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Abstract 

This paper discusses a synthesis approach, which 
combines logic synthesis, technology mapping, and 
retiming into a single integrated flow. The same 
combination of methods with minor modifications is 
applicable in the context of both standard cell and FPGA 
designs. The implementation draws on new results in 
representing circuit functions with And-Inv Graphs (AIGs) 
and, based on our experience, should scale to circuits with 
thousands of memory elements. 

1 Introduction and Previous Work 
In recent years, the development of logic synthesis 

algorithms has reached a point of convergence, leading to 
the integration of different aspects of the synthesis process. 
This tendency is motivated by the shrinking of DSM 
technologies, which forces more of the synthesis aspects to 
be considered as interrelated and computed simultaneously. 
Some recent examples of this convergence can be found in 
the research work trying to integrate:  

1. Technology independent synthesis (TIS) and 
technology mapping (TM) [18][24][30]  

2. TM and retiming (RT) [26] [27][8][9]  
3. RT and placement (PL) [1][6]  
4. Re-synthesis (RS) and RT [25]  
5. TIS and PL [2][15][13] 
6. Re-wiring and PL [5]  
7. Clock skewing and PL [13] 
In this paper, we propose to merge TIS, TM, and RT, so 

that, in theory, the best combination of the three methods 
can be found in the cross-product of the individual search 
spaces. This is in contrast to the traditional synthesis 
approach where these steps are done in sequence. First, TIS 
is applied to find a network, which is best according to 
some heuristic criteria, such as the number of literals and 
logic levels. Next, this information is used to find the best 
mapping of the current logic structure, and finally, in some 
cases, retiming of the mapped circuit is performed to 
optimize delay. Obviously, choices made at the earlier 
stages bias those made later. Usually a different cost 
function is used in each stage. This cost function is at best a 
crude heuristic trying to predict the effects on the later 
stages. In the new approach, TM finds the best clock period 
using all available circuit structures and all possible 

retimings. Other parameter can be optimized under the 
delay constraint using parameter-specific cost functions.   

The techniques that make the proposed convergence of 
synthesis steps possible for practical circuits are the 
following;  

1. And-Invertor Graphs (AIGs) [16][17] 
2. Simulation combined with SAT for efficient functional 

reduction of AIGs in the FRAIG package [12][23][30]  
3. Choice nodes [18] 
4. Fast TM methods [3][24] 
5. Supergates [22][24]  
6. Loop count invariance and optimum retiming [29][6] 
AIGs provide a uniform method for representing and 

manipulating logic. In the FRAIG package that we use, the 
AIGs are made �semi-canonical�, meaning that any two 
nodes representing the same function are identified. This is 
done on-the-fly in the FRAIG package. It allows for a 
compact representation for both synthesis and equivalence 
checking. The resulting AIG is referred to as a FRAIG 
below. This common representation facilitates the merging 
the three operations, TIS, TM, and RT.  

A FRAIG [23] represents a multi-network since at any 
node there is a list of equivalent nodes, which compute the 
same logic function but has a different AIG structure All 
FRAIGs are stored in the FRAIG manager, which borrows 
many techniques from an efficient BDD package, such as 
node hashing, reference counting, garbage collection, and 
using complemented edges. 

Combining simulation with SAT allows for a fast on-the-
fly equivalence checking, which leads to an efficient 
identification of equivalent nodes in the FRAIG manager. 
Experimental results in [23] show that the ability of the 
FRAIG package to find functional equivalences in the 
typical benchmark circuits compares well with that of the 
state-of-the-art academic equivalence checkers.  

Choice nodes were introduced in [18] to combine, during 
TM, algebraic restructuring (part of TIS), which creates 
equivalent structures using the associative and distributive 
laws of Boolean algebra. This was a step towards unbiasing 
the choice of the structure made during TIS. In our opinion, 
the use of choice nodes leads to a fundamental shift in 
paradigm for logic synthesis, which we call �lossless logic 
synthesis�. This paradigm shift is illustrated by the 
following discussion: 

1. Classical approach. During logic synthesis, a 
sequence of operations is performed. At each step, the 
best choice is made, based on a heuristic measure of 



quality of the entire network. Thus, the initial network 
evolves as a sequence of ever �improving� networks. 
However, intermediate networks generated along this 
sequence are thrown away and only the �best� one is 
kept. 

2. New approach. In this, the choices of which logic 
structure is later used for TM, are postponed. We 
merely generate, record, and merge any new structures 
into the FRAIG manager. In this, it is critical to have a 
fast equivalence checking mechanism, such as a 
balanced combination of simulation and SAT [30]. As 
a result, TIS becomes a process of generating new 
structures, without making judgment on their value for 
TM. Indeed, different networks may contain different 
good sub-structures. Thus, TIS should be focused on 
generating �orthogonal� structures, so that a variety of 
structures could be seen when the actual choices are 
made during TM. For example, the approach of 
�collapse as much as possible and decompose� seems 
orthogonal to the approach �keep around the original 
nodes that have reasonable values�. This idea was 
suggested already in [18]. 

Technology mapping (TM) is applied to the FRAIG 
obtained after the TIS step. In our approach, this multi-
network replaces the single network obtained at the end of 
the classical TIS step. Since the FRAIG may contain many 
choice nodes and, therefore, alternate structures, TM must 
be done extremely efficiently, both in terms of speed and 
quality of results. This is where a fine-tuned technology 
mapper is required. We will see that this approach can be 
extended to allow RT on sequential circuits.  

Supergates [3] refer to �new� gates formed using the 
combinations of gates from the given standard cell (SC) 
library. This is a one-time preprocessing step applied the 
SC library and allows for a type of Boolean mapping to be 
performed during TM. In effect, it extends the structural 
information present in the FRAIG manager. For example, a 
supergate may be matched at a node when its set of 
contained library gates does not find a corresponding 
match in the fanin FRAIG structure because the appropriate 
structure is not present at the node. 

A well-known result about RT is that it preserves the 
number of registers around any loop (loop count). Recently 
the converse was proved, i.e. that any pair of isomorphic 
graphs with identical loop counts can be retimed into each 
other [6]. This leads to the possibility of ignoring the 
register positions and just recording, for any new loop 
generated during TI, an induced loop count (using the 
notion of peripheral retiming [21]). Once TM chooses a 
final network, the loop counts can be used to put the 
registers into any set of places, such that the loop counts 
are satisfied. In [6], it is shown how to do this 
constructively.  

Further, a result in [29] states that from this initial 
placement of the registers, the network can always be 
retimed so that the clock cycle can be set (within one gate 
delay) to be the maximum delay (loop) ratio (the total delay 

around a loop divided by the loop register count). It is well 
known that the maximum delay ratio is a hard bound on the 
performance of a network. This delay ratio depends on how 
the network is synthesized and mapped. In our approach, 
we find the best delay ratio using all available TIS and TM 
choices.  

The above considerations lead to our procedure for 
integrating TIS, TM, and RT, outlined below. 

1. Convert the initial network into a FRAIG using SOP 
or factored form representations of the node 
functions.  

2. �Remove� all registers but mark their initial 
positions in the FRAIG. At this point, the FRAIG 
becomes a cyclic combinational circuit. 

3. Apply logic re-synthesis transformations to a 
selected fragment of the FRAIG. 

4. Merge the result of re-synthesis into the FRAIG 
manager, marking a set of compatible register 
positions in the new result, derived using peripheral 
retiming. 

5. Repeat Steps 3 and 4 with the aim of generating 
�orthogonal� structures until a limit on runtime or 
the number of structural alternatives has been 
reached. 

6. Set an initial clock cycle time to a guess at an 
achievable upper-bound φ , computed by Howard�s 
algorithm [11]. 

7. Apply Pan�s procedure [25] (described in Section 2) 
to the FRAIG, where the RS is replaced by our 
minimum delay TM. 

8. Do a binary search for the optimum clock cycle by 
repeating Step 7 with improved guesses on clock 
period. 

9. Infer loop counts on the final mapped network and 
place the registers in the derived network to satisfy 
the loop counts. 

10. Retime these latches so that the optimum mapped 
network can be clocked at its optimum clock period 
(maximum delay ratio). 

11. Compute the sequential required times and 
heuristically recover area and other parameters, as 
described in [24]. 

12. Reduce the number of registers by min-area delay-
constrained retiming using an exact ILP formulation 
[19] or a greedy heuristic approach similar to [30]. 

 
Some additional comments elaborate on these steps.  
• The fragments, to which the synthesis is applied, must 

satisfy two constraints. It must not contain a 
reconvergent path where the register counts on 
reconverging paths differ. This means that the selected 
fragment is peripherally retimable [20][21]. The 
fragment can include cycles (some registers are visited 
more than once), can have many roots (outputs), and 
can contain choices. 

• The inferred register marking of the resynthesized 
fragment is the result of a peripheral retiming of the 



registers in the fragment. Negative registers are 
allowed. When the result is merged into the FRAIG 
manager, the appropriate register markings will be set 
at the periphery, which contains the inputs and outputs 
of the fragment. 

• The technology mapping step is performed by 
computing a set of cuts at each node in the cyclic 
circuit as done in [26], followed by Boolean matching 
with implicit phase assignments [3]. 

• When this process converges, we can insert registers 
into the network according to the method of Chong [6] 
using the inferred loop counts, and retime these to 
obtain the clock period equal to the largest delay ratio 
according to the theorem of Papaefthymiou [29]. In 
practice, this step is simplified by propagating the latch 
markings on the graph edges during RS and TM. A 
typical simplified procedure for latch insertion after 
FPGA mapping can be found in [27]. 

• Since the above synthesis and mapping are done to 
minimize the maximum delay ratio, area is sacrificed. 
This can be recovered e.g. by computing the sequential 
required-time in a way similar to how sequential 
arrival-times are computed in [26] and by applying 
algorithms for area recovery [24]. Area recovery can 
also be done by retiming registers not on the critical 
loops using a fast heuristic algorithm similar to the 
algorithm for extracting two-cube divisors from the 
SOP representations of the nodes [30]. 

2  Pan’s Algorithm 

In this section, we outline some results of Pan, which are 
key to the merging of the RT step with TIS and TM. The 
first result shows how to integrate retiming and re-synthesis 
[25]. This was applied to a network with registers and a 
given set of fanin cones at each node of the network. Each 
cone is re-synthesized according to its input arrival times in 
order to minimize its output arrival time. This resynthesis 
then gives an input-pin to output-pin delay for each input 
of the cone. The computation of the sequential arrival times 
is done using the Bellman-Ford style iteration in Figure 1. 
It is assumed that the clock period φ is known. 

Procedure update(v) computes, for each re-synthesized 
cone at v, a new arrival-time l-value as follows: 

 
input( )

( ) max { ( ) }c uv uvu c
l v l u t dφ

∈
= − +  

where uvt  is the number of registers between input u and 
output v, and uvd  is the pin-to-pin combinational delay 
between u and v for the newly re-synthesized cone c. 
Finally, the procedure returns  the minimum of lc(v) over 
all cones rooted at v, 

( )
min { ( )}cc Cones v

l v
∈

.  

 At each return visit to a node v, the new arrival times on 
the inputs of any of a cone may affect how it is synthesized 
for minimum delay. The iteration continues until there is no 
change in any of the labels l. We can think of resynthesis in 
this context as any combination of TIS or TM for the cone, 

so in effect, this method is already doing a type of 
integration of re-synthesis, re-mapping, and retiming.  

ReRe (G, φ)  // G is the circuit, and φ is the cycle time 
   for each node v in G do 
      if v is a PI then l(v) 0←  
      else l(v) ←−∞  
   while (labels changed) do 
      for each non-PI node v in G do 
         ( )tmpl update v←  
         if ( )  ( )tmp tmpl l v l v l> ←then  
         if v is a PO and ( )l v φ>  
            then return FAILURE 
   return SUCCESS; 

 
Figure 1: Computation of arrival-time l-values. 

The following result is stated [25]. If the update 
operation is monotone increasing (i.e. if any label is 
increased for the inputs of a cone, then the output label is 
not decreased), then the sequence of labels computed by 
the algorithm is monotone increasing. This leads to the 
result that the algorithm returns SUCCESS if and only if φ 
is a feasible clock period.  

In papers on FPGA synthesis [26][27], Pan states that the 
delay-optimum retiming of the mapped circuit is given by  

 
0                     

( ) 1    

 is a PI or PO
( ) optl v

v
r v

φ



  − 
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=  

where r is the retiming lag for each node. Pan refers to the 
l-values as continuous retiming [28]. 

We will use this algorithm with the iterative re-mapping 
technique discussed in [24], which uses an efficient method 
for computing all cuts of a node up to a certain limit (say, 5 
or 6). This computation is performed on the FRAIG 
representation and easily generalizes to the case when 
choice nodes are present. The choices nodes effectively 
increase the number of cuts computed using the alternative 
structural representations, but otherwise do not impact TM.  

The cut computation for the case of a cyclic network is 
given in [26]. Essentially, the cut computation is iterated 
for the network in such a way that the set of cuts for each 
node grows in a monotonically increasing sequence. 
Initially, all cut sets are initialized to the set, which 
includes the node itself, i.e. ( ) {{ }}C v v= . Then each node is 
visited and the cut sets of its children are merged by taking 
the cross-product of the cut sets of the two children. 
Duplicated sets are eliminated, as well as those cuts whose 
cardinality exceeds the upper bound.  

For a choice node, there is no cross-product operation but 
rather the union of the cut sets of its predecessors is taken, 
again eliminating duplicates. This iteration continues until 
there is no change in the set of cut sets, C(v), at any node. It 
should be noted that all choice nodes are ignored from this 
point on since the unions of the cut sets { ( )}C v actually 
contain all the useful information about choice nodes as far 
as TM is concerned.  



The cut computation can be stopped before the cut sets, 
C(v), converge to the fixed point. In this case, the results of 
mapping are correct but not optimum because we may have 
skipped the cuts leading, which lead to a better mapping. 
Although optimality can be weakened, early termination 
can save runtime. 

3 Re-Synthesis 

In this section, we elaborate on the application of Pan�s 
algorithm in our proposed approach.  

The FRAIG represents the alternate structural choices 
derived during the TIS step. Since the decision about what 
structure should be used has been postponed to the TIS 
step, TM using the cut sets derived from the FRAIG with 
choice nodes represents an integrated combination of TIS 
and TM. In contrast to Pan�s approach [25], in which each 
cone is re-synthesized and mapped individually and then 
the best taken, Step 7 of the new procedure simultaneously 
evaluates all combinations of the available choices and 
chooses the best one.  

 In Step 8, instead of searching for an optimum clock 
cycle, a desired clock cycle can be given, in which case 
only one iteration of TM is needed if the algorithm returns 
SUCCESS. Otherwise, either a search for the clock cycle 
nearest to the desired one can be done, or more structural 
choices can be generated and recorded in the FRAIG. 
These new choices can be added selectively using the best 
mapping seen so far to try to improve the critical paths. 

4 Area Recovery 

The efficient approach to area recovery [24] uses the 
concept of combinational slack. This concept needs to be 
extended to work in the sequential domain. In our 
discussion in Section 2, we computed only the sequential 
arrival times of the nodes, which represent the arrival times 
after retiming. The computation of sequential required-time 
in the cyclic circuits starts at the POs and proceeds 
backwards in a topological order. For this, we use a 
modified version of Pan�s algorithm shown in Figure 2: 

 
ReReq (G, φ)  // G is the circuit, and φ is clock period 
   for each node v in G do 
      if v is a PO then ( )vρ φ←  
      else l(v) ( )vρ ←∞  
   while ( 'sρ have changed ) do 
      for each non-PI node v in G do 
         ( )tmp update vρ ←  
         if ( )  ( )tmp tmpv vρ ρ ρ ρ< ←then  
         if v is a PI and ( ) 0vρ <  
            then return FAILURE 
   return SUCCESS; 

Figure 2: Computation of required-time l-values. 

Then, the slack at a node is computed as ( ) ( ) ( )s v v l vρ= − . 
It should be noted that all the mappings were done for 
minimum delay and hence area might be excessive. 
However, the area recovery methods of [24] have been 
shown to be very effective, so we expect that most of the 
wasted area can be recovered. 

Iterative optimization of other parameters, such as power 
and placeability of the netlist after technology mapping, 
can be performed similarly to area recovery, as shown in 
[24]. 

5 Conclusions and Future Developments 

We have discussed an algorithm, which integrates the 
steps of technology independent logic synthesis, 
technology mapping, and retiming. The result, in theory, 
should be the best mapped network derived by applying all 
possible combinations of these steps (minimum area for 
minimum clock period). It is possible that practical 
constraints on the number of cuts generated or the number 
of iterations performed in the algorithms of Figures 1 and 
2, will modify the claim to be a �heuristically best mapping 
over all generated logic structures with all possible 
retimings�.   

The following aspects of the new optimization flow still 
have to be developed: 

1. Efficient generation of structural choices for 
sequential networks. Our current procedures for the 
generation of structural choices work for 
combinational networks only. We consider extending 
them to sequential networks by combining the 
combinational choices derived for the original network 
and a network with a shifted latch boundary. An 
alternative way of adding choices is to perform a 
sequence of local synthesis steps, each of which 
peripherally retimes latches out of a logic cone, 
collapses the cone, and decomposes it to get a new 
logic structure that is added to the network as a choice. 
During peripheral retiming, we retime over the choice 
nodes as if they were ordinary OR-gates. 

2. Efficient updating of timing information during area 
recovery for sequential circuits. During area recovery, 
unlike acyclic circuits, cyclic circuits have no starting 
and ending points. For acyclic circuits, if the area is 
recovered from inputs to outputs, the required time 
does not change and, therefore, need not be 
recomputed. However, for a cyclic circuit, it may be 
necessary to recompute a subset of both sequential 
arrival and required times whenever a node is changed. 
An efficient method for updating them incrementally is 
required for cyclic circuits.  

3. Speed of convergence of iterative procedures. The 
Bellman-Ford procedure in Section 2 is iterated several 
times until an acceptable clock period is found. Since 
this involves repeated TM, the rate of convergence 
may be slow. In this case, we need to develop 
specialized methods for speeding up the convergence. 



One possibility is to use Howard�s algorithm [11] to 
estimate the critical cycles and avoid re-mapping of the 
non-critical nodes. 

Ultimately, the efficacy of this approach depends on the  
implementation and on the set of heuristics used to filter 
out the unnecessary operations. If an efficient 
implementation is found, the proposed synthesis 
framework will explore, in a reasonable time, the combined 
optimization space of TIS, TM, and RT for sequential 
circuits with thousands of memory elements. 
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