
Combinational and Sequential Mapping with Priority Cuts

Alan Mishchenko Sungmin Cho Satrajit Chatterjee Robert Brayton

Department of EECS, University of California, Berkeley
{alanmi, smcho, satrajit, brayton}@eecs.berkeley.edu

Abstract

An algorithm for technology mapping of combinational and
sequential logic networks is proposed and applied to mapping
into K-input lookup-tables (K-LUTs). The new algorithm avoids
the hurdle of computing all K-input cuts while preserving the
quality of the results, in terms of area and depth. The memory and
runtime of the proposed algorithm are linear in circuit size and
quite affordable even for large industrial designs. For example,
computing a good quality 6-LUT mapping of an AIG with 1M
nodes takes 150Mb of RAM and 1 minute on a typical laptop. An
extension of the algorithm allows for sequential mapping, which
searches the combined space of all possible mappings and
retimings. This leads to an 18-22% improvement in depth with a
3-5% LUT count penalty, compared to combinational mapping
followed by retiming.

1 Introduction
Technology mapping transforms a technology-independent

logic network, called the subject graph, into a network of logic
nodes. For Field-Programmable Gate Arrays (FPGAs) each logic
node is represented using a K-input look-up table (LUT)
implementing any Boolean function up to K inputs. The subject
graph is often represented as an AND-Inverter Graph (AIG)
composed of two-input ANDs and inverters.

Most structural methods of FPGA mapping [6][12] start by
computing all, or nearly all, K-feasible cuts for each AIG node.
Similar methods exist for standard cell mapping. The number of
such cuts in a network with n nodes is O(nK) [3]. Next, the AIG
nodes are traversed in a topological order and a dynamic
programming approach is used to find an optimum-depth LUT
mapping of the AIG. This mapping is transformed by applying
area-recovery heuristics [3][11][12], which reduce the number of
logic nodes while preserving the depth of the LUT network.

It should be noted that some structural FPGA mapping
algorithms, e.g. FlowMap [2] and CutMap [4], do not compute all
cuts. Instead, one good cut is found at each node using the
maximum-flow algorithm, but this approach tends to have higher
computational complexity and relatively poor area. As a result, a
recent state-of-the-art mapper produced by that same research
group [6] is based on cut enumeration rather than maximum flow.

In a large class of programmable architectures, the LUT size, K,
varies between 3 and 6. For these relatively small LUT sizes, the
traditional methods for LUT mapping based on cut enumeration
work well. For K equal to 4 or 5, exhaustive cut enumeration
[14][5] can be applied, resulting in an average of 10-40 cuts stored
at each node. When the LUT size is 6, exhaustive cut enumeration
may lead to 100+ cuts per node. As a result, cut representation
takes substantial memory when mapping large Boolean networks.
To remedy this, a partial cut enumeration can be used to prune the
cuts resulting in reduced memory requirements [5]. However, cut
pruning may result in losing good cuts, so that depth-optimality of
mapping is not guaranteed.

Another class of modern programmable architectures realizes
logic networks using macro-cells, which typically contain LUTs
and other logic gates. A straight-forward way of mapping logic
into programmable macro-cells starts by computing all K-input
cuts for each node where K is the number of macro-cell inputs.
Unlike a K-input LUT, a K-input macro-cell cannot implement all
logic functions of K inputs. Therefore, the local function of each
cut is computed as a function of the cut inputs, and only those cuts
whose logic function can be expressed by the macro-cell are used
for mapping. However, methods based on cut enumeration cannot
be applied because a macro-cell often has 8 or more inputs, and
the number of 8-input cuts is extremely large and can be
computed only for the smallest benchmarks.

This paper presents a new algorithm for high-quality mapping
whose runtime and memory requirements are linear in the number
of nodes in the subject graph. The proposed algorithm avoids
exhaustive cut enumeration by computing only a small fixed
number (typically, 5-10) of “good” K-feasible cuts at each node.

These are called priority cuts. The criteria used to prioritize the
cuts differ depending on the mapping goals. For example, when
mapping for depth, the cuts are prioritized first by depth, then by
the number of inputs, and finally by area. Experiments indicate
that such prioritization gives a depth-optimum mapping for 95%
of all benchmarks and LUT sizes, even if only one cut is stored at
each node! Increasing the number of priority cuts to 8 allows the
algorithm to avoid area penalty due to not enumerating all cuts,
while still offering dramatic improvements in memory and
runtime, compared to exhaustive cut enumeration.

For 6-input LUTs, with 8 priority cuts stored, memory is
reduced 10x and runtime 5x, compared to previous approaches,
while depth and area are comparable or better. For 8-input and
larger LUTs, the reduction in memory and runtime is about 50x.

The proposed algorithm is extended to sequential mapping,
which searches a combined space of combinational K-LUT
mapping and retiming of the resulting LUT network. This
integrated mapping leads to a 20% reduction in depth, compared
to the combinational LUT mapping followed by retiming
performed as a post-processing step.

We emphasize that although this paper was written with FPGA
mapping in mind and the experiments were done as such, cut-
based mapping for standard cells, macro-cells, super-gates, etc. is
similar. The use of priority cuts in this and other applications (e.g.
rewriting) should be equally applicable and similar improvements
can be expected.

The rest of the paper is organized as follows. Section 2
describes some background. Section 3 reviews the traditional
FPGA mapping algorithm. Section 4 describes the new algorithm.
Section 5 presents the extension to sequential mapping. Section 6
reports experimental results. Section 7 concludes the paper and
outlines future work.

2 Background
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms Boolean
network and circuit are used interchangeably in this paper.

A node n has zero or more fanins, i.e. nodes that are driving n,
and zero or more fanouts, i.e. nodes driven by n. The primary
inputs (PIs) are nodes without fanins in the current network. The
primary outputs (POs) are a subset of nodes of the network. If the
network is sequential, it contains registers whose inputs and
output are treated as additional PIs/POs in combinational
optimization and mapping. It is assumed that each node has a
unique integer called its node ID.

A network is K-bounded if the number of fanins of any node
does not exceed K. A subject graph is a K-bounded network used
for technology mapping. Any combinational network can be
expressed as an AND-INV graph (AIG), composed of two-input
ANDs and inverters. In the rest of the paper, the subject graph is
assumed to be an AIG.

A cut C of node n, called root, is a set of nodes of the network,
called leaves, such that each path from a PI to n passes through at
least one leaf. A trivial cut of node n is the cut {n} composed of
the node itself. A non-trivial cut covers all the nodes found on the
paths from the root to the leaves, including the root and excluding
the leaves. A trivial cut does not cover any nodes. A cut is
K-feasible if the number of nodes in it does not exceed K. A cut is
said to be dominated if there is another cut of the same node,
which is contained, set-theoretically, in the given cut.

A fanin (fanout) cone of node n is a subset of all nodes of the
network reachable through the fanin (fanout) edges from the given
node. A maximum fanout free cone (MFFC) of node n is a subset
of the fanin cone, such that every path from a node in the subset to
the POs passes through n. Informally, the MFFC of a node
contains all the logic used exclusively by the node. When a node
is removed or substituted, the logic in its MFFC can be removed.

The level of a node is the length of the longest path from any PI
to the node. The node itself is counted towards the path lengths
but the PIs are not. The network depth is the largest level of an
internal node in the network. The depth and area of FPGA
mapping is measured by the depth of the resulting LUT network
and the number of LUTs in it.

A mapping assigns one K-feasible cut, called representative cut,
to each non-PI node of the subject graph. The procedure also
computes and incrementally updates a subset of nodes whose
representative cuts cover all non-PI nodes in the graph. These
nodes are said to be used in the mapping.

In this paper, a starting mapping is found by assigning one
“good” cut at each node in the graph. Next, the mapping is
updated by modifying the representative cut of one node at a time.
Each such modification may change the set of used nodes. These
changes may propagate recursively from the node towards the PIs.

The area of the mapping is the number of nodes used in the
mapping. Heuristic area recovery discussed in this paper is greedy
in the sense that it modifies the representative cuts of the nodes,
one at a time, in such a way that the area of the current mapping is
reduced or remains the same.

3 Traditional FPGA mapping
Figure 3.0 outlines of the traditional FPGA technology mapping

algorithm [2][6], as implemented in [12].

ttrraaddiittiioonnaallMMaapp((aaiigg,, KK)) {{

 //// ccoommppuuttee aallll KK--ffeeaassiibbllee ccuuttss aatt eeaacchh nnooddee aanndd ssaavvee tthheemm
 ttrraaddiittiioonnaallMMaappCCuuttEEnnuummeerraattiioonn((aaiigg,, KK));;

 //// ffiinndd aa mmiinn--ddeepptthh ccuutt aanndd ssaavvee iitt aass tthhee rreepprreesseennttaattiivvee aatt eeaacchh nnooddee
 ttrraaddiittiioonnaallMMaappDDeepptthhOOrriieenntteedd((aaiigg,, KK));;

 //// uuppddaattee tthhee rreepprreesseennttaattiivvee ccuutt aatt eeaacchh nnooddee ttoo ssaavvee aarreeaa
 ttrraaddiittiioonnaallMMaappAArreeaaRReeccoovveerryy((aaiigg,, KK));;

 //// rreettuurrnn tthhee sseett ooff nnooddeess uusseedd iinn tthhee ffiinnaall mmaappppiinngg
 ttrraaddiittiioonnaallMMaappDDeerriivveeFFiinnaallMMaappppiinngg((aaiigg,, KK));;
}}

Figure 3.0. The traditional FPGA mapping.

3.1 Cut enumeration
Here we review the cut enumeration method from [14][5].
Let A and B be two sets of cuts. For convenience we define the

operation A ◊ B as:
A ◊ B = { u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ k }

Let Φ(n) denote the set of K-feasible cuts of node n. If n is an
AND node, let n1 and n2 denote its fanins. The set of cuts of node
n is computed using sets of cuts of its fanins:

1 2

{{ }} : PI
()

{{ }} () () : otherwise
n n

n
n n n

∈ 
Φ =  ∪ Φ ◊Φ 

.

Performing cut computation for the nodes in a topological order
guarantees that the fanin cuts, Φ(n1) and Φ(n2), are available when
the node cuts, Φ(n), are computed. The set of computed cuts is
filtered by removing dominated cuts. This helps reduce runtime
and memory without sacrifiying quality of mapping.

3.2 Depth-oriented mapping
Figure 3.1 shows the pseudo-code of depth-oriented mapping

performed in the traditional FPGA mapping.

ttrraaddiittiioonnaallMMaappDDeepptthhOOrriieenntteedd((aaiigg,, lluutt__ssiizzee)) {{
 ffoorr eeaacchh aaiigg nnooddee nn iinn ttooppoollooggiiccaall oorrddeerr {{
 ccuutt == ffiinnddCCuuttMMiinniimmiizziinnggDDeepptthh((nn));;
 sseettLLeevveell((nn,, ggeettLLeevveell((ccuutt))));; sseettRReepprreesseennttaattiivveeCCuutt((nn,, ccuutt));;
 }}
}}

ffiinnddCCuuttMMiinniimmiizziinnggDDeepptthh((nnooddee)) {{
 ccuutt__bbeesstt == NNUULLLL;;
 ffoorr eeaacchh ccuutt cc ooff nnooddee
 iiff ((ccuutt__bbeesstt ==== NNUULLLL oorr ggeettLLeevveell((ccuutt__bbeesstt)) >> ggeettLLeevveell((cc))))
 ccuutt__bbeesstt == cc;;
 rreettuurrnn ccuutt__bbeesstt;;
}}

ggeettLLeevveell((ccuutt)) {{
 lleevveell__mmaaxx == --∞∞;;
 ffoorr eeaacchh nnooddee mm iinn ccuutt
 lleevveell__mmaaxx == mmaaxx((lleevveell__mmaaxx,, ggeettLLeevveell((mm))));;
 rreettuurrnn 11 ++ lleevveell__mmaaxx;;
}}

Figure 3.1. Depth-oriented traditional FPGA mapping.

The AIG nodes are considered in a topological order. At each
node, all cuts are enumerated and an optimum-depth cut is found.
This cut along with its level is stored at the node. The level of a
cut is computed by adding 1 to the largest level of the cut fanins.

3.3 Area recovery
Figure 3.3.1 shows the pseudo-code of the area recovery

performed as part of the traditional FPGA mapping.

ttrraaddiittiioonnaallMMaappAArreeaaRReeccoovveerryy((aaiigg,, lluutt__ssiizzee))
{{
 ccoommppuutteeRReeqquuiirreeddTTiimmeess((aaiigg));;
 ffoorr eeaacchh aaiigg nnooddee nn iinn ttooppoollooggiiccaall oorrddeerr {{
 ccuutt == ffiinnddCCuuttMMiinniimmiizziinnggAArreeaaFFllooww((nn));;
 sseettLLeevveell((nn,, ggeettLLeevveell((ccuutt))));; sseettRReepprreesseennttaattiivveeCCuutt((nn,, ccuutt));;
 }}
 ccoommppuutteeRReeqquuiirreeddTTiimmeess((aaiigg));;
 ffoorr eeaacchh aaiigg nnooddee nn iinn ttooppoollooggiiccaall oorrddeerr {{
 ccuutt == ffiinnddCCuuttMMiinniimmiizziinnggEExxaaccttLLooccaallAArreeaa((nn));;
 sseettLLeevveell((nn,, ggeettLLeevveell((ccuutt))));; sseettRReepprreesseennttaattiivveeCCuutt((nn,, ccuutt));;
 }}
}}

Figure 3.3.1. Area recovery in traditional FPGA mapping.

Previous work [12] has shown that applying two
complementary heuristics in a given order produces good practical
results. The first heuristic (area flow) has a global view and
selects logic cones with more shared logic. The second heuristic
(exact local area) provides a missing local view by minimizing the
area exactly at each node. The following subsections give an
overview of these heuristics.

Figure 3.3.2 shows the pseudo-code of the required time
computation used in the above area recovery procedure.

ccoommppuutteeRReeqquuiirreeddTTiimmeess((aaiigg))
{{
 //// ffiinndd tthhee gglloobbaall rreeqquuiirreedd ttiimmeess
 ttiimmee__mmaaxx == ffiinnddLLaatteessttPPooAArrrriivvaallTTiimmee((aaiigg));;

 //// iinniittiiaalliizzee tthhee rreeqquuiirreedd ttiimmeess
 ffoorr eeaacchh nnooddee nn
 sseettRReeqquuiirreeddTTiimmee((nn,, ++∞∞));;
 ffoorr eeaacchh PPOO nnooddee nn
 sseettRReeqquuiirreeddTTiimmee((nn,, ttiimmee__mmaaxx));;

 //// pprrooppaaggaattee tthhee rreeqquuiirreedd ttiimmeess
 ffoorr eeaacchh aaiigg nnooddee nn iinn rreevveerrssee ttooppoollooggiiccaall oorrddeerr {{
 ttiimmee__rreeqq__nneeww == ggeettRReeqquuiirreeddTTiimmee((nn)) –– 11;;
 ccuutt == ggeettRReepprreesseennttaattiivveeCCuutt((nn));;
 ffoorr eeaacchh nnooddee mm iinn ccuutt {{
 ttiimmee__rreeqq__oolldd == ggeettRReeqquuiirreeddTTiimmee((mm));;
 sseettRReeqquuiirreeddTTiimmee((mm,, MMIINN((ttiimmee__rreeqq__oolldd,, ttiimmee__rreeqq__nneeww))));;
 }}
 }}
}}

Figure 3.3.2. Required time computation for the mapping.

3.3.1 Global view heuristic
Area flow [11] (effective area [5]) is a useful extension of the

notion of area. It can be computed in one pass over the network
from the PIs to the POs. Area flow for the PIs is set to 0. Area
flow at a node n is:

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n),
where Area(n) is the number of LUTs needed to map the current
best cut of node n. Area(n) can be 1 or larger if some of the fanins
of the topmost LUT do not have external fanouts. Leafi(n) is the
i-th leaf of the best cut at n, and NumFanouts(n) is the number of
fanouts of node n in the currently selected mapping. If a node is
not used in the current mapping, for the purposes of area flow
computation, its fanout count is assumed to be 1.

If nodes are processed from the PIs to the POs, computing area
flow is fast. Area flow gives a global view of how useful the logic
is in the cone for the current mapping. Area flow estimates
sharing between cones without the need to re-traverse them.

3.3.2 Local view heuristic
The exact local area of a node is the area added to the mapping

by selecting the current node into the mapping. The exact area of
a cut is defined as the sum of areas of the LUTs in the MFFC of
the cut, i.e. the LUTs to be added to the mapping if the cut is
selected as the best one.

The exact area of a cut is computed using a fast local DFS
traversal of the subject graph starting from the root node of the
cut. The reference counter of a node in the subject graph is equal
to the number of times it is used in the current mapping, i.e. the
number of times it appears as a leaf of the best cut at some other
node, or as a PO. The exact area computation procedure is called
for a cut. It adds the cut area to the local area being computed,
dereferences the cut leaves, and recursively calls itself for the best
cuts of the leaves whose reference counters are zero. This
procedure recurs as many times as there are LUTs in the MFFC of
the cut, for which it is called. This number is typically small,
which explains why computing the exact area is reasonably quick.
Once the exact area is computed, a similar recursive referencing is
performed to reset the reference counters to their initial values,
before computing the exact area for other cuts.

3.4 Producing a mapped network
The procedure used in the traditional mapping to derive the final

LUT network is shown in Figure 3.4 [14]. The procedure assumes
that one K-feasible representative cut is assigned at each node.
Two sets of AIG nodes are supported: the nodes used in the
mapping (M) and the nodes currently present in the frontier (F).
While the frontier is not empty, one node (n) is extracted from it,
added to the mapping, the representative cut of this node is
computed, and the leaves of this cut are explored. If a leaf (m)
does not belong to the mapping or is not a PI, this leaf is added to
both the mapping and the frontier. When the frontier is empty, the
procedure terminates and returns the set M of nodes used in the
mapping. Each of these nodes will be implemented by a LUT.

ffaassttMMaappDDeerriivveeFFiinnaallNNeettwwoorrkk((aaiigg,, lluutt__ssiizzee))
{{
 //// sseett tthhee mmaappppeedd nnooddeess aanndd tthhee ffrroonnttiieerr ttoo bbee tthhee sseett ooff PPOO nnooddeess
 MM == ∅∅;; FF == PPOOss;;

 //// eexxpplloorree eeaacchh nnooddee iinn tthhee ffrroonnttiieerr
 wwhhiillee ((FF ≠≠ ∅∅)) {{
 nn == eexxttrraaccttNNooddee((FF));;
 iinnsseerrttNNooddee((MM,, nn));;
 ccuutt == ggeettCCuutt((nn));;
 ffoorr eeaacchh nnooddee mm iinn ccuutt
 iiff ((mm ∉∉ MM oorr mm ∉∉ PPIIss))
 FF == FF ∪∪ mm;;
 }}

 //// rreettuurrnn tthhee sseett ooff nnooddeess uusseedd iinn tthhee ffiinnaall mmaappppiinngg
 rreettuurrnn MM;;
}}

Figure 3.4. Producing the mapped LUT network.

4 Proposed algorithm
The proposed algorithm is similar to the traditional mapping

presented in Section 3 in that it considers all nodes in a
topological order and optimizes depth, followed by several passes
of area recovery. In the end, the mapped LUT network is
produced as in the traditional mapping (see above Section 3.4).

The following subsections summarize the differences.

4.1 Priority cuts
The main difference is that the proposed algorithm, instead of

computing all K-feasible cuts at each node, computes a small
number, C, of K-feasible cuts at each node (typically, 4 ≤ C ≤ 8).
When priority cuts are computed for a node, the trivial cut is
added to the set of at most C non-trivial cuts at each fanin. This
allows the cut enumeration procedure from Section 3.1 to produce
at most (C+1)2 candidate cuts for the node. Next, the candidate
cuts are sorted using a sorting function, and the best C cuts are
found and stored at the node. In practice, sorting is done on the
fly, by keeping only C best cuts at any time. The fanin cuts are
filtered using the delay constraints, which helps reduce the
number of cut pairs to be checked during cut enumeration.

The above approach to computing priority cuts guarantees that
at most C cuts are stored at each node while a mapping pass is
taking place and only one cut represents each node at the end of
the pass. The best cut may be updated in the next pass. The
dynamic update of the cuts during multiple mapping passes makes
up for not having all cuts available, by adjusting the current subset
of priority cuts to reflect the needs of a particular phase of
mapping (e.g. delay in one phase and area in another).

Finally, the following minor modification of the priority cut
computation procedure improves the results of mapping. The best
cut from the previous pass is always added to the set of at most
(C+1)2 candidate cuts derived using the fanins cuts. As a result,
the mapping procedure never loses good cuts. If this is not done,
the best cut may be lost due the heuristic nature of cut selection.

4.2 Cut sorting
Different sorting functions used in each mapping pass are

summarized in Table 4.2. For example, the row labeled “Depth”
corresponds to the depth-oriented mapping. In this case, cuts with
smaller depths are used; if there is a tie, cuts of smaller size are
used; if still there is a tie, cuts with smaller area flow are used.
The tie-breaking criterion denoted “fanin refs” means “prefer cuts
with smaller average fanin reference counters”.

Table 4.2. Cut sorting criteria in each mapping pass.

Mapping
pass

Primary
criterion

Tie-breaker 1 Tie-breaker 2

Depth depth cut size area flow
Depth2 depth area flow cut size
Area flow area flow fanin refs depth
Exact area exact area fanin refs depth

There is a subtle but important difference between the sorting
criteria for mapping passes “Depth” and “Depth2” in Table 4.2.
Given two cuts with the same depth, “Depth” chooses the cut with
fewer leaves, while “Depth2” chooses the cut with a smaller area
flow. When minimization of depth is required, the first option is
preferable because it uses cuts with the smallest number of inputs,
which allow for mapping as many nodes as possible without
increasing the depth of the mapped network.

While experimenting with a large set of industrial benchmarks,
it was found that, if an initial mapping is computed using the first
sorting option, the depth is optimal for 95% of industrial
benchmarks, even if only one cut is used at each node (C=1).

4.3 Depth-oriented mapping
The traditional algorithm starts by performing one pass of

depth-oriented mapping. This substantially increases area but area
recovery brings it down because all cuts are available.

To get a comparable result with priority cuts, it was found
helpful to compute several independent mappings while using
different sorting functions and stitch them together. Our current
implementation starts by computing three independent mappings
using sorting criteria “Depth”, “Depth2”, and “Area flow” listed
in Table 4.2. The first mapping gives the depth constraint. This
mapping is used for the critical and near-critical nodes. The
second and third mappings are used on the non-critical paths. This
approach minimizes the depth and produces a good starting point
for area recovery.

4.4 Area recovery
Area recovery is performed using a sequence of passes over the

nodes of the subject graph. The traditional mapping can visit the
nodes in any order because it stores all cuts. In the proposed
algorithm, only a topological order can be used because a reverse
order does not allow re-computing priority cuts in each pass.
However, it was found experimentally that restricting the order to
a topological one is advantageous for most benchmarks [12].

Several passes of area recovery are based on the sorting
functions listed in Table 4.2 as “Area flow” and “Exact area”. In
each pass, after the priority cuts are re-computed, the first priority
cut is set as the representative cut at each node.

To further improve the quality of area recovery, a simple cut
expansion procedure is applied to the best cuts stored at each node
between the mapping passes. This procedure moves the cut
boundary towards the PIs while maximizing the number of shared
fanin as long as the number of cut inputs does not exceed K.

4.5 Memory management
A key observation enabling substantial memory savings in the

proposed algorithm is that, no matter how many priority cuts are
used and how many mapping passes are performed, the mapper
needs to store only one representative (best) cut of each node.

The complete set of C priority cuts should be stored only for the
nodes on the mapping frontier, which includes the nodes that are
already mapped but have at least one unmapped fanout. The
largest size of the mapping frontier (called crosscut) depends on
the subject graph and the topological order used. It was found
experimentally that the crosscut size for most of the large
industrial benchmarks is less than 1% of the total number of
nodes. As a result, the memory needed to store the priority cuts
for the nodes on the frontier is typically small compared to the
memory needed for the subject graph and the representative cuts.

Our implementation determines the crosscut before mapping
and allocates memory upfront for all the representative cuts and
priority cuts. During mapping, the priority cut memory is recycled
as the nodes are added to and removed from the frontier.

Note that efficient memory management is not only important
for reducing the overall memory requirements, but also a smaller
memory footprint reduces the number of CPU-cache misses,
which improves the speed of mapping large designs.

4.6 Summary of improvements
This section summarizes the heuristics used by the algorithm:
• Compute and use priority cuts (a small subset of all cuts)
• Dynamically update the priority cuts in each mapping pass.
• Use different sorting criteria in each mapping pass
• Include the best cut from the previous pass into the set of

candidate cuts of the current pass
• Consider several depth-oriented mappings to get a good

starting point for area recovery
• Use complementary heuristics for area recovery

• Perform cut expansion as part of area recovery
• Use efficient memory management
The proposed algorithm often outperforms traditional mapping,

which uses the set of all cuts. This confirms that the above
heuristics work well together, leading to intelligent tie-breaking
and increasing the quality of priority cuts computed. Another
reason for superior quality is that the traditional mappers often
prune cuts saved at a node when they reach some maximum.
Effectively, this results in selecting a subset of cuts randomly.

4.7 Complexity analysis
A previous mapper coming closest to the proposed one, is

CutMap [4]. The differences are the following. To find an
optimum-depth mapping, CutMap uses FlowMap [2] whose
complexity is O(Knm), where K is the LUT size while n and m are
the number of nodes and edges in the subject graph. In contrast,
the proposed algorithm uses heuristics with complexity O(Kn).
Area recovery performed by CutMap uses the maximum-flow
algorithm with complexity O(2KmnK/2+1) [4]. In contrast, the
proposed algorithm performs heuristic area recovery using several
methods with complexity O(Kn). Experimental results confirm
this linear runtime.

5 Sequential mapping
So far, we discussed priority-cut-based mapping for

combinational networks. Traditionally, if a network has registers,
it is divided at the register boundary, the register inputs and
outputs are added to the sets of POs and PIs, respectively; only
combinational logic is mapped. In some cases, combinational
mapping of sequential circuits is followed by retiming, which
moves the registers over some combinational nodes to reduce the
depth, measured as the longest combinational path after retiming.

However, both combinational mapping alone and combinational
mapping followed by retiming often fail to find the best depth
feasible for a sequential network when mapping and retiming are
synergistically combined [14]. In this case, instead of fixing the
network structure by combinational mapping and then retiming
the mapped network, a sequential mapping is performed. During
sequential mapping, depth after retiming is evaluated without
fixing the network structure, which often reduces the depth. The
resulting mapping has the property that there exists a feasible
retiming, such that this mapping followed by this retiming gives
the best depth over all possible mappings and retimings.

Below we discuss modifications of the proposed algorithm,
which transform it into a robust sequential mapping algorithm that
works as described above. Our experiments confirm that, for a
large number of benchmarks, a marginal increase in LUTs and
registers incurred by the sequential mapping (which includes
retiming) is often outweighed by a substantial reduction in depth.

5.1 Computing sequential arrival times
The notion of arrival times was extended to sequential circuits

in [14]. Assume that (a) the clock period φ is given, and (b) the
register boundary is “transparent”. The arrival times of the register
outputs are found by subtracting the clock period φ from the
arrival times of the register inputs. The key observation is that
passing over the register boundary delays signals by one clock
period. The resulting arrival times at the register output and
internal nodes may be negative.

In the combinational case, when the arrival times of the PIs are
known, the arrival times of the POs are known at the end of each
mapping pass. The situation changes in the sequential case
because the arrival times keep changing during several iterations

due to propagating arrival times through the register boundaries.
This leads to the procedure shown in Figure 5.1.

This procedure initializes the PI arrival times to the given values
(here assumed to be 0) while arrival times of all other nodes are
set to −∞ . Next, it iterates over the network while computing and
updating the arrival times at each node and propagating them over
the register boundaries. Note that the cut minimizing depth is
updated during each pass since arrival times can change. Since the
maximum of the previous and current value is computed, the
arrival times increase monotonically at each node. This leads to
one of the three outcomes: (a) the arrival times at all nodes
converged, (b) the arrival times at a PO exceed φ, and (c) an
iteration limit is reached.

 In the case (a) the clock period is proved to be feasible,
meaning that there exists a mapping/retiming such that the longest
combinational path does not exceed φ levels. The cases (b) and (c)
mean that the given clock period is infeasible. In this case φ can
be increased and sequential arrival times can be re-computed.

A binary search procedure was used for finding the smallest
feasible clock period φ [14]. An advantage of this procedure is
that it reduces the number of sequential arrival time computations.
A disadvantage is that each change in φ resets the arrival times. A
practical alternative is to start with a loose bound on φ and
gradually tighten it until it becomes infeasible. In this case, the
arrival times do not have to be reset, which may lead to faster
convergence. Typically, the runtime is affordable in both cases
when a tight upper bound on φ is available.

ccoommppuutteeSSeeqquueennttiiaallAArrrriivvaallTTiimmeess((aaiigg,, φ, iter_limit)) {{

 //// iinniittiiaalliizzee sseeqquueennttiiaall aarrrriivvaall ttiimmeess
 ffoorr eeaacchh aaiigg nnooddee nn sseettLLeevveell((nn,, --∞∞));;
 ffoorr eeaacchh aaiigg PPII nn sseettLLeevveell((nn,, 00));;

 //// iitteerraattiivveellyy ccoommppuuttee sseeqquueennttiiaall aarrrriivvaall ttiimmeess
 ffoorr ((iitteerr == 00;; iitteerr << iitteerr__lliimmiitt:: iitteerr++++)) {{
 cchhaannggeess == 00;;
 ffoorr eeaacchh AAIIGG nnooddee nn iinn ttooppoollooggiiccaall oorrddeerr {{
 ccuutt == ffiinnddCCuuttMMiinniimmiizziinnggDDeepptthh((nn));;
 iiff ((ggeettLLeevveell((nn)) << ggeettLLeevveell((ccuutt)))) {{
 sseettLLeevveell((nn,, ggeettLLeevveell((ccuutt))));;
 sseettRReepprreesseennttaattiivveeCCuutt((nn,, ccuutt));;
 cchhaannggeess == 11;;
 }}
 }}
 //// cchheecckk tthhee PPOO aarrrriivvaall ttiimmeess
 ffoorr eeaacchh aaiigg PPOO nn
 iiff ((ggeettLLeevveell((nn)) >> φ))
 rreettuurrnn ((aarrrriivvaall ttiimmeess aatt tthhee PPOO eexxcceeeeddeedd tthhee cclloocckk ppeerriioodd))
 //// cchheecckk iiff tthhee ccoommppuuttaattiioonn ccoonnvveerrggeedd
 iiff ((!!cchhaannggeess))
 rreettuurrnn ((aarrrriivvaall ttiimmeess aarree ccoommppuutteedd));;
 //// pprrooppaaggaattee aarrrriivvaall ttiimmee tthhrroouugghh tthhee rreeggiisstteerr bboouunnddaarryy
 ffoorr eeaacchh aaiigg rreeggiisstteerr rr iinn ttooppoollooggiiccaall oorrddeerr
 sseettLLeevveell((rreeggOOuuttppuutt((rr)),, ggeettLLeevveell((rreeggIInnppuutt((rr)))) -- φ));;
 }}
 rreettuurrnn ((iitteerraattiioonn lliimmiitt hhaass bbeeeenn rreeaacchheedd));;
}}

Figure 5.1. Computing sequential arrival times.

5.2 Deriving the resulting network
For a given feasible clock period φ, the resulting network can be

derived as follows: (1) Apply combinational mapping by setting
the arrival times of the additional PIs and POs, which stand for the
register outputs and inputs, to be the sequential arrival times
computed while checking feasibility of φ. (2) Using these arrival
times, run minimum-delay retiming to bring the network to its
minimum feasible delay φ.

We emphasize that sequential mapping is separated into two
phases: (1) computation of best clock period φ and associated
sequential arrival times, and (2) combinational mapping using
these arrival times. This separation allows for applying the delay-
based priority-cut method in the first phase, and priority cut and
combinational mapping with efficient area recovery heuristics in
the second phase. Once the mapping is established, efficient
incremental retiming is applied, which controls the increase in the
number of registers [15]. We know that the mapping is such that it
can be retimed to meet clock period φ. Thus, the clock period is
the same as in a previous work [13] but the numbers of LUTs and
registers increase less, because both efficient area recovery can be
used as well as area controlled retiming [15]. Also, this two-step
computation greatly reduces the implementation complexity.

This two-step computation of the resulting network differs from
the one introduced in [14] and generalized in [13], where the final
mapping and retiming cannot be separated because of the use of
sequential cuts (cuts crossing the current register boundary).

Overall, the increase in quality of results due to using mapping
with the “transparent” register boundary was found to outweigh
some degradation in quality due to not using sequential cuts. Our
experiments indicate that, compared to combinational mapping
followed by retiming, the average gain in delay due to the former
is about 20% while the average loss in delay due to not using
more general sequential cuts is only about 1%.

6 Experimental results
A new LUT-mapper based on priority cuts was implemented in

ABC [1] as command “if”. The experiments were run on a
Windows laptop with a 1.6GHz Pentium-4 CPU and 2GB of
RAM. The mapped networks were verified using combinational
and sequential equivalence checkers in ABC.

6.1 Comparison with the traditional mapping
To compare against state-of-the-art technology mappers, the

same selection of public domain benchmarks was used as in
previous work [6][12]. To derive AIGs used as subject graphs, the
benchmarks were structurally hashed and balanced.

The summary of mapping results for K = {4, 6, 8, 10} in terms
of depth, the number of LUTs, memory (in megabytes), and
runtime (in seconds) are shown in Table 6.1. Columns “old” refer
to the mapper based on exhaustive cut enumeration with
improvements [12]. Columns “new” refer to the proposed mapper.

The proposed mapper was allowed to use at most 8 cuts per
node. In the traditional mapper, the pruning parameters used for
cut enumeration were set as follows. At each node, at most 2,000
cuts are computed. The resulting cuts were sorted in the
increasing number of inputs. At most 1,000 of the smallest cuts
were stored at each node and allowed to propagate during cut
enumeration. For small values of K (K ≤ 6), the limit of 1000 cuts
at a node was never exceeded. In this case, the traditional
mapping found an optimum-depth solution.

The first line of Table 6.1 shows that for small LUT sizes (K = 4
and K = 6) the new mapper produces depth-optimal mappings.
The new mapper improves the depth for K = 8 and K = 10
because the traditional mapper uses pruning to compute a random
subset of K-input cuts for large K. For the same reason, the gain
in runtime of cut computation for K = 10 is less than for K = 8.

The second line of Table 6.1 shows that the new mapper
produces comparable area. This is a result of applying a well-
tuned set of heuristics summarized in Section 4.6.

The last two lines of Table 6.1 show that the new mapper
dramatically reduces memory and runtime, compared to a
traditional mapper. For 10-input cuts, the gains are 30x in memory

and 20x in runtime. The gains would be larger if pruning was not
used during cut enumeration in the traditional method.

In addition to the results shown in Table 6.1, a number of
experiments were performed to test the new mapper on large
industrial benchmarks. In summary, the new mapper gives the
same delay, and reduces memory and runtime 2-100x depending
on the LUT size, while area is on average the same or better.

The improvement in area due to priority cuts is more substantial
when structural choices are used. Experiments with a diverse set
of industrial benchmarks have shown a 2% improvement in area,
compared to the mapper [12], which uses choices in the context of
exhaustive cut enumeration. The table with these detailed results
is not included due to page limitation.

6.2 Performance on large benchmarks
The second set of experiments was designed to show the

performance of the new mapper on large benchmarks with large
LUT sizes. This experiment was run on multiple timeframes of
sequential benchmark wb_conmax.v with 1130 PIs, 1416 POs, and
770 registers taken from the IWLS 2005 benchmarks set [9].
Mapping multiple timeframes is relevant to hardware emulation
where unrolled designs are emulated to achieve faster simulation.

Table 6.2.1 shows the results of LUT mapping with K = 10 and
C = 1. The first column shows the number of timeframes used to
unroll wb_conmax.v. The next two columns show the number of
levels and nodes in the subject graph. The last four columns show
depth, the number of LUTs, memory, and runtime of the proposed
algorithm. Note that the runtime is linear in the size of the AIG.

Table 6.2.2 contains the results of mapping with variable K and
C = 1, applied to 100 frames of wb_conmax.v. The first column of
the table shows the LUT size. The last four columns show depth,
the number of LUTs, memory, and runtime of the proposed
algorithm. Note that the runtime is fairly insensitive to cut size – a
factor of 4 in cut size increases runtime only about 50%.

Tables 6.2.1 and 6.2.2 report runtimes of the depth-oriented
phase of FPGA mapping. Area recovery was not performed in this
experiment. These tables demonstrate that the proposed algorithm
has reasonable memory and runtime requirements when applied to
AIGs with millions of nodes. (The reason why the area of FPGA
mapping increased when the LUT size increased from 10 to 12 in
Table 6.2.2 will be investigated.)

6.3 Sequential mapping for academic benchmarks
The results of sequential mapping for academic benchmarks are

presented in Table 6.3. The proposed algorithm was run with K =
6 and C = 8. The structural choices [13] were not used during
mapping. The circuits selected are a subset of ISCAS’89
benchmarks, for which sequential mapping (which searches a
combined space of all combinational mappings and retimings)
improved the depth over depth-oriented combinational mapping.

Table 6.3 lists the benchmark name, the number of primary
inputs, primary outputs, and AIG nodes in the subject graph. The
other sections of the table compare depth and area, expressed in
terms of LUTs, and runtime, in seconds, for the following three
mapping options: combinational mapping (M), combinational
mapping followed by retiming (M+R), and the proposed
sequential mapping (MR). Combinational and sequential mapping
are performed using ABC command if and if –s, respectively.
Retiming for depth is the heuristic algorithm [15] implemented in
ABC as command retime –M 4.

Table 6.3 shows that sequential mapping (MR) leads to a
substantial (29%) reduction in depth, compared to combinational
mapping followed by retiming (M+R) when the reduction is
smaller (7%). The LUT area after M+R does not change because

the same logic structure is used, while after MR, area is increased
3%. The number of LUTs and registers is increased by 3% and
8%, respectively, for these benchmarks. The increase in registers
could be controlled by using a more sophisticated retiming
algorithm. In addition, the algorithm in [15] can be used to create
a delay/area tradeoff curve if the optimum delay is not required.

Currently sequential mapping is about five times slower than
combinational, due mainly to the binary search for the optimum
clock period. Several improvements have been proposed and are
waiting to be implemented.

6.4 Sequential mapping for industrial benchmarks
To test if these results are representative, the results of

sequential mapping for a diverse set of industrial benchmarks are
shown in Table 6.4 with the same notation as in Table 6.3. Before
mapping, the benchmarks were optimized using two AIG
rewriting scripts, resyn followed by resyn2.

Table 6.4 confirms that the improvements in depth (25%) and
the increase in area (4.5% in LUTs and 8% in registers) after the
sequential mapping applied to the industrial benchmarks are close
to those observed for the academic benchmarks. For comparison,
mapping followed by retiming leads to a 7% reduction in delay,
and 0% and 1% increase in LUTs and registers, respectively.

7 Conclusions and future work
This paper presents a new algorithm for technology mapping,

which avoids exhaustive cut enumeration.
On close investigation, it is clear that the traditional mapping

dramatically over-computes during cut enumeration, wasting
memory and runtime. This is especially true for large cuts (K = 8
and more) because less than 1% of all computed cuts are selected
to represent a node during technology mapping. Therefore, the
development of a linear-time algorithm is well motivated.

This paper proposes the first efficient algorithm of this type and
may lead to a new class of mapping solutions. The experimental
results, applied to LUT mapping, show that the proposed
algorithm, although heuristic in nature, almost always finds an
optimum-depth mapping while substantially reducing runtime and
memory compared to algorithms based on cut enumeration.

Future work will proceed in the following directions:
(1) Extending the algorithm to work for macro-cells and

standard cells, which can only implement a subset of the Boolean
functions with the given number of inputs; for this purpose, a
modified cut computation procedure will be used, which
guarantees that the Boolean function of the cut stored at each node
can be implemented by the macro-cell.

(2) Combining the mapper with a global placement engine to
make mapping placement- and congestion-aware; in this case, the
cuts computed by the mapper will be evaluated based on a linear
combination of their logic cost as well as their placement cost. A
simple way of expressing the placement cost might be to estimate
the total change in wirelength needed to implement a cut.

(3) Finally, mapping is a versatile logic synthesis engine
customizable by setting the cut area and/or depth to be a user-

specified combination of parameters to be optimized. Several such
variations of mapping have been explored, in particular those
geared to minimize the number of CNF clauses [7] needed to
represent the given logic network. The future work will consider
other applications of mapping, such as those minimizing the
number of factored form literals or BDD nodes.

Acknowledgements
This work was supported by SRC contracts 1361.001 and

1444.001, and the California Micro Program with our industrial
sponsors Altera, Intel, Magma, and Synplicity.

The authors acknowledge helpful discussions with Stephen Jang
from Xilinx and his suggestions how to improve logic
optimization and technology mapping in ABC.

References
[1] Berkeley Logic Synthesis and Verification Group, ABC: A System

for Sequential Synthesis and Verification, Release 70319.
http://www.eecs.berkeley.edu/~alanmi/abc/

[2] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE Trans. CAD, vol. 13(1), Jan. 1994, pp. 1-12.

[3] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. VLSI, vol. 2(2), Jun. 1994, pp
137-148.

[4] J. Cong and Y. Hwang, "Simultaneous depth and area minimization
in LUT-based FPGA mapping," Proc. FPGA ‘95, pp. 68-74.

[5] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA `99,
pp. 29-36.

[6] D. Chen and J. Cong. “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs,” Proc. ICCAD ’04, pp. 752-
757.

[7] N. Een, A. Mishchenko, and N. Sorensson, “Applying logic
synthesis to speedup SAT”, Proc. SAT ’07 (to appear).

[8] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans.
CAD, vol. 13(11), Nov. 1994, pp. 1319-1332.

[9] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
[10] C.-C. Kao and Y.-T. Lai, “An efficient algorithm for finding

minimum-area FPGA technology mapping". ACM TODAES, vol.
10(1), Jan. 2005, pp. 168-186.

[11] V. Manohara-rajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for
area minimization in LUT-based FPGA technology mapping,” Proc.
IWLS ’04, pp. 14-21.

[12] A. Mishchenko, S. Chatterjee, and R. Brayton, "Improvements to
technology mapping for LUT-based FPGAs". IEEE Trans. CAD,
Vol. 26(2), Feb 2007, pp. 240-253. http://www.eecs.berkeley.edu/
~alanmi/publications/2006/tcad06_map.pdf

[13] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan, "Integrating
logic synthesis, technology mapping, and retiming", ERL Technical
Report, EECS Dept., UC Berkeley, Dec. 2006. http://www.eecs
.berkeley.edu/~alanmi/publications/2006/dac06_int.pdf

[14] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[15] D. R. Singh, V. Manohara-rajah, and S. D. Brown, “Incremental
retiming for FPGA physical synthesis”, Proc. DAC ’05, pp. 433-438.

Table 6.1. Ratios of improvements of the proposed vs. traditional combinational K-LUT mapping.

Ratio K = 4 K = 6 K = 8 K = 10
 old new old new old new old new

Depth 1.00 1.00 1.00 1.00 1.00 0.93 1.00 0.82
Area 1.00 0.99 1.00 1.00 1.00 0.96 1.00 0.84
Memory 1.00 0.12 1.00 0.06 1.00 0.05 1.00 0.05
Runtime 1.00 0.78 1.00 0.15 1.00 0.02 1.00 0.03

Table 6.2.1. Performance of the proposed algorithm on multiple timeframes of wb_conmax.v

AIG statistics FPGA mapping statistics Computer resources Number
of frames Levels Nodes Depth Number of LUTs Memory, Mb Runtime, sec

1 18 40381 4 11069 2.21 0.02
20 284 808135 61 205143 42.68 0.42
40 564 1616285 121 409149 85.28 0.84
60 844 2424435 181 613155 127.88 1.35
80 1124 3232585 241 817161 170.48 1.77

100 1404 4040735 301 1021167 213.09 2.25

Table 6.2.2. Performance of the proposed algorithm on 100 timeframes of wb_conmax.v for different LUT sizes

LUT FPGA mapping statistics Computer resources
size Depth Number of LUTs Memory, Mb Runtime, sec

4 602 2279062 114.74 1.89
6 451 1704400 147.52 2.00
8 352 1205319 180.30 2.19

10 301 1021167 213.09 2.24
12 276 1044370 245.87 2.50
14 227 799618 278.65 2.55
16 202 694954 311.43 2.62

Table 6.3. Comparison of sequential vs. combinational 6-LUT mapping for academic benchmarks.

Statistics Depth (LUTs) Area (LUTs) Area (registers) Time, sec
Name PI PO AIG M M+R MR M M+R MR M M+R MR M MR

s13207 31 121 2136 6 5 4 1047 1047 1056 648 666 733 0.06 0.23
s1423 17 5 441 10 10 9 131 131 146 74 74 80 0.01 0.04
s15850.1 77 150 2755 9 7 6 1012 1012 1042 516 552 533 0.09 0.38
s15850 14 87 2760 9 7 5 1002 1002 1015 563 640 640 0.09 0.43
s35932 35 320 8129 3 3 2 2320 2320 2320 1728 1728 1872 0.19 0.45
s382 3 6 100 3 3 2 36 36 34 21 21 22 0.00 0.04
s38417 28 106 8171 6 6 5 2623 2623 2901 1564 1564 1636 0.28 3.02
s38584.1 38 304 9967 6 6 5 2491 2491 2558 1276 1276 1299 0.31 0.81
s38584 12 278 9989 6 6 5 2504 2504 2517 1301 1301 1327 0.31 0.92
s9234.1 36 39 1349 5 5 3 319 319 332 145 145 171 0.03 0.10
s9234 19 22 1349 5 4 3 321 321 330 160 181 182 0.02 0.14
Ratio 1.00 0.93 0.71 1.00 1.00 1.03 1.00 1.03 1.08 1.00 4.54

Table 6.4. Comparison of sequential vs. combinational 6-LUT mapping for industrial benchmarks.

Statistics Depth (LUTs) Area (LUTs) Area (registers)
Name PI PO M M+R MR M M+R MR M M+R MR

Ex01 1233 3438 4 4 3 5893 5893 6198 1704 1704 1775
Ex02 1211 5658 5 5 4 8029 8029 8177 1597 1597 1660
Ex03 3431 9646 7 5 4 20021 20021 20213 7930 7944 8050
Ex04 4566 15023 12 11 10 29542 29558 30146 7966 7997 7988
Ex05 827 2099 12 12 11 6198 6198 6591 1677 1677 1805
Ex06 11987 59894 6 6 5 102718 102714 123155 26447 26443 26741
Ex06 526 1627 14 13 10 9024 9024 9414 3061 3126 3885
Ex07 1747 7944 6 5 4 11188 11209 11227 2893 2925 2854
Ex09 4710 11447 7 7 6 22591 22580 23171 7277 7272 7282
Ex10 1859 5347 9 9 7 9265 9265 9853 753 753 1053
Ex11 6112 18898 21 21 19 58258 58258 61750 11772 11772 13248
Ex12 129 4096 3 3 2 34304 34304 33376 19840 19840 20800
Ex13 18037 47101 7 7 5 65589 65636 65710 17532 17578 17539
Ex14 842 3100 21 20 18 13414 13410 15165 5039 5071 5271
Ex15 926 2535 11 10 8 4677 4677 4957 475 548 729
Ex16 350 848 5 5 4 2842 2842 2888 1271 1271 1404
Ex17 153 234 7 7 6 502 502 544 148 148 149
Ex18 2851 10008 7 4 3 18832 18832 18966 7057 7131 7087
Ex19 470 2365 14 14 13 8582 8576 9227 3271 3264 3343
Ex20 519 1346 7 7 5 2374 2374 2431 575 575 623
Ratio 1.000 0.933 0.755 1.000 1.000 1.045 1.000 1.010 1.083

