nnooddee  mm  iinn  ccuutt  {{  
                                  ttiimmee__rreeqq__oolldd  ==  ggeettRReeqquuiirreeddTTiimmee((  mm  ));;  
                                  sseettRReeqquuiirreeddTTiimmee((  mm,,  MMIINN((ttiimmee__rreeqq__oolldd,,  ttiimmee__rreeqq__nneeww))  ));;  
                    }}  
          }}  
}}  

Figure 3.3.2. Required time computation for the mapping. 

3.3.1 Global view heuristic 
Area flow [11] (effective area [5]) is a useful extension of the 

notion of area. It can be computed in one pass over the network 
from the PIs to the POs. Area flow for the PIs is set to 0. Area 
flow at a node n is:  

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n), 
where Area(n) is the number of LUTs needed to map the current 
best cut of node n. Area(n) can be 1 or larger if some of the fanins 
of the topmost LUT do not have external fanouts. Leafi(n) is the 
i-th leaf of the best cut at n, and NumFanouts(n) is the number of 
fanouts of node n in the currently selected mapping. If a node is 
not used in the current mapping, for the purposes of area flow 
computation, its fanout count is assumed to be 1. 

If nodes are processed from the PIs to the POs, computing area 
flow is fast. Area flow gives a global view of how useful the logic 
is in the cone for the current mapping. Area flow estimates 
sharing between cones without the need to re-traverse them. 

3.3.2 Local view heuristic 
The exact local area of a node is the area added to the mapping 

by selecting the current node into the mapping. The exact area of 
a cut is defined as the sum of areas of the LUTs in the MFFC of 
the cut, i.e. the LUTs to be added to the mapping if the cut is 
selected as the best one.  

The exact area of a cut is computed using a fast local DFS 
traversal of the subject graph starting from the root node of the 
cut. The reference counter of a node in the subject graph is equal 
to the number of times it is used in the current mapping, i.e. the 
number of times it appears as a leaf of the best cut at some other 
node, or as a PO. The exact area computation procedure is called 
for a cut. It adds the cut area to the local area being computed, 
dereferences the cut leaves, and recursively calls itself for the best 
cuts of the leaves whose reference counters are zero. This 
procedure recurs as many times as there are LUTs in the MFFC of 
the cut, for which it is called. This number is typically small, 
which explains why computing the exact area is reasonably quick. 
Once the exact area is computed, a similar recursive referencing is 
performed to reset the reference counters to their initial values, 
before computing the exact area for other cuts. 

3.4 Producing a mapped network 
The procedure used in the traditional mapping to derive the final 

LUT network is shown in Figure 3.4 [14]. The procedure assumes 
that one K-feasible representative cut is assigned at each node. 
Two sets of AIG nodes are supported: the nodes used in the 
mapping (M) and the nodes currently present in the frontier (F). 
While the frontier is not empty, one node (n) is extracted from it, 
added to the mapping, the representative cut of this node is 
computed, and the leaves of this cut are explored. If a leaf (m) 
does not belong to the mapping or is not a PI, this leaf is added to 
both the mapping and the frontier. When the frontier is empty, the 
procedure terminates and returns the set M of nodes used in the 
mapping. Each of these nodes will be implemented by a LUT. 
 

ffaassttMMaappDDeerriivveeFFiinnaallNNeettwwoorrkk((  aaiigg,,  lluutt__ssiizzee  ))  
{{  
          ////  sseett  tthhee  mmaappppeedd  nnooddeess  aanndd  tthhee  ffrroonnttiieerr  ttoo  bbee  tthhee  sseett  ooff  PPOO  nnooddeess  
          MM  ==  ∅∅;;      FF  ==  PPOOss;;  
 

          ////  eexxpplloorree  eeaacchh  nnooddee  iinn  tthhee  ffrroonnttiieerr  
          wwhhiillee  ((  FF  ≠≠  ∅∅  ))  {{  
                  nn  ==  eexxttrraaccttNNooddee((  FF  ));;  
                  iinnsseerrttNNooddee((  MM,,  nn  ));;  
                  ccuutt  ==  ggeettCCuutt((  nn  ));;  
                  ffoorr  eeaacchh  nnooddee  mm  iinn  ccuutt    
                            iiff  ((  mm  ∉∉  MM  oorr  mm  ∉∉  PPIIss  ))        
                                      FF  ==  FF  ∪∪  mm;;      
          }}  
           

          ////  rreettuurrnn  tthhee  sseett  ooff  nnooddeess  uusseedd  iinn  tthhee  ffiinnaall  mmaappppiinngg  
          rreettuurrnn  MM;;  
}}  

Figure 3.4. Producing the mapped LUT network. 
 
 

4 Proposed algorithm 
The proposed algorithm is similar to the traditional mapping 

presented in Section 3 in that it considers all nodes in a 
topological order and optimizes depth, followed by several passes 
of area recovery. In the end, the mapped LUT network is 
produced as in the traditional mapping (see above Section 3.4).  

The following subsections summarize the differences. 



4.1 Priority cuts 
The main difference is that the proposed algorithm, instead of 

computing all K-feasible cuts at each node, computes a small 
number, C, of K-feasible cuts at each node (typically, 4 ≤ C ≤ 8). 
When priority cuts are computed for a node, the trivial cut is 
added to the set of at most C non-trivial cuts at each fanin. This 
allows the cut enumeration procedure from Section 3.1 to produce 
at most (C+1)2 candidate cuts for the node. Next, the candidate 
cuts are sorted using a sorting function, and the best C cuts are 
found and stored at the node. In practice, sorting is done on the 
fly, by keeping only C best cuts at any time. The fanin cuts are 
filtered using the delay constraints, which helps reduce the 
number of cut pairs to be checked during cut enumeration. 

The above approach to computing priority cuts guarantees that 
at most C cuts are stored at each node while a mapping pass is 
taking place and only one cut represents each node at the end of 
the pass. The best cut may be updated in the next pass. The 
dynamic update of the cuts during multiple mapping passes makes 
up for not having all cuts available, by adjusting the current subset 
of priority cuts to reflect the needs of a particular phase of 
mapping (e.g. delay in one phase and area in another).  

Finally, the following minor modification of the priority cut 
computation procedure improves the results of mapping. The best 
cut from the previous pass is always added to the set of at most 
(C+1)2 candidate cuts derived using the fanins cuts. As a result, 
the mapping procedure never loses good cuts. If this is not done, 
the best cut may be lost due the heuristic nature of cut selection.  

4.2 Cut sorting 
Different sorting functions used in each mapping pass are 

summarized in Table 4.2. For example, the row labeled “Depth” 
corresponds to the depth-oriented mapping. In this case, cuts with 
smaller depths are used; if there is a tie, cuts of smaller size are 
used; if still there is a tie, cuts with smaller area flow are used. 
The tie-breaking criterion denoted “fanin refs” means “prefer cuts 
with smaller average fanin reference counters”. 

Table 4.2. Cut sorting criteria in each mapping pass. 

Mapping 
pass 

Primary 
criterion 

Tie-breaker 1 Tie-breaker 2 

Depth depth cut size area flow 
Depth2 depth area flow cut size 
Area flow area flow fanin refs depth 
Exact area exact area fanin refs depth 

There is a subtle but important difference between the sorting 
criteria for mapping passes “Depth” and “Depth2” in Table 4.2. 
Given two cuts with the same depth, “Depth” chooses the cut with 
fewer leaves, while “Depth2” chooses the cut with a smaller area 
flow. When minimization of depth is required, the first option is 
preferable because it uses cuts with the smallest number of inputs, 
which allow for mapping as many nodes as possible without 
increasing the depth of the mapped network. 

While experimenting with a large set of industrial benchmarks, 
it was found that, if an initial mapping is computed using the first 
sorting option, the depth is optimal for 95% of industrial 
benchmarks, even if only one cut is used at each node (C=1). 

4.3 Depth-oriented mapping 
The traditional algorithm starts by performing one pass of 

depth-oriented mapping. This substantially increases area but area 
recovery brings it down because all cuts are available.  

To get a comparable result with priority cuts, it was found 
helpful to compute several independent mappings while using 
different sorting functions and stitch them together. Our current 
implementation starts by computing three independent mappings 
using sorting criteria “Depth”, “Depth2”, and “Area flow” listed 
in Table 4.2. The first mapping gives the depth constraint. This 
mapping is used for the critical and near-critical nodes. The 
second and third mappings are used on the non-critical paths. This 
approach minimizes the depth and produces a good starting point 
for area recovery. 

4.4 Area recovery 
Area recovery is performed using a sequence of passes over the 

nodes of the subject graph. The traditional mapping can visit the 
nodes in any order because it stores all cuts. In the proposed 
algorithm, only a topological order can be used because a reverse 
order does not allow re-computing priority cuts in each pass. 
However, it was found experimentally that restricting the order to 
a topological one is advantageous for most benchmarks [12].  

Several passes of area recovery are based on the sorting 
functions listed in Table 4.2 as “Area flow” and “Exact area”. In 
each pass, after the priority cuts are re-computed, the first priority 
cut is set as the representative cut at each node.  

To further improve the quality of area recovery, a simple cut 
expansion procedure is applied to the best cuts stored at each node 
between the mapping passes. This procedure moves the cut 
boundary towards the PIs while maximizing the number of shared 
fanin as long as the number of cut inputs does not exceed K.  

4.5 Memory management 
A key observation enabling substantial memory savings in the 

proposed algorithm is that, no matter how many priority cuts are 
used and how many mapping passes are performed, the mapper 
needs to store only one representative (best) cut of each node.  

The complete set of C priority cuts should be stored only for the 
nodes on the mapping frontier, which includes the nodes that are 
already mapped but have at least one unmapped fanout. The 
largest size of the mapping frontier (called crosscut) depends on 
the subject graph and the topological order used. It was found 
experimentally that the crosscut size for most of the large 
industrial benchmarks is less than 1% of the total number of 
nodes. As a result, the memory needed to store the priority cuts 
for the nodes on the frontier is typically small compared to the 
memory needed for the subject graph and the representative cuts.  

Our implementation determines the crosscut before mapping 
and allocates memory upfront for all the representative cuts and 
priority cuts. During mapping, the priority cut memory is recycled 
as the nodes are added to and removed from the frontier. 

Note that efficient memory management is not only important 
for reducing the overall memory requirements, but also a smaller 
memory footprint reduces the number of CPU-cache misses, 
which improves the speed of mapping large designs. 

4.6 Summary of improvements 
This section summarizes the heuristics used by the algorithm: 
• Compute and use priority cuts (a small subset of all cuts) 
• Dynamically update the priority cuts in each mapping pass. 
• Use different sorting criteria in each mapping pass 
• Include the best cut from the previous pass into the set of 

candidate cuts of the current pass 
• Consider several depth-oriented mappings to get a good 

starting point for area recovery 
• Use complementary heuristics for area recovery 



• Perform cut expansion as part of area recovery 
• Use efficient memory management 
The proposed algorithm often outperforms traditional mapping, 

which uses the set of all cuts. This confirms that the above 
heuristics work well together, leading to intelligent tie-breaking 
and increasing the quality of priority cuts computed. Another 
reason for superior quality is that the traditional mappers often 
prune cuts saved at a node when they reach some maximum. 
Effectively, this results in selecting a subset of cuts randomly. 

4.7 Complexity analysis 
A previous mapper coming closest to the proposed one, is 

CutMap [4]. The differences are the following. To find an 
optimum-depth mapping, CutMap uses FlowMap [2] whose 
complexity is O(Knm), where K is the LUT size while n and m are 
the number of nodes and edges in the subject graph. In contrast, 
the proposed algorithm uses heuristics with complexity O(Kn). 
Area recovery performed by CutMap uses the maximum-flow 
algorithm with complexity O(2KmnK/2+1) [4]. In contrast, the 
proposed algorithm performs heuristic area recovery using several 
methods with complexity O(Kn). Experimental results confirm 
this linear runtime. 

5 Sequential mapping 
So far, we discussed priority-cut-based mapping for 

combinational networks. Traditionally, if a network has registers, 
it is divided at the register boundary, the register inputs and 
outputs are added to the sets of POs and PIs, respectively; only 
combinational logic is mapped. In some cases, combinational 
mapping of sequential circuits is followed by retiming, which 
moves the registers over some combinational nodes to reduce the 
depth, measured as the longest combinational path after retiming.  

However, both combinational mapping alone and combinational 
mapping followed by retiming often fail to find the best depth 
feasible for a sequential network when mapping and retiming are 
synergistically combined [14]. In this case, instead of fixing the 
network structure by combinational mapping and then retiming 
the mapped network, a sequential mapping is performed. During 
sequential mapping, depth after retiming is evaluated without 
fixing the network structure, which often reduces the depth. The 
resulting mapping has the property that there exists a feasible 
retiming, such that this mapping followed by this retiming gives 
the best depth over all possible mappings and retimings.  

Below we discuss modifications of the proposed algorithm, 
which transform it into a robust sequential mapping algorithm that 
works as described above. Our experiments confirm that, for a 
large number of benchmarks, a marginal increase in LUTs and 
registers incurred by the sequential mapping (which includes 
retiming) is often outweighed by a substantial reduction in depth.  

5.1 Computing sequential arrival times 
The notion of arrival times was extended to sequential circuits 

in [14]. Assume that (a) the clock period φ is given, and (b) the 
register boundary is “transparent”. The arrival times of the register 
outputs are found by subtracting the clock period φ from the 
arrival times of the register inputs. The key observation is that 
passing over the register boundary delays signals by one clock 
period. The resulting arrival times at the register output and 
internal nodes may be negative. 

In the combinational case, when the arrival times of the PIs are 
known, the arrival times of the POs are known at the end of each 
mapping pass. The situation changes in the sequential case 
because the arrival times keep changing during several iterations 

due to propagating arrival times through the register boundaries. 
This leads to the procedure shown in Figure 5.1. 

This procedure initializes the PI arrival times to the given values 
(here assumed to be 0) while arrival times of all other nodes are 
set to −∞ . Next, it iterates over the network while computing and 
updating the arrival times at each node and propagating them over 
the register boundaries. Note that the cut minimizing depth is 
updated during each pass since arrival times can change. Since the 
maximum of the previous and current value is computed, the 
arrival times increase monotonically at each node. This leads to 
one of the three outcomes: (a) the arrival times at all nodes 
converged, (b) the arrival times at a PO exceed φ, and (c) an 
iteration limit is reached. 

 In the case (a) the clock period is proved to be feasible, 
meaning that there exists a mapping/retiming such that the longest 
combinational path does not exceed φ levels. The cases (b) and (c) 
mean that the given clock period is infeasible. In this case φ can 
be increased and sequential arrival times can be re-computed.  

A binary search procedure was used for finding the smallest 
feasible clock period φ [14]. An advantage of this procedure is 
that it reduces the number of sequential arrival time computations. 
A disadvantage is that each change in φ resets the arrival times. A 
practical alternative is to start with a loose bound on φ and 
gradually tighten it until it becomes infeasible. In this case, the 
arrival times do not have to be reset, which may lead to faster 
convergence. Typically, the runtime is affordable in both cases 
when a tight upper bound on φ is available.  

ccoommppuutteeSSeeqquueennttiiaallAArrrriivvaallTTiimmeess((  aaiigg,,  φ, iter_limit  ))  {{  
 

          ////  iinniittiiaalliizzee  sseeqquueennttiiaall  aarrrriivvaall  ttiimmeess  
          ffoorr  eeaacchh  aaiigg  nnooddee  nn          sseettLLeevveell((  nn,,  --∞∞  ));;  
          ffoorr  eeaacchh  aaiigg  PPII  nn                    sseettLLeevveell((  nn,,  00  ));;  
 

          ////  iitteerraattiivveellyy  ccoommppuuttee  sseeqquueennttiiaall  aarrrriivvaall  ttiimmeess  
          ffoorr  ((  iitteerr  ==  00;;  iitteerr  <<  iitteerr__lliimmiitt::  iitteerr++++))  {{  
                    cchhaannggeess  ==  00;;  
                    ffoorr  eeaacchh  AAIIGG  nnooddee  nn  iinn  ttooppoollooggiiccaall  oorrddeerr  {{  
                              ccuutt  ==  ffiinnddCCuuttMMiinniimmiizziinnggDDeepptthh((  nn  ));;  
                              iiff  ((  ggeettLLeevveell((nn))  <<  ggeettLLeevveell((ccuutt))  ))    {{  
                                          sseettLLeevveell((  nn,,  ggeettLLeevveell((ccuutt))  ));;          
                                          sseettRReepprreesseennttaattiivveeCCuutt((  nn,,  ccuutt  ));;  
                                          cchhaannggeess  ==  11;;  
                              }}                                  
                    }}  
                    ////  cchheecckk  tthhee  PPOO  aarrrriivvaall  ttiimmeess    
                  ffoorr  eeaacchh  aaiigg  PPOO  nn    
                                iiff  ((ggeettLLeevveell((nn))  >>  φ  ))  
                                            rreettuurrnn  ((aarrrriivvaall  ttiimmeess  aatt  tthhee  PPOO  eexxcceeeeddeedd  tthhee  cclloocckk  ppeerriioodd))  
                    ////  cchheecckk  iiff  tthhee  ccoommppuuttaattiioonn  ccoonnvveerrggeedd  
                    iiff  ((  !!cchhaannggeess  ))  
                                rreettuurrnn  ((aarrrriivvaall  ttiimmeess  aarree  ccoommppuutteedd));;  
                    ////  pprrooppaaggaattee  aarrrriivvaall  ttiimmee  tthhrroouugghh  tthhee  rreeggiisstteerr  bboouunnddaarryy  
                  ffoorr  eeaacchh  aaiigg  rreeggiisstteerr  rr  iinn  ttooppoollooggiiccaall  oorrddeerr    
                                sseettLLeevveell((  rreeggOOuuttppuutt((rr)),,  ggeettLLeevveell((rreeggIInnppuutt((rr))))  --  φ  ));;  
        }}  
          rreettuurrnn  ((iitteerraattiioonn  lliimmiitt  hhaass  bbeeeenn  rreeaacchheedd));;  
}}  

Figure 5.1. Computing sequential arrival times. 

5.2 Deriving the resulting network 
For a given feasible clock period φ, the resulting network can be 

derived as follows: (1) Apply combinational mapping by setting 
the arrival times of the additional PIs and POs, which stand for the 
register outputs and inputs, to be the sequential arrival times 
computed while checking feasibility of φ. (2) Using these arrival 
times, run minimum-delay retiming to bring the network to its 
minimum feasible delay  φ.  



We emphasize that sequential mapping is separated into two 
phases: (1) computation of best clock period φ and associated 
sequential arrival times, and (2) combinational mapping using 
these arrival times. This separation allows for applying the delay-
based priority-cut method in the first phase, and priority cut and 
combinational mapping with efficient area recovery heuristics in 
the second phase. Once the mapping is established, efficient 
incremental retiming is applied, which controls the increase in the 
number of registers [15]. We know that the mapping is such that it 
can be retimed to meet clock period φ. Thus, the clock period is 
the same as in a previous work [13] but the numbers of LUTs and 
registers increase less, because both efficient area recovery can be 
used as well as area controlled retiming [15]. Also, this two-step 
computation greatly reduces the implementation complexity.  

This two-step computation of the resulting network differs from 
the one introduced in [14] and generalized in [13], where the final 
mapping and retiming cannot be separated because of the use of 
sequential cuts (cuts crossing the current register boundary).  

Overall, the increase in quality of results due to using mapping 
with the “transparent” register boundary was found to outweigh 
some degradation in quality due to not using sequential cuts. Our 
experiments indicate that, compared to combinational mapping 
followed by retiming, the average gain in delay due to the former 
is about 20% while the average loss in delay due to not using 
more general sequential cuts is only about 1%.  

6 Experimental results 
A new LUT-mapper based on priority cuts was implemented in 

ABC [1] as command “if”. The experiments were run on a 
Windows laptop with a 1.6GHz Pentium-4 CPU and 2GB of 
RAM. The mapped networks were verified using combinational 
and sequential equivalence checkers in ABC. 

6.1 Comparison with the traditional mapping 
To compare against state-of-the-art technology mappers, the 

same selection of public domain benchmarks was used as in 
previous work [6][12]. To derive AIGs used as subject graphs, the 
benchmarks were structurally hashed and balanced.  

The summary of mapping results for K = {4, 6, 8, 10} in terms 
of depth, the number of LUTs, memory (in megabytes), and 
runtime (in seconds) are shown in Table 6.1. Columns “old” refer 
to the mapper based on exhaustive cut enumeration with 
improvements [12]. Columns “new” refer to the proposed mapper. 

The proposed mapper was allowed to use at most 8 cuts per 
node. In the traditional mapper, the pruning parameters used for 
cut enumeration were set as follows. At each node, at most 2,000 
cuts are computed. The resulting cuts were sorted in the 
increasing number of inputs. At most 1,000 of the smallest cuts 
were stored at each node and allowed to propagate during cut 
enumeration. For small values of K (K ≤ 6), the limit of 1000 cuts 
at a node was never exceeded. In this case, the traditional 
mapping found an optimum-depth solution. 

The first line of Table 6.1 shows that for small LUT sizes (K = 4 
and K = 6) the new mapper produces depth-optimal mappings. 
The new mapper improves the depth for K = 8 and K = 10 
because the traditional mapper uses pruning to compute a random 
subset of K-input cuts for large K. For the same reason, the gain 
in runtime of cut computation for K = 10 is less than for K = 8. 

The second line of Table 6.1 shows that the new mapper 
produces comparable area. This is a result of applying a well-
tuned set of heuristics summarized in Section 4.6.  

The last two lines of Table 6.1 show that the new mapper 
dramatically reduces memory and runtime, compared to a 
traditional mapper. For 10-input cuts, the gains are 30x in memory 

and 20x in runtime. The gains would be larger if pruning was not 
used during cut enumeration in the traditional method. 

In addition to the results shown in Table 6.1, a number of 
experiments were performed to test the new mapper on large 
industrial benchmarks. In summary, the new mapper gives the 
same delay, and reduces memory and runtime 2-100x depending 
on the LUT size, while area is on average the same or better.  

The improvement in area due to priority cuts is more substantial 
when structural choices are used. Experiments with a diverse set 
of industrial benchmarks have shown a 2% improvement in area, 
compared to the mapper [12], which uses choices in the context of 
exhaustive cut enumeration. The table with these detailed results 
is not included due to page limitation. 

6.2 Performance on large benchmarks 
The second set of experiments was designed to show the 

performance of the new mapper on large benchmarks with large 
LUT sizes. This experiment was run on multiple timeframes of 
sequential benchmark wb_conmax.v with 1130 PIs, 1416 POs, and 
770 registers taken from the IWLS 2005 benchmarks set [9]. 
Mapping multiple timeframes is relevant to hardware emulation 
where unrolled designs are emulated to achieve faster simulation.  

Table 6.2.1 shows the results of LUT mapping with K = 10 and 
C = 1. The first column shows the number of timeframes used to 
unroll wb_conmax.v. The next two columns show the number of 
levels and nodes in the subject graph. The last four columns show 
depth, the number of LUTs, memory, and runtime of the proposed 
algorithm. Note that the runtime is linear in the size of the AIG.  

Table 6.2.2 contains the results of mapping with variable K and  
C = 1, applied to 100 frames of wb_conmax.v. The first column of 
the table shows the LUT size. The last four columns show depth, 
the number of LUTs, memory, and runtime of the proposed 
algorithm. Note that the runtime is fairly insensitive to cut size – a 
factor of 4 in cut size increases runtime only about 50%. 

Tables 6.2.1 and 6.2.2 report runtimes of the depth-oriented 
phase of FPGA mapping. Area recovery was not performed in this 
experiment. These tables demonstrate that the proposed algorithm 
has reasonable memory and runtime requirements when applied to 
AIGs with millions of nodes. (The reason why the area of FPGA 
mapping increased when the LUT size increased from 10 to 12 in 
Table 6.2.2 will be investigated.) 

6.3 Sequential mapping for academic benchmarks 
The results of sequential mapping for academic benchmarks are 

presented in Table 6.3. The proposed algorithm was run with K = 
6 and C = 8. The structural choices [13] were not used during 
mapping. The circuits selected are a subset of ISCAS’89 
benchmarks, for which sequential mapping (which searches a 
combined space of all combinational mappings and retimings) 
improved the depth over depth-oriented combinational mapping.  

Table 6.3 lists the benchmark name, the number of primary 
inputs, primary outputs, and AIG nodes in the subject graph. The 
other sections of the table compare depth and area, expressed in 
terms of LUTs, and runtime, in seconds, for the following three 
mapping options: combinational mapping (M), combinational 
mapping followed by retiming (M+R), and the proposed 
sequential mapping (MR). Combinational and sequential mapping 
are performed using ABC command if and if –s, respectively. 
Retiming for depth is the heuristic algorithm [15] implemented in 
ABC as command retime –M 4. 

Table 6.3 shows that sequential mapping (MR) leads to a 
substantial (29%) reduction in depth, compared to combinational 
mapping followed by retiming (M+R) when the reduction is 
smaller (7%). The LUT area after M+R does not change because 



the same logic structure is used, while after MR, area is increased 
3%. The number of LUTs and registers is increased by 3% and 
8%, respectively, for these benchmarks. The increase in registers 
could be controlled by using a more sophisticated retiming 
algorithm. In addition, the algorithm in [15] can be used to create 
a delay/area tradeoff curve if the optimum delay is not required. 

Currently sequential mapping is about five times slower than 
combinational, due mainly to the binary search for the optimum 
clock period. Several improvements have been proposed and are 
waiting to be implemented. 

6.4 Sequential mapping for industrial benchmarks 
To test if these results are representative, the results of 

sequential mapping for a diverse set of industrial benchmarks are 
shown in Table 6.4 with the same notation as in Table 6.3. Before 
mapping, the benchmarks were optimized using two AIG 
rewriting scripts, resyn followed by resyn2.  

Table 6.4 confirms that the improvements in depth (25%) and 
the increase in area (4.5% in LUTs and 8% in registers) after the 
sequential mapping applied to the industrial benchmarks are close 
to those observed for the academic benchmarks. For comparison, 
mapping followed by retiming leads to a 7% reduction in delay, 
and 0% and 1% increase in LUTs and registers, respectively.  

7 Conclusions and future work 
This paper presents a new algorithm for technology mapping, 

which avoids exhaustive cut enumeration. 
On close investigation, it is clear that the traditional mapping 

dramatically over-computes during cut enumeration, wasting 
memory and runtime. This is especially true for large cuts (K = 8 
and more) because less than 1% of all computed cuts are selected 
to represent a node during technology mapping. Therefore, the 
development of a linear-time algorithm is well motivated.  

This paper proposes the first efficient algorithm of this type and 
may lead to a new class of mapping solutions. The experimental 
results, applied to LUT mapping, show that the proposed 
algorithm, although heuristic in nature, almost always finds an 
optimum-depth mapping while substantially reducing runtime and 
memory compared to algorithms based on cut enumeration.  

Future work will proceed in the following directions: 
(1) Extending the algorithm to work for macro-cells and 

standard cells, which can only implement a subset of the Boolean 
functions with the given number of inputs; for this purpose, a 
modified cut computation procedure will be used, which 
guarantees that the Boolean function of the cut stored at each node 
can be implemented by the macro-cell. 

(2) Combining the mapper with a global placement engine to 
make mapping placement- and congestion-aware; in this case, the 
cuts computed by the mapper will be evaluated based on a linear 
combination of their logic cost as well as their placement cost. A 
simple way of expressing the placement cost might be to estimate 
the total change in wirelength needed to implement a cut. 

(3) Finally, mapping is a versatile logic synthesis engine 
customizable by setting the cut area and/or depth to be a user-

specified combination of parameters to be optimized. Several such 
variations of mapping have been explored, in particular those 
geared to minimize the number of CNF clauses [7] needed to 
represent the given logic network. The future work will consider 
other applications of mapping, such as those minimizing the 
number of factored form literals or BDD nodes.  
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Table 6.1. Ratios of improvements of the proposed vs. traditional combinational K-LUT mapping. 

Ratio K = 4 K = 6 K = 8 K = 10 
 old new old new old new old new 

Depth 1.00 1.00 1.00 1.00 1.00 0.93 1.00 0.82 
Area 1.00 0.99 1.00 1.00 1.00 0.96 1.00 0.84 
Memory 1.00 0.12 1.00 0.06 1.00 0.05 1.00 0.05 
Runtime 1.00 0.78 1.00 0.15 1.00 0.02 1.00 0.03 

 



Table 6.2.1. Performance of the proposed algorithm on multiple timeframes of wb_conmax.v 

AIG statistics FPGA mapping statistics Computer resources Number 
of frames Levels Nodes Depth Number of LUTs Memory, Mb Runtime, sec 

1 18 40381 4 11069 2.21 0.02 
20 284 808135 61 205143 42.68 0.42 
40 564 1616285 121 409149 85.28 0.84 
60 844 2424435 181 613155 127.88 1.35 
80 1124 3232585 241 817161 170.48 1.77 

100 1404 4040735 301 1021167 213.09 2.25 

Table 6.2.2. Performance of the proposed algorithm on 100 timeframes of wb_conmax.v for different LUT sizes 

LUT FPGA mapping statistics Computer resources 
size Depth Number of LUTs Memory, Mb Runtime, sec 

4 602 2279062 114.74 1.89 
6 451 1704400 147.52 2.00 
8 352 1205319 180.30 2.19 

10 301 1021167 213.09 2.24 
12 276 1044370 245.87 2.50 
14 227 799618 278.65 2.55 
16 202 694954 311.43 2.62 

Table 6.3. Comparison of sequential vs. combinational 6-LUT mapping for academic benchmarks. 

Statistics Depth (LUTs) Area (LUTs) Area (registers) Time, sec 
Name PI PO AIG M M+R MR M M+R MR M M+R MR M MR 

s13207 31 121 2136 6 5 4 1047 1047 1056 648 666 733 0.06 0.23
s1423 17 5 441 10 10 9 131 131 146 74 74 80 0.01 0.04
s15850.1 77 150 2755 9 7 6 1012 1012 1042 516 552 533 0.09 0.38
s15850 14 87 2760 9 7 5 1002 1002 1015 563 640 640 0.09 0.43
s35932 35 320 8129 3 3 2 2320 2320 2320 1728 1728 1872 0.19 0.45
s382 3 6 100 3 3 2 36 36 34 21 21 22 0.00 0.04
s38417 28 106 8171 6 6 5 2623 2623 2901 1564 1564 1636 0.28 3.02
s38584.1 38 304 9967 6 6 5 2491 2491 2558 1276 1276 1299 0.31 0.81
s38584 12 278 9989 6 6 5 2504 2504 2517 1301 1301 1327 0.31 0.92
s9234.1 36 39 1349 5 5 3 319 319 332 145 145 171 0.03 0.10
s9234 19 22 1349 5 4 3 321 321 330 160 181 182 0.02 0.14
Ratio    1.00 0.93 0.71 1.00 1.00 1.03 1.00 1.03 1.08 1.00 4.54

Table 6.4. Comparison of sequential vs. combinational 6-LUT mapping for industrial benchmarks. 

Statistics Depth (LUTs) Area (LUTs) Area (registers) 
Name PI PO M M+R MR M M+R MR M M+R MR 

Ex01 1233  3438 4 4 3 5893 5893 6198 1704 1704 1775
Ex02 1211  5658 5 5 4 8029 8029 8177 1597 1597 1660
Ex03 3431  9646 7 5 4 20021 20021 20213 7930 7944 8050
Ex04 4566 15023 12 11 10 29542 29558 30146 7966 7997 7988
Ex05 827  2099 12 12 11 6198 6198 6591 1677 1677 1805
Ex06 11987 59894 6 6 5 102718 102714 123155 26447 26443 26741
Ex06 526  1627 14 13 10 9024 9024 9414 3061 3126 3885
Ex07 1747  7944 6 5 4 11188 11209 11227 2893 2925 2854
Ex09 4710 11447 7 7 6 22591 22580 23171 7277 7272 7282
Ex10 1859  5347 9 9 7 9265 9265 9853 753 753 1053
Ex11 6112 18898 21 21 19 58258 58258 61750 11772 11772 13248
Ex12 129  4096 3 3 2 34304 34304 33376 19840 19840 20800
Ex13 18037 47101 7 7 5 65589 65636 65710 17532 17578 17539
Ex14 842  3100 21 20 18 13414 13410 15165 5039 5071 5271
Ex15 926  2535 11 10 8 4677 4677 4957 475 548 729
Ex16 350  848 5 5 4 2842 2842 2888 1271 1271 1404
Ex17 153  234 7 7 6 502 502 544 148 148 149
Ex18 2851 10008 7 4 3 18832 18832 18966 7057 7131 7087
Ex19 470  2365 14 14 13 8582 8576 9227 3271 3264 3343
Ex20 519  1346 7 7 5 2374 2374 2431 575 575 623
Ratio   1.000 0.933 0.755 1.000 1.000 1.045 1.000 1.010 1.083

 


