
Integrating Logic Synthesis, Technology Mapping, and Retiming

Alan Mishchenko Satrajit Chatterjee Jie-Hong Jiang Robert Brayton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

{alanmi, satrajit, jiejiang, brayton}@eecs.berkeley.edu

Abstract

This paper discusses a synthesis approach, which
combines logic synthesis, technology mapping, and
retiming into a single integrated flow. The same
combination of methods with minor modifications is
applicable in the context of both standard cell and FPGA
designs. The implementation draws on new results in
representing circuit functions with And-Inv Graphs (AIGs)
and, based on our experience, should scale to circuits with
thousands of memory elements.

1 Introduction and Previous Work
In recent years, the development of logic synthesis

algorithms has reached a point of convergence, leading to
the integration of different aspects of the synthesis process.
This tendency is motivated by the shrinking of DSM
technologies, which forces more of the synthesis aspects to
be considered as interrelated and computed simultaneously.
Some recent examples of this convergence can be found in
the research work trying to integrate:

1. Technology independent synthesis (TIS) and
technology mapping (TM) [18][24][30]

2. TM and retiming (RT) [26] [27][8][9]
3. RT and placement (PL) [1][6]
4. Re-synthesis (RS) and RT [25]
5. TIS and PL [2][15][13]
6. Re-wiring and PL [5]
7. Clock skewing and PL [13]
In this paper, we propose to merge TIS, TM, and RT, so

that, in theory, the best combination of the three methods
can be found in the cross-product of the individual search
spaces. This is in contrast to the traditional synthesis
approach where these steps are done in sequence. First, TIS
is applied to find a network, which is best according to
some heuristic criteria, such as the number of literals and
logic levels. Next, this information is used to find the best
mapping of the current logic structure, and finally, in some
cases, retiming of the mapped circuit is performed to
optimize delay. Obviously, choices made at the earlier
stages bias those made later. Usually a different cost
function is used in each stage. This cost function is at best a
crude heuristic trying to predict the effects on the later
stages. In the new approach, TM finds the best clock period
using all available circuit structures and all possible

retimings. Other parameter can be optimized under the
delay constraint using parameter-specific cost functions.

The techniques that make the proposed convergence of
synthesis steps possible for practical circuits are the
following;

1. And-Invertor Graphs (AIGs) [16][17]
2. Simulation combined with SAT for efficient functional

reduction of AIGs in the FRAIG package [12][23][30]
3. Choice nodes [18]
4. Fast TM methods [3][24]
5. Supergates [22][24]
6. Loop count invariance and optimum retiming [29][6]
AIGs provide a uniform method for representing and

manipulating logic. In the FRAIG package that we use, the
AIGs are made �semi-canonical�, meaning that any two
nodes representing the same function are identified. This is
done on-the-fly in the FRAIG package. It allows for a
compact representation for both synthesis and equivalence
checking. The resulting AIG is referred to as a FRAIG
below. This common representation facilitates the merging
the three operations, TIS, TM, and RT.

A FRAIG [23] represents a multi-network since at any
node there is a list of equivalent nodes, which compute the
same logic function but has a different AIG structure All
FRAIGs are stored in the FRAIG manager, which borrows
many techniques from an efficient BDD package, such as
node hashing, reference counting, garbage collection, and
using complemented edges.

Combining simulation with SAT allows for a fast on-the-
fly equivalence checking, which leads to an efficient
identification of equivalent nodes in the FRAIG manager.
Experimental results in [23] show that the ability of the
FRAIG package to find functional equivalences in the
typical benchmark circuits compares well with that of the
state-of-the-art academic equivalence checkers.

Choice nodes were introduced in [18] to combine, during
TM, algebraic restructuring (part of TIS), which creates
equivalent structures using the associative and distributive
laws of Boolean algebra. This was a step towards unbiasing
the choice of the structure made during TIS. In our opinion,
the use of choice nodes leads to a fundamental shift in
paradigm for logic synthesis, which we call �lossless logic
synthesis�. This paradigm shift is illustrated by the
following discussion:

1. Classical approach. During logic synthesis, a
sequence of operations is performed. At each step, the
best choice is made, based on a heuristic measure of

quality of the entire network. Thus, the initial network
evolves as a sequence of ever �improving� networks.
However, intermediate networks generated along this
sequence are thrown away and only the �best� one is
kept.

2. New approach. In this, the choices of which logic
structure is later used for TM, are postponed. We
merely generate, record, and merge any new structures
into the FRAIG manager. In this, it is critical to have a
fast equivalence checking mechanism, such as a
balanced combination of simulation and SAT [30]. As
a result, TIS becomes a process of generating new
structures, without making judgment on their value for
TM. Indeed, different networks may contain different
good sub-structures. Thus, TIS should be focused on
generating �orthogonal� structures, so that a variety of
structures could be seen when the actual choices are
made during TM. For example, the approach of
�collapse as much as possible and decompose� seems
orthogonal to the approach �keep around the original
nodes that have reasonable values�. This idea was
suggested already in [18].

Technology mapping (TM) is applied to the FRAIG
obtained after the TIS step. In our approach, this multi-
network replaces the single network obtained at the end of
the classical TIS step. Since the FRAIG may contain many
choice nodes and, therefore, alternate structures, TM must
be done extremely efficiently, both in terms of speed and
quality of results. This is where a fine-tuned technology
mapper is required. We will see that this approach can be
extended to allow RT on sequential circuits.

Supergates [3] refer to �new� gates formed using the
combinations of gates from the given standard cell (SC)
library. This is a one-time preprocessing step applied the
SC library and allows for a type of Boolean mapping to be
performed during TM. In effect, it extends the structural
information present in the FRAIG manager. For example, a
supergate may be matched at a node when its set of
contained library gates does not find a corresponding
match in the fanin FRAIG structure because the appropriate
structure is not present at the node.

A well-known result about RT is that it preserves the
number of registers around any loop (loop count). Recently
the converse was proved, i.e. that any pair of isomorphic
graphs with identical loop counts can be retimed into each
other [6]. This leads to the possibility of ignoring the
register positions and just recording, for any new loop
generated during TI, an induced loop count (using the
notion of peripheral retiming [21]). Once TM chooses a
final network, the loop counts can be used to put the
registers into any set of places, such that the loop counts
are satisfied. In [6], it is shown how to do this
constructively.

Further, a result in [29] states that from this initial
placement of the registers, the network can always be
retimed so that the clock cycle can be set (within one gate
delay) to be the maximum delay (loop) ratio (the total delay

around a loop divided by the loop register count). It is well
known that the maximum delay ratio is a hard bound on the
performance of a network. This delay ratio depends on how
the network is synthesized and mapped. In our approach,
we find the best delay ratio using all available TIS and TM
choices.

The above considerations lead to our procedure for
integrating TIS, TM, and RT, outlined below.

1. Convert the initial network into a FRAIG using SOP
or factored form representations of the node
functions.

2. �Remove� all registers but mark their initial
positions in the FRAIG. At this point, the FRAIG
becomes a cyclic combinational circuit.

3. Apply logic re-synthesis transformations to a
selected fragment of the FRAIG.

4. Merge the result of re-synthesis into the FRAIG
manager, marking a set of compatible register
positions in the new result, derived using peripheral
retiming.

5. Repeat Steps 3 and 4 with the aim of generating
�orthogonal� structures until a limit on runtime or
the number of structural alternatives has been
reached.

6. Set an initial clock cycle time to a guess at an
achievable upper-bound φ , computed by Howard�s
algorithm [11].

7. Apply Pan�s procedure [25] (described in Section 2)
to the FRAIG, where the RS is replaced by our
minimum delay TM.

8. Do a binary search for the optimum clock cycle by
repeating Step 7 with improved guesses on clock
period.

9. Infer loop counts on the final mapped network and
place the registers in the derived network to satisfy
the loop counts.

10. Retime these latches so that the optimum mapped
network can be clocked at its optimum clock period
(maximum delay ratio).

11. Compute the sequential required times and
heuristically recover area and other parameters, as
described in [24].

12. Reduce the number of registers by min-area delay-
constrained retiming using an exact ILP formulation
[19] or a greedy heuristic approach similar to [30].

Some additional comments elaborate on these steps.
• The fragments, to which the synthesis is applied, must

satisfy two constraints. It must not contain a
reconvergent path where the register counts on
reconverging paths differ. This means that the selected
fragment is peripherally retimable [20][21]. The
fragment can include cycles (some registers are visited
more than once), can have many roots (outputs), and
can contain choices.

• The inferred register marking of the resynthesized
fragment is the result of a peripheral retiming of the

registers in the fragment. Negative registers are
allowed. When the result is merged into the FRAIG
manager, the appropriate register markings will be set
at the periphery, which contains the inputs and outputs
of the fragment.

• The technology mapping step is performed by
computing a set of cuts at each node in the cyclic
circuit as done in [26], followed by Boolean matching
with implicit phase assignments [3].

• When this process converges, we can insert registers
into the network according to the method of Chong [6]
using the inferred loop counts, and retime these to
obtain the clock period equal to the largest delay ratio
according to the theorem of Papaefthymiou [29]. In
practice, this step is simplified by propagating the latch
markings on the graph edges during RS and TM. A
typical simplified procedure for latch insertion after
FPGA mapping can be found in [27].

• Since the above synthesis and mapping are done to
minimize the maximum delay ratio, area is sacrificed.
This can be recovered e.g. by computing the sequential
required-time in a way similar to how sequential
arrival-times are computed in [26] and by applying
algorithms for area recovery [24]. Area recovery can
also be done by retiming registers not on the critical
loops using a fast heuristic algorithm similar to the
algorithm for extracting two-cube divisors from the
SOP representations of the nodes [30].

2 Pan’s Algorithm

In this section, we outline some results of Pan, which are
key to the merging of the RT step with TIS and TM. The
first result shows how to integrate retiming and re-synthesis
[25]. This was applied to a network with registers and a
given set of fanin cones at each node of the network. Each
cone is re-synthesized according to its input arrival times in
order to minimize its output arrival time. This resynthesis
then gives an input-pin to output-pin delay for each input
of the cone. The computation of the sequential arrival times
is done using the Bellman-Ford style iteration in Figure 1.
It is assumed that the clock period φ is known.

Procedure update(v) computes, for each re-synthesized
cone at v, a new arrival-time l-value as follows:

input()

() max { () }c uv uvu c
l v l u t dφ

∈
= − +

where uvt is the number of registers between input u and
output v, and uvd is the pin-to-pin combinational delay
between u and v for the newly re-synthesized cone c.
Finally, the procedure returns the minimum of lc(v) over
all cones rooted at v,

()
min { ()}cc Cones v

l v
∈

.

 At each return visit to a node v, the new arrival times on
the inputs of any of a cone may affect how it is synthesized
for minimum delay. The iteration continues until there is no
change in any of the labels l. We can think of resynthesis in
this context as any combination of TIS or TM for the cone,

so in effect, this method is already doing a type of
integration of re-synthesis, re-mapping, and retiming.

ReRe (G, φ) // G is the circuit, and φ is the cycle time
 for each node v in G do
 if v is a PI then l(v) 0←
 else l(v) ←−∞
 while (labels changed) do
 for each non-PI node v in G do
 ()tmpl update v←
 if () ()tmp tmpl l v l v l> ←then
 if v is a PO and ()l v φ>
 then return FAILURE
 return SUCCESS;

Figure 1: Computation of arrival-time l-values.

The following result is stated [25]. If the update
operation is monotone increasing (i.e. if any label is
increased for the inputs of a cone, then the output label is
not decreased), then the sequence of labels computed by
the algorithm is monotone increasing. This leads to the
result that the algorithm returns SUCCESS if and only if φ
is a feasible clock period.

In papers on FPGA synthesis [26][27], Pan states that the
delay-optimum retiming of the mapped circuit is given by

0

() 1

 is a PI or PO
() optl v

v
r v

φ



  − 
 

=

where r is the retiming lag for each node. Pan refers to the
l-values as continuous retiming [28].

We will use this algorithm with the iterative re-mapping
technique discussed in [24], which uses an efficient method
for computing all cuts of a node up to a certain limit (say, 5
or 6). This computation is performed on the FRAIG
representation and easily generalizes to the case when
choice nodes are present. The choices nodes effectively
increase the number of cuts computed using the alternative
structural representations, but otherwise do not impact TM.

The cut computation for the case of a cyclic network is
given in [26]. Essentially, the cut computation is iterated
for the network in such a way that the set of cuts for each
node grows in a monotonically increasing sequence.
Initially, all cut sets are initialized to the set, which
includes the node itself, i.e. () {{ }}C v v= . Then each node is
visited and the cut sets of its children are merged by taking
the cross-product of the cut sets of the two children.
Duplicated sets are eliminated, as well as those cuts whose
cardinality exceeds the upper bound.

For a choice node, there is no cross-product operation but
rather the union of the cut sets of its predecessors is taken,
again eliminating duplicates. This iteration continues until
there is no change in the set of cut sets, C(v), at any node. It
should be noted that all choice nodes are ignored from this
point on since the unions of the cut sets { ()}C v actually
contain all the useful information about choice nodes as far
as TM is concerned.

The cut computation can be stopped before the cut sets,
C(v), converge to the fixed point. In this case, the results of
mapping are correct but not optimum because we may have
skipped the cuts leading, which lead to a better mapping.
Although optimality can be weakened, early termination
can save runtime.

3 Re-Synthesis

In this section, we elaborate on the application of Pan�s
algorithm in our proposed approach.

The FRAIG represents the alternate structural choices
derived during the TIS step. Since the decision about what
structure should be used has been postponed to the TIS
step, TM using the cut sets derived from the FRAIG with
choice nodes represents an integrated combination of TIS
and TM. In contrast to Pan�s approach [25], in which each
cone is re-synthesized and mapped individually and then
the best taken, Step 7 of the new procedure simultaneously
evaluates all combinations of the available choices and
chooses the best one.

 In Step 8, instead of searching for an optimum clock
cycle, a desired clock cycle can be given, in which case
only one iteration of TM is needed if the algorithm returns
SUCCESS. Otherwise, either a search for the clock cycle
nearest to the desired one can be done, or more structural
choices can be generated and recorded in the FRAIG.
These new choices can be added selectively using the best
mapping seen so far to try to improve the critical paths.

4 Area Recovery

The efficient approach to area recovery [24] uses the
concept of combinational slack. This concept needs to be
extended to work in the sequential domain. In our
discussion in Section 2, we computed only the sequential
arrival times of the nodes, which represent the arrival times
after retiming. The computation of sequential required-time
in the cyclic circuits starts at the POs and proceeds
backwards in a topological order. For this, we use a
modified version of Pan�s algorithm shown in Figure 2:

ReReq (G, φ) // G is the circuit, and φ is clock period
 for each node v in G do
 if v is a PO then ()vρ φ←
 else l(v) ()vρ ←∞
 while ('sρ have changed) do
 for each non-PI node v in G do
 ()tmp update vρ ←
 if () ()tmp tmpv vρ ρ ρ ρ< ←then
 if v is a PI and () 0vρ <
 then return FAILURE
 return SUCCESS;

Figure 2: Computation of required-time l-values.

Then, the slack at a node is computed as () () ()s v v l vρ= − .
It should be noted that all the mappings were done for
minimum delay and hence area might be excessive.
However, the area recovery methods of [24] have been
shown to be very effective, so we expect that most of the
wasted area can be recovered.

Iterative optimization of other parameters, such as power
and placeability of the netlist after technology mapping,
can be performed similarly to area recovery, as shown in
[24].

5 Conclusions and Future Developments

We have discussed an algorithm, which integrates the
steps of technology independent logic synthesis,
technology mapping, and retiming. The result, in theory,
should be the best mapped network derived by applying all
possible combinations of these steps (minimum area for
minimum clock period). It is possible that practical
constraints on the number of cuts generated or the number
of iterations performed in the algorithms of Figures 1 and
2, will modify the claim to be a �heuristically best mapping
over all generated logic structures with all possible
retimings�.

The following aspects of the new optimization flow still
have to be developed:

1. Efficient generation of structural choices for
sequential networks. Our current procedures for the
generation of structural choices work for
combinational networks only. We consider extending
them to sequential networks by combining the
combinational choices derived for the original network
and a network with a shifted latch boundary. An
alternative way of adding choices is to perform a
sequence of local synthesis steps, each of which
peripherally retimes latches out of a logic cone,
collapses the cone, and decomposes it to get a new
logic structure that is added to the network as a choice.
During peripheral retiming, we retime over the choice
nodes as if they were ordinary OR-gates.

2. Efficient updating of timing information during area
recovery for sequential circuits. During area recovery,
unlike acyclic circuits, cyclic circuits have no starting
and ending points. For acyclic circuits, if the area is
recovered from inputs to outputs, the required time
does not change and, therefore, need not be
recomputed. However, for a cyclic circuit, it may be
necessary to recompute a subset of both sequential
arrival and required times whenever a node is changed.
An efficient method for updating them incrementally is
required for cyclic circuits.

3. Speed of convergence of iterative procedures. The
Bellman-Ford procedure in Section 2 is iterated several
times until an acceptable clock period is found. Since
this involves repeated TM, the rate of convergence
may be slow. In this case, we need to develop
specialized methods for speeding up the convergence.

One possibility is to use Howard�s algorithm [11] to
estimate the critical cycles and avoid re-mapping of the
non-critical nodes.

Ultimately, the efficacy of this approach depends on the
implementation and on the set of heuristics used to filter
out the unnecessary operations. If an efficient
implementation is found, the proposed synthesis
framework will explore, in a reasonable time, the combined
optimization space of TIS, TM, and RT for sequential
circuits with thousands of memory elements.

Acknowledgements
 This research was supported in part by NSF contract,

CCR-0312676, by the MARCO Focus Center for Circuit
System Solution under contract 2003-CT-888 and by the
California Micro program with our industrial sponsors,
Fujitsu, Intel, Magma, and Synplicity.

We specially thank Peichen Pan for extensive discussions
and pointing us to his pioneering papers.

References
[1] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, �Multilevel

optimization for large-scale circuit placement�. Proc.
ICCAD ’00, pp. 171-176.

[2] S. Chatterjee and R. Brayton, �A new incremental placement
algorithm and its application to congestion-aware divisor
extraction�, Proc. ICCAD ’04, pp. 541-548.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T.
Kam, �Reducing structural bias in technology mapping�,
Proc. IWLS ‘05.

[4] D. Chen, J. Cong. �DAOmap: A depth-optimal area
optimization mapping algorithm for FPGA designs�. Proc.
ICCAD ’04, pp. 752-757.

[5] P. Chong, Y. Jiang, S. Khatri, F. Mo, S. Sinha, R. Brayton,
�Don't care wires in logical/physical design�, Proc. IWLS
’00, pp. 1-9.

[6] P. Chong, R. Brayton, �Characterization of feasible
retimings�, Proc. IWLS ‘01, pp. 1-6.

[7] J. Cong and Y. Ding, �FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs�, IEEE Trans. CAD, vol. 13(1), January
1994, pp. 1-12.

[8] J. Cong and C. Wu, �An efficient algorithm for performance-
optimal FPGA technology mapping with retiming�, IEEE
Trans. CAD, vol. 17(9), Sep. 1998, pp. 738-748.

[9] J. Cong and C. Wu, �Optimal FPGA mapping and retiming
with efficient initial state computation�, IEEE Trans. CAD,
vol. 18(11), Nov. 1999, pp. 1595-1607.

[10] J. Cong, C. Wu and Y. Ding, �Cut ranking and pruning:
Enabling a general and efficient FPGA mapping solution,�
Proc. FPGA `99, pp. 29-35.

[11] A. Dasdan, �Experimental analysis of the fastest optimum
cycle ratio and mean algorithms�, ACM TODAES, Oct. 2004,
vol. 9(4), pp. 385-418.

[12] M. K. Ganai, A. Kuehlmann, �On-the-fly compression of
logical circuits�, Proc. IWLS ’00.

[13] W. Gosti, S. Khatri and A. Sangiovanni-Vincentelli.
�Addressing the timing closure problem by integrating logic
optimization and placement�, Proc. ICCAD‘01, pp. 224-231.

[14] A. P. Hurst, P. Chong, A. Kuehlmann, �Physical placement
driven by sequential timing analysis�. Proc. ICCAD '04, pp.
379-386.

[15] Y. Jiang and S. Sapatnekar. �An integrated algorithm for
combined placement and libraryless technology mapping,�
Proc. ICCAD ’99, pp. 102-106.

[16] A. Kuehlmann, V. Paruthi, F. Krohm, M. K. Ganai, �Robust
Boolean reasoning for equivalence checking and functional
property verification�, IEEE TCAD, Vol. 21(12), Dec 2002,
pp. 1377-1394.

[17] A. Kuehlmann, �Dynamic transition relation simplification
for bounded property checking�, Proc. IWLS ’04, pp. 208-
215.

[18] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness,
�Logic decomposition during technology mapping,� IEEE
Trans. CAD, Vol. 16(8), 1997, pp. 813-833.

[19] N. Maheshwari, S. Sapatnekar. �Efficient retiming of large
circuits�, IEEE Trans VLSI, Vol. 6(1), March 1998, pp. 74-
83.

[20] S. Malik, E. Sentovich and R. Brayton and A. Sangiovanni-
Vincentelli, �Retiming and resynthesis: Optimizing
sequential networks with combinational techniques�, IEEE
Trans. CAD, vol. 10(1), Jan. 1991, pp. 74-84.

[21] S. Malik, K.J. Singh, R. K. Brayton and A. Sangiovanni-
Vincentelli, "Performance optimization of pipelined logic
circuits using peripheral retiming and resynthesis", IEEE
Trans. CAD, Vol. 12(5), May 1993, pp. 568-578.

[22] A. Mishchenko, X. Wang, T. Kam, �A new enhanced
constructive decomposition and mapping algorithm�, Proc.
DAC ‘03, pp. 143-147.

[23] A. Mishchenko, S.Chatterjee, R. Jiang, R. Brayton,
�FRAIGs: A unifying representation for logic synthesis and
verification�, ERL Technical Report, EECS Dept., UC
Berkeley, March 2005.

[24] A. Mishchenko, S. Chatterjee, R. Brayton, and M. Ciesielski,
�An integrated technology mapping environment�, Proc.
IWLS ’05.

[25] P. Pan, �Performance-driven integration of retiming and
resynthesis�, Proc. DAC ’99, pp. 243-246.

[26] P. Pan and C.-C. Lin, �A new retiming-based technology
mapping algorithm for LUT-based FPGAs�, Proc. FPGA
’98, pp. 35-42.

[27] P. Pan and C. L. Liu, �Optimum clock period FPGA
technology mapping for sequential circuits�, Proc. DAC ‘96,
pp. 720-725.

[28] P. Pan, �Continuous retiming: Algorithms and applications.
Proc. ICCD ‘97, pp. 116-121.

[29] M. Papaefthymiou, �Understanding retiming through
maximum average-delay cycles�, Mathematical Systems
Theory, No. 27, 1994, pp. 65-84.

[30] J. Rajski, J. Vasudevamurthy, �The testability-preserving
concurrent decomposition and factorization of Boolean
expressions�, IEEE Trans. CAD, Vol.11 (6), June 1992,
pp.778-793.

[31] L. Stok, M. A. Iyer, A. J. Sullivan, �Wavefront technology
mapping�, Proc. DATE ’99. pp. 531-536.

[32] J. S. Zhang, S. Sinha, A. Mishchenko, R. Brayton, and M.
Chrzanowska-Jeske, �Simulation and satisfiability in logic
synthesis�, Proc. IWLS ’05.

