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ABSTRACT: Sinplicity is a Virtue; yet we

continue to cramever nore conplicated circuits

ever nore densely into silicon chips, hoping al

the while that their internal conplexity wll

pronote sinplicity of use. This paper exhibits

how wel | that hope has been fulfilled by several

i nexpensi ve devi ces w dely used nowadays for

nunerical conputation. One of themis the

Hewl ett - Packard hp-15C programmable shirt-

pocket cal culator, on which only a few keys need

be pressed to performtasks |ike these:

Real and Conplex arithnetic, including the elenmentary transcendental
functions and their inverses; Matrix arithnetic including inverse,
transpose, determinant, residual, norns, pronpted input/output and
conpl ex-real conversion; Solve an equation and evaluate an |ntegral
nunmerically; sinple statistics; [ and conbinatorial functions;
For instance, a stroke of its [1/X] key inverts

an 8x8 matrix of 10-sig.-dec. nunbers in 90 sec.

This cal cul ator costs under $100 by nmil-order.

Mat hematically dense circuitry is also found in
Intel’s 8087 coprocessor chip, currently priced
bel ow $200, which has for two years augnented
the instruction repertoire of the 8086 and 8088
m croconputer chips to cope with ..
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Three binary floating-point formats 32, 64 and 80 bits wide; three
binary integer formats 16, 32 and 64 bits wide; 18-digit BCDeci nal
integers; rational arithmetic, square root, format conversion and
exception handling all in conformty with p754, the proposed |EEE
arithnetic standard (see "Conmputer” Mar. 1, 1981); the kernels of
transcendental functions exp, log, tan and arctan; and an internal
stack of eight registers each 80 bits w de.

For instance, the 8087 has been used to invert
a 100x100 matrix of 64-bit floating-point nunbers
in 90 sec. Anong the machines that can use this
chip are the widely distributed |1BM Personal
Conput ers, each containing a socket already wired
for an 8087. Several other manufacturers now
produce arithnetic engines that, |ike the 8087,
conformto the proposed | EEE arithmetic standard,
so software that exploits its refined arithnetic
properties should be w despread soon.

As sophi sticated mat hemati cal operations cone
into use ever nore wdely, mathematica
proficiency appears to rise; in a sense it
actually declines. Conputations fornerly
reserved for experts lie now w thin reach of
whoever m ght benefit fromthemregardl ess of how
little mathemati cs he understands; and that
little is nore likely to have been gl eaned from
handbooks for cal cul ators and personal conputers
than fromprofessors. This trend is pronounced
anong users of financial calculators |ike the
hp-12C. Such trends ought to affect what and how
we teach, as well as how we use mat hemati cs,
regardl ess of whether |arge fast conputers,
hitherto dedi cated nostly to speed, ever catch
up with sone snall er machi nes’ progress towards
mat hemat i cal robustness and conveni ence.

| NTRODUCTI O\ As a school boy in Toronto | was
taught to cherish each advance in Science in so
far as it enabled us to know nore while obliging
us to nmenorize less. By that criterion, albeit
oversinplified, the technol ogical advances that
now rain conputer hardware and software upon us
do not yet constitute an advance in Science, not
so long as they are acconpanied by a hail of

needl ess i nconsi stencies and inconpatibilities.
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Har dest to expl ain,
dedi cated to nunerica

arithnetical
mat henati ca
oversi ghts.

was printed out by WVisiCorp’' s
program cal | ed
Conput er

Per sona

10000
100000
1000000
10000000
100000000
1000000000

i n devices presunably

conputation, are the

anonal ies that arise fromdefective

doctri nes
For

33. 3333333333
333. 33333333
3333. 33333333
33333. 333333
333333. 333333
3333333. 3333
33333333. 3333
333333333. 33

"VisiCalc 1.10"

rather than fromnere
i nst ance,

the followi ng table

99. 9999999999
999. 99999999
9999. 99999999
99999. 999999
999999. 999999
9999999. 9999
99999999. 9999
999999999. 99

spr ead- sheet
run on an | BM

. 00000001
. 00000001
. 000001

. 000001

. 0001

. 0001

.01

.01

Version of 22 Nov. 1983

. 0000000001

Per haps roundoff coul d account plausibly for the
second colum’s jaggedness; but how can errors
in the fourth colum be reconciled with correct
values in the fifth? Inmagine explaining themto
a Conputer Science class in programm ng:

"To calculate (A - C nuch nore accurately,

evaluate (A2 - C+ A/2) instead because ..
Since a far-fetched explanation is undignified,
one mght prefer to believe these anonalies are
i nconsequential and need no expl anation. That
bel i ef induced sonme anonynous programmer to deem
t hem acceptabl e as a side-effect of a shortened
and faster programthat perforns arithnetic for
VisiCalc inradix 100 instead of 10 and drops
a digit prematurely. Actually, the programis
only inperceptibly shorter and faster, but its
anonal i es are nmani fest and, as exanpl es bel ow
will show, malignant. Fortunately, a w de range
of calculators and conputers, especially those
that conformto the I|EEE s proposed standards
p754 and p854 for floating-point arithmetic, do
not suffer from paradoxical roundoff |ike that
di spl ayed above. Those machi nes and st andards
are part of what this paper is about.
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Anonal i es general | y underm ne econom cal thought,
t hereby underm ning the integrity of software and
inflating its cost. The worst anonalies can be
kept out of conputers. Wien they do intrude they
are not always accidental; too often they follow
from desi gn deci sions i nduced by m sconceptions
wi dely taught as rules of thunb about what to
negl ect in approximate conputation. Refutations
of those m sconceptions abound in the literature
[1,2,3,4,5,6] but cannot hel p soneone who has
not read them who believes every el enentary
subj ect must be obvi ous, and whose mat hemati cal
experience is too narrow to support sound
judgments. Here is another donmain where our
failure to teach mathematics effectively to a
past generation conmes hone to roost.

| do not allege that mat hematical education has
failed entirely. For nost, education succeeds as
soon as they can follow a fornmula chosen for them
by Experience or Authority. A few, captivated
by the beauty or abstractness of the subject,
espouse mat hematics to escape the nmundane, and
then need little help fromthe |likes of ne. But
many who endure two years of College Mathematics
do so in the hope that it will help them expl ore

and conquer ot her domai ns. They woul d crown
Mat hematics "Queen of the Sciences" nore for
her power to illum nate her applications than for

her beauty or abstractness. A as, they |lack the
mat hemati cal experience out of which grow first
the abstractions and then the conviction that
these are the source of illumnation. Lacking
too is time we can spend together exploring
exanpl es instead of exchanging nmere formalities.

So, when | try inclass to illumnate for them
t he power and the beauty of the subject | |ove,
abstractions that sumup lifetinmes of experience
turn to chal k dust faster than ny students can
copy, nmuch less learn. Wat will defend them
agai nst nme and ny ki nd?
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Rat her than have to copy the received word,
students are entitled to experinment with

mat hemat i cal phenonena, discover nore of them
and then read how our predecessors discovered
even nore. Students need i nexpensive apparat us
anal ogous to the instrunents and gl assware in
Physics and Chem stry | aboratories, but designed
to conbat the drudgery that inhibits exploration.

This role is the first that | envisaged for the
hp- 15C shirt-pocket cal culator when it was being
desi gned. Later, anong students who find it

hel pful for their Engineering and Science

assi gnments, | hoped a few m ght wonder how it
wor ks and why; sonme of these would becone
conputer scientists and applied mat hemati ci ans
all the nore confortable with inmportant ideas and
t echni ques for having encountered themin their
own cal culators. Those ideas are part of what
thi s paper is about

Thi s paper does not say just that conputers are
smal | er, cheaper, faster and nore capacious. It
tells how sonme machi nes convey mat hemati cal ideas
to a far wi der audience than used to benefit from
them Wat Archinedes wote in sand* coul d be
read by only a few before it blew away. Witten
on paper, his ideas have been read by nyriads and
will be read by nyriads nore. Wen witten into
silicon chips, his ideas and their cousins serve
t he needs of hundreds of thousands now, and soon
mllions.
(* sand is nmostly Silicon Dioxide.)

WHO S TO BLAME? Conventional w sdom says that
in those rare and pathol ogi cal instances when
conputed results are found to be wong because of
roundoff, the right results can always be gotten
by reconputation, either carrying nore figures in
what is otherw se the sane procedure as before,

or via a different and nore "stable" nunerical
algorithmthat could be very hard to find. This
conventional w sdom begs three questions:
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How can anybody tell when and why
results are wong?

Who is responsible for finding and
correcting wong results?

WIIl carrying nore figures always
attenuate roundoff? ?

The sane inperatives that nove us to share
scientific know edge force us to share conputer
software. Wien we share know edge we share an
understandi ng that | eaves intact each individual’s
responsibility for the consequences of the use of
t hat know edge. But when we share software,
responsi bility diffuses; were you obliged to
understand in detail the programyou got from ne,
you mght as well have witten it yourself. If
you pay nme for a programthat | let you believe
correct, but it msleads you into msdirecting a
client, who should be held responsible?

| magi ne a courtroom scene wherein four of us are
enbroiled in a lawsuit brought, despite customary
di sclainers, by your client. The manufacturer of
your conputer is the fourth party.

In nmy defence | prove that, on all reasonable
conputers, ny program copes properly wth al
data in a reasonabl e domain and delivers at | east
hal f as many correct |eading significant figures
as the conputer carries. You prove that your

i nput data is reasonable and the output, though
wong, so plausible that you had no reason to
withhold it fromyour client, who would have
been happy with results half as accurate as |
prom sed. The conputer manufacturer’s testinony
affirnms conventional wisdom First, ny program
is defective because it uses algorithns generally
regarded as "Nunerically Unstable” and fails to
t ake account of the conputer’s special features.
Second, you are remss for using hardware and
software | ess accurate than you shoul d have known
you needed and coul d have bought. The judge is
baf fl ed by expert testinony; whomw Il he bl ane?

Al the testinony in this scenario could be true.
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Lest you think a contradiction nust lurk in it
sonewhere, here is an exanple drawn from|[3] and
designed to undermne faith in the foregoing kind
of conventional w sdom

A programis needed to conpute a polynomal f(x)

of degree 504 defined by conposition thus:
h(y) :=( /3 - y)*( 3 + 3.45y ) ;
g(z) :=1+ 2z + z2 + 723 + ... + z125 4+ 7126
f(x) g(h(x?)) for all |x|] < 1/V3 .

The program nust run fast, the faster the better.

M/ programruns fast because it conputes

9(2) (1- 2z )yr(1-2) if z=#1,
: 127 ot herw se.
On machi nes whose arithnetic is decinmal (or
hexadeci mal, but not binary) | save space and
time by omtting to test whether z =1 ; si nce
rounding 1/3 to 0.3333...3333 guarantees that

z:=h(y) <1 for all y:=x220, | know
g(z) ;= (1- 2% )/(1-2z) is always safe.

Wen z is very closeto 1 ny programnay | ook
like just another fast way to calculate not g(z)
but Junk := Roundoff/Roundoff . However, tests
reveal and proof confirms that my program cannot

| ose nore than about half the significant figures
carried on any nmachi ne whose every rati onal
arithmetic operation introduces into its | ast
significant digit delivered no nore error than if
the result had been chopped or correctly rounded
or even rounded up by as much as 0.9 of a unit
inits last digit. The programworks correctly

regardl ess of whether z27 is calculated by
repeated squaring thus ..
z2 1= z*z ; 7% 1= 2272 28 .= 724 z4
716 .= 28478 . ;82 . ;164,16 . ;64 .- ;324,32
z127 = zx72x 7% 78 71657325264 .
or fromthe formula z'?7 := exp(127*In(z)) used

by many cal culators, provided exp and In

suffer no worse error than ny programallows for
each rational operation. Since it does not need
"correctly rounded" arithmetic, my programruns
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properly on IBM 370's and early DEC PDP-11's
as well as on machines that round very carefully,
as do DEC VAX's and recent HP machines and
those that conformto the rigours of the proposed
| EEE floating-point standards p754 and p854.

But ny programfails on CDC Cybers and UN VAC
1108 s and TI calculators, anong others. Here
is a table reporting results froma sanpling of
machi nes that performonly decinmal arithnetic:

Nanes of Si g. Dec. Cal cul at ed
Cal cul ators carried f(0)

hp- 10C, 11C, 12C, 15C, 16C, 19C, 22 \

27, 29C, 31E, 32E, 33E/ C, 34C > 10 127.00
37E, 38E/ C, 41C, 67, 91, 92, 97 /
hp- 75, 85, 86, 87 12 127. 000
hp- 21, 25, 35, 45, 55, 65 10 127. *
Commodor e SR4148R 12 127. *
hp- 80 Fi nanci al 10 13.
TI Business Anal yst, SR-30, 40 11 100.
Conmmodor e SR4190, 5190 12 12.
Commodor e SR1400, TI-MBA 12 0/0 Error
Tl SR-52,56,51-11 12-13 128.
Tl SR-50, 50A, 51, 51A, 58, 58C, 59 13 14.
Monr oe 326 13 12.
VisiCalc 1.10 on the I BM PC 12 114.

The two entries marked * are the right answers for
the wrong reasons, not proof of arithnmetic quality.

Evidently this conputation’s accuracy depends not
just on how many figures are carried but also on
the manner in which figures are discarded. But
the results seemto cry out for a val ue judgnent:
Faulty Brand X calculators? O a pathol ogica
programrigged to cast undeserved aspersions?

| admt that, on all conputers, ny programis
| ess accurate and not a lot faster than others
that conpute g(z) fromexpressions |ike

(1+2z) (1+22) (1+z%) (1+28) (1+218) (1+23?) (1+2%%)
Simlar schemes work for g,(z) := (1 - z")/(1-2)
when n is an arbitrary integer instead of 127,
t hough they are not so obvious; one such schene
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figures in financial calculations in the portable
wor k- sheet conputer "WrkSlate" just introduced
by Convergent Technologies Inc. Wwen n is not
an i nteger the problem becones truly interesting;
see [3] and [6]. But the possibility that g(z)
m ght be conputed on all machi nes by sone ot her
schenme better than ny short program even if no
better schene were visible yet, inhibits fair-
m nded fol ks fromuttering premature condemnati on
and distracts themfromthe inportant question

If a sinple programworks and is proved

mat hermatically always to work well enough

on all but a few comercially significant

conputers, who should bear the onus of

adapting it to the aberrant nachi nes?
In the past, the onus has fallen nostly upon the
owners of aberrant nmachi nes or upon the creator
of the program rather than upon the creators of
aberrant arithnmetics. The future is unlikely to
be different.

For the present, our best defence agai nst
arithnmetic anonalies is some awareness of how
certain conputers generate them The arithnetic
aberration nost common anong conputers, the one
responsi bl e for nost of the anomalies exhibited
so far in this paper, arises when a digit is
jettisoned prematurely fromthe right-hand side
of an internal register during an arithmetic
operation. For exanple, consider the subtraction
d:=1- z carried to five significant decinmals
with z = 0.99999 but otherw se performed as
four machines do it:

Styl es: correct CDC 7600 TI 59 TI MBA

z = 0. 99999 0. 99999 0. 99999 0. 99999

1= 1. 0000 1. 0000 00000 1. 0000 1. 0000

zZ > Z = 0. 99999 0. 9999 90000 0.9999_ 1.0000_

1-Z = 0. 00001 0. 0000 10000 0.0001_ 0. 0000_
- 0. 00001 0.0000 __ 0. 0001 0

d = 1. 010' 5 0 1. 010' 4 0

Digits dropped prematurely have been replaced by underscores _
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CRAYs’ and UNI VAC 11XXs' subtractions resenble
in binary the TI 59°s in decimal. CDC s Cyber
205 differs fromall the above; it may allege
z-1=0#1- 2z . Athough these disparities
seem perverse, they are no worse than if either
1.00009 - z or 0.99999 - z repl aced 1-z.
Conbining this insight with the mantra " Backward
Error-Anal ysis" sonetines allays indignation,

but not mne; for nore on that subject see [6].

Premat ure abandonnent of a digit defiles other

arithnmetic operations too. Multiplication 1is

nei t her comutative nor nonotonic on the TI 59 ;
try e — Te. Division on the Tl Business
Anal yst gets a different quotient for 1/3 than
for 9/27 . Doubl e precision division in BASIC

on the IBMPC alleges often that X1 X
and 1.000...0000 / 1.000...0001 = 1

After |earning how these things happen, we can
learn to | ook out for them and program around
them though they inpose a deadeni ng burden upon
mat hematical thought. To lift that onus from al
of us, we nust persuade the designers and
bui | ders of conputer arithnetics that
1. aberrant designs can invalidate certain
fam liar cal cul ations perforned by nost
ot her machi nes w thout any troubl e;
2: to conpensate for aberrant arithnetic,
sof tware nust becone nore conplicated,
costly and unreliable; and
3: their custoners are aware of these truths.
(I amnot quite sure about item3.)

THE AREA OF A TRIANGLE: Here is a fanmliar
and straightforward task that bl ows up when
subtraction is aberrant: Devi se a programto
conpute the area A(Xx,y,z) of a triangle given
the lengths x, y, z of its sides. The program
below wi || performthis cal culation al nost as
accurately as floating-point rmultiplication,
division and square root are perforned by the
conputer it runs on only provided the conputer’s
subtraction is free fromthe anonalies nenti oned
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above. Consequently the programworks correctly,

and provably so despite roundoff, on an extrenely

wi de range of machi nes:

APPLE 111 Pascal but not BASIC, Burroughs B6500 single precision;
DG W8000; DEC PDP-11 and VAX, and 10 and 20 single precision;

ELXSI 6400; H P 3000, 9000, 9836, 85-87, and all handhel d machi nes
except the hp-80; Honeywell 6000; 1BM 370 and imtators, and recent
| BM PC BASI C and FORTRAN; | NTEL 8087, 86/330, 432; National 16081;
recent PRLVME machi nes; ZILOG S8000;

But the program m scal cul ates the areas of sone
needl e- shaped triangl es on those nachi nes that

discard a digit prematurely during subtraction

Anong those egregi ous machines are ...

CDC Cybers and 7600; Cray |; wearly IBMPC BASIC, early PRIME in
doubl e precision; TI calculators; UNVAC 1108 and successors;
O course, for each of those nmachi nes a net hod

can be found to conpute A(X,y,z) as accurately

as you like; but if the programnust use only

t he machine’s native floating-point equi pment

t hen nobody knows a fast programthat can be

proved to work on all machines, egregious or not.

The cl assical formula due to Heron of Al exandri a,
namely  A(X,y,z) = V(s(s-x)(s-y)(s-z)) where

S = (x+y+z)/2 , is nunerically unstable for
needl e- shaped triangl es regardl ess of whether
every arithnmetic operation is correctly rounded.
For exanple, here is an extrene case worked out

carrying just five significant decinals:
Gven are x :=100.01, vy :=99.995, =z :=0.025 . Then
s := (x+(y+z))/2 = (200.03)/2 = 100.015 nmust round to either
S :=100.01 or S :=100.02 to five sig. dec. Substituting S
for s in Heron's fornula yields either A=0 or A= 1.5813
respectively, not the correct A = 1.000025. ..

Evidently Heron's fornula could be a very bad way

to calculate, say, ratios of areas of nearly

congruent needl e-shaped triangl es.

A good procedure, nunerically stable for all but
egregi ous nmachines, is the follow ng:
Sort X, y, z sothat x>y >z ;
If z < x-y then no such triangle exists ; else
A= (x+H(y+2)) *(2- (X-y) ) *(z2+(x-y) ) * (x+(y-2)) )] 4 .
DON' T REMOVE PARENTHESES!

How can so i nnocuous an algorithmfail on several
egr egi ous nmachi nes yet be provably successful on
all the rest?
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Success depends upon the followi ng easily proved ...

Theorem If p and q are represented exactly
in the sane conventional floating-point format,
and if 1/2 < p/lq £ 2, then p- g toois
representabl e exactly in the same format, unless
p- gq suffers exponent underfl ow

(We shall ignore exponent over/underfl ow here lest its conplications,
whi ch are avoi dabl e, needlessly distract us from our discussion of
roundof f probl ens; besides, p - g cannot underflow in arithmetic

conforming to the latest drafts of |EEE p754 and p854 .)

The theoremnerely confirnms that subtraction is
exact when nassive cancellation occurs. That is
why each factor inside (... ) i s conputed
correct to wthin a unit or two inits last digit
kept, and A is not nuch worse, on conputers

t hat subtract the way nost people expect themto.
Egr egi ous nmachi nes do nuch worse; they m sconpute
sone of the differences the theorem says they
coul d cal cul ate exactly. Wat ch what happens
again in arithnmetic to just five sig. dec.:

Styl es: correct CDC 7600 TI 59 TI MBA

y = 99. 995 99. 995 99. 995 99. 995

X = 100. 01 100. 01 100. 01 100. 01

y - 099. 995 099. 99 50000 099.99_ 100. 00_
X-y - 000. 015 000.01 000. 02_ 000. 01_
z = 0. 025 0. 025 0. 025 0. 025
z-(x-y) - 0. 010 0. 015 0. 005 0. 015
A > 1. 0000 1.1456 0. 74997 1.1457
as if x - 100. 01 100. 005 100. 015 100. 005

Digits dropped prenmaturely have been replaced by underscores

So, sone procedure better than the "good" one
above is needed to calculate reliably ratios of
areas of nearly congruent needl e-shaped triangl es
on egregi ous nmachi nes. Programmers, powerless to
change these machines and reluctant to wite a
different programfor each of them mght seek
another "better" algorithmthat works on all
egregi ous nmachines as well as the rest. No such
algorithmis known. M closest approach to it
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repl aces every instance of a subtraction |ike

p - q by a call to a programed function
Dff(p,q) designed to conpute a satisfactory
di fference on all machi nes whether they jettison
digits prematurely or not. Here is ny attenpt:

Real Function Diff(y,x): ... =y-x wth adequate accuracy

Real values vy, x ; real d, e ;

If Jy|] <|x] then begin d:=-x; x:=-y; y:=d end;
now |y| = |x]| .

e = |x| ;
VWhile signum(x) = signum(y)

do begin d :=0.53*y ; d:=y - d;
DONTdo d:=y - 0.53*y |
X:=x-d; y:=y-d
until |y|] < e endwhile;

Return Diff :=y - x end Dff.

| believe this programworks on all conputers
built in North Anerica with hardware fl oati ng-

poi nt, egregious or not, except the CDC Cybers
203 and 205 and maybe sonme old WANG nmachi nes.

| doubt that it works with every inplenentation
of floating-point in software. | believe the

mul tiplication by a magi c nunber near 0.53 is
unavoi dabl e, and so is the necessity for a | oop
sonewhat like the "Wile ... do ... until ..."
loop in this program And when it does work, how
shall we decide which adds and subtracts in
other prograns to replace by calls to Dff ? |If
a programlike Dff 1is the cure, the disease
nmust be horri bl e.

In general, calculations near the singularities
of functions of several variables are tricky at
the best of times, so nuch so that they are
described in pejorative terns, |ike degenerate
i1l-conditioned, ill-posed and unstable, that
tend to rub off onto whoever has to cope with
them M dismay at the way anomal ous arithnetic
makes the trickiest calculations trickier, often
trickier than I can handle, is not shared by
peopl e who seemto think that only perverse

cal cul ati ons can be affected adversely, not the
everyday world of dollars and cents. For their
edification I turn nowto dollars and cents.
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FI NANCI AL CALCULATORS:  Four of these, the
hp-92, -37E, -38C and -12C, are used now by
several hundred thousand people to perform

cal cul ati ons concerni ng | oans, |eases, nortgages,
sinking funds, annuities, anortisation schedul es,
depreci ation, bonds, notes, net present val ue and
internal rate of return of investnents, and Truth
in Lending regulations, anong other things. The
cal cul ators were mcrocoded principally by Roy
Martin [7], Dr. Dennis Harnms [8] and R ch Carone,
with some help fromne to overcone nmat hematica
difficulties. Businessnen are oblivious to these
difficulties; to cope with, say, nortgages they
need understand only the | egends on five keys:

[ n] the nunber of periods, typically nonths.

[1] the periodic interest rate, entered as a percentage.

[ PV] the Principal Value of the nortgage at the start.

[ PMI] the anount of each of n equal periodic PayMenTs paid at
the End of each period. ( [BEGAN and [END] are keys too.)

[ FV] the Final Value, or "Balloon Paynent", remaining to be paid
at the end of the n'" period.

The signs of the cash-flows PV, PMI, FV tell us
their directions, positive for incomng and
negative for outgoing. Wth this sign convention
in mnd, the businessman visualizes the sequence
of cash-flows in a nortgage transaction thus:

PV PMT PMT PMIT ... PMI PMT PMT PMT+FV
! ) 1 1 1 1 1 1
S Foemm - R e Foemm - R S >
0 1 2 3 n-3 n-2 n-1 n tine

The sane picture, but with different signs,
depicts a sinking fund with initial deposit PV,
n regular paynents PMI , and an accunul at ed
final value FV . The businessman need not know
the equations that both transactions satisfy:

(1+x)"- PV + g,(1+x)-PMI + FV = 0 where

gn(z) = (1 - z"M/(1-2) and x :=i/100 .
(The troubl esome function gn(z) , wth its renovable singularity
at z =1, has appeared earlier in this paper with n = 127 .)

Fi nanci al calcul ators are designed to sol ve these
equations for any one of the five variables n,
i, PV, PMI, FV given values for the other four.
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At first sight this task seens nontrivial only
when the unknown is i , in which case a

pol ynom al equation of degree n nust be sol ved;
n can be huge. Actually, the task nmust pose
sone chal | enge regardl ess of which variable be
unknown, as the next exanple will show.

A Penny for your Thoughts.
A bank retains a | egal consultant whose thoughts
are so valuable that she is paid for themat the
rate of a penny per second, day and night. Lest
t he sound of pennies dropping distract her, they
they are deposited into her account to accrete
with interest at the rate of 10% per annum
conpounded every second. How nuch will have
accunul ated after a year (365 days) ?

Enter data:
n .= 60*60*24*365 = 31,536,000 sec. per year.
i := 10/n = 0.000 000 317 097 9198 % per sec.
PV : = 0

PMI := -0.01 = one cent per sec. to the bank.

Pressing [FV] should display one year’s accretion,
but different financial calculators display
di fferent anmounts:

Cal cul ators FV di spl ayed
27, 92, 37, 38, 12 $ 331, 667.0067
BA 293 539. 16035
VBA 334 858. 18373
58, 58C, 59 331 559. 3838549

The snall digits are not normally displayed, but are
here to indicate how many figures the nmachines carry.

Wiy is the best result displayed by the nachines
that carry the fewest significant digits (10) in
their data registers? Cbserving that erroneous
results have lost nore than half the figures
carried, we should suspect that certain machines
have subtractions and/or logarithnms rather |ess
accurate than the programmers of their financial
procedures expected; and tests confirm our

suspi ci ons. Besi des t he anomal ous subtractions
uncovered above, we find that 1n(0.9999995) is
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m scal cul ated on those machines as -5;5-7 , not
the correct -5.00000125,,5-7 , despite that they
carry nore than ten sig. dec. However, the owner
of such a cal culator m ght not be so suspi ci ous

at first; later he mght check the consistency
(but not the accuracy) of a result by treating it
as a datum and back-sol ving for some other datum

For instance, recalculating 1 displays this:
Cal cul ators press [i] and see ..
27, 92, 37, 38 0. 000 000 317100
12 0. 000 000 31974
BA catatoni a
VBA 0. 000 000 3886
58, 58C, 59 0. 000 000 3154

If their accuracy is not inpressive, yet their
speed is worth a thought; while performng fewer
t han about a dozen fl oati ng-point operations per
second, nost of these machi nes take | ess than one
or two dozen seconds to solve a pol ynom al
equation here of degree n = 31,536, 000. Ve
shall return to this thought.

A single sonewhat artificial sanple is not enough
to denonstrate how nmuch the probability of
conputational failure is inflated by anomal ous
arithmetic. But before drawing further sanpl es,
we shoul d digress to reconsider the significance
of Martificial" exanples.

Equation-solving is an iterative process akin to
exploration. Regardless of how typical the data
and solution nmay be, the path followed by the
iteration fromfirst guess to final result may
approach or enter regions that are financially

i mpl ausi bl e though nmathematically | egitimte and
still informative. Therefore, prograns that do
not allow an equation to be eval uated accurately
over the w dest domain on which it nakes sense
mat hematically nust cranp an equation-sol ver’s
style, as the next exanple shows.
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Yield froma R sky Investnent.
For an investrment of -PV :=$ 35,000,000 now,
investors are promsed n := 100 equal nonthly
installments of an amobunt PMI' yet to be agreed
upon, but between $ 640,000 and $ 1,000, 000 ,

plus a final paynent at the 100'"  nonth of
FV .= $ 100, 000, 000 . How does the yield i |,
reckoned in %per nonth, vary with PM ?

Tabul ated in the first columm bel ow are sel ected
values of PMI, wth the corresponding yield in
t he second col um shown as displayed on any of
the hp-92, -37E, -38C or -12C after about a
dozen seconds of calculation. The third col um
shows what the TI MBA displayed.

PMI true i % i on the NMBA
$ 640, 000 2. 314053 2. 314053
650, 000 2. 335758 -140-97 BLI NKI NG
660, 000 2. 357528 2. 357528
800, 000 2. 669065 2.669065 after a long tine.
1, 000, 000 3. 135506 -2106. 949 BLI NKI NG

The blinking tiny nunber is a synptom of roundoff
troubl es. The other anonalies could be caused by
an unfortunate choice of iterative nethod for the
equation to be sol ved.

SOVI NG EQUATI ONS.  The customary iteration
for solving any given equation f(x) =0 is

Newton’'s iteration
Xps1 - = Xp - F(x )T (%) for k=0, 1, 2,

starting froma suitable first guess Xxg . |If it
converges, the iteration normally converges
quickly, ultimately nearly doubling the nunber
of correct figures wth each iteration, so that

hi gh accuracy does not cost very nuch. But the
financi al equation above is abnormal because,
t hough a pol ynomal equation in x =1i/100, its

degree n can be so huge that the graph of the
pol ynomal is, for practical purposes, spiked
and/ or stepped rather than snooth. Consequently,
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Newton’s iteration converges too slowy if it
converges at all. At first sight, the follow ng
| emma nakes the situation appear hopel ess.

Lerma: Newton’s Iteration is Ubiquitous:
[f X is a continuous real function and if the

iteration Xk+1 - = X(Xgx) converges, fromevery
starting point xg sufficiently close, to a
root of the equation F(x) =0 |, t hen the

iteration nust be Newton's iteration applied to
an equation f(x) =0 equivalent to F(x) =0
in the sense that both have the sanme root.

The proof, wusing f(x) := exp( Jdx/(x-X(x)) ) ,
is easy. The lenmma tells us not to bother trying
iteration to solve an equation unless it can be
transformed into an equi valent one well suited to
solution by Newton’s iteration. Wat does "well
suited" nmean? One neaning | discovered is this:

Theorem If f(x) is adifference f =u- v
bet ween two convex functions, one nonotone
nondecr easi ng and anot her nonot one noni ncreasi ng

t hr oughout some real interval, then Newton’'s
iteration Xy := X¢ - f(x)/f(xc) cannot
dither; it nust either escape fromthat interva

or converge within it, no nmatter where therein
the iteration starts.

This, the nost general sufficient condition known
for the convergence of Newon's iteration applied
to solve a real equation, was not easy to prove,
but it was worth the effort. The financial

equation above, when it has just one financially

meani ngful solution 1 , can always and easily
be transforned into the form
tegy P rcy P eyt tcg = ocgy +ocgy? +oegyd 4Ll
where each c¢; is the magnitude of a cash-flow
and y is either 1+x or 1/(1+x) , whichever
ensures that cg >0 . This formsatisfies the
t heorem t hroughout the interval x > -1
capturing all interest rates i > -100 %; no

ot hers nmake financial sense. Now, applied to the
transforned equation, Newon's iteration nust
converge fromevery starting point. But not very
fast if n far exceeds 1000 .
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To cope with huge n on the hp-92, Roy and
approximated the root x of the financial
equation asynptotically ( as n - +o0 ), and
used the leading termas a first guess for the
iteration. Despite having to recogni ze severa
cases, the approximation is quick and, when n
is large enough that it matters, accurate to over
five sig. dec. Therefore, nobody has to wait
nore than about a dozen seconds, |ong enough for
fewer than 100 nultiplications, after pressing
[i] on the hp-92, -37E, -38E or -38C, no
matter how big n may be

Dennis and | used related transformations to
solve related equations for Internal Rates of
Return on the hp-38E and C, whose [IRR] key
will cope with over 2000 cash-flows. Later, to
cope with a revised version of the financia
equati on above that, unlike the original, makes
sense when n is not an integer, Rich and I
used yet another transformation in the hp-12C;
we used In(y) instead of y as the independent
variable in the equation above with terns cjyJ
and applied Newton's iteration to its logarithm
Al t hough each iteration cost now nore tine than
before, the theorem continued to guarantee
convergence which was rapid fromevery starting
point regardless of n . Further details are not
needed to nmake ny point:

Every day, hundreds of thousands of people
enpl oy powerful financial calculators that
are convenient, fast and reliable because
of Physical, Chem cal, and now Mat hemati ca
technol ogy nore intricate than they inmagine.

Euphoric at the success of the hp-38E, Dennis
Harnms’ nmanager, Stan Mntz, hunoured us by
granting permssion to devise a calculator with a
[ SOLVE] key, despite that no nmarketing survey
had reveal ed any denmand for such a thing, and
subject to one proviso: mndful of his struggles
with integrals in college, he charged us to
devise an [INTEGRATE] Kkey too. Thus was the
hp-34C born. [Its innovations have been exposed
el sewhere [9,10], but not the mat hemati cal
insight that made a [SOLVE] key seem feasi bl e.
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Here is the train of thought

Suppose we are given an equation f(x) =0 to
solve but not nuch time to study it. Suppose we
are willing totry Newon’s iteration, perhaps
because the Theorem above is applicable or for
lack of a better idea. W will have to wite a
programto conpute f’(x) as well as f(x) ,

unl ess we choose to approxi mate the derivative by
a difference quotient. This choice is tantanount
to approxi mating a tangent by a secant, whence
the iteration fornmula gets its nanme, i.e.

Secant |lteration:
Xpe1 0= Xk - FOx) (X - X)) T (F(x) - f(Xk_1))

If this iteration converges, then it is known

to converge usually slightly faster than Newton’s
unless calculating f(x) and f’(x) together
costs less than about 45 % nore time than
calculating f(x) alone. But will the secant
iteration converge? Mre to the point, wll the
approxi mati on of a tangent by a secant |eave

i ntact whatever reasoning mght have notivated
recourse to Newton’s iteration? Al nost surely
YES! More precisely, | discovered the follow ng

Phenonenon: Suppose that Newton’s iteration

to solve the equation f(x) =0 converges from
every starting guess within an interval to a root
t herei n. Then, unless f(x) vanishes inside
that interval w thout reversing sign there, the
secant iteration nmust converge to the sane root
fromevery pair of starting guesses in that

i nterval

The proof that this nust happen is extrenely |ong
and difficult partly because f(x)/f’ (x) could
oscillate pathol ogically in the nei ghbourhood of
a root where both f(x) and f’(x) vanished

si nul t aneously. The phenonenon’s inplication is

i medi ate; the Secant Iteration provides as firm
a foundation as Newton’s for a general -purpose
equation solving program but with no need for a
derivative. So we created such a program [9] ,
and Tony Rdolfo mcrocoded it into the hp-34C
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under the [SOLVE] key with no scratch registers
to spare. Later the sane programwas copied into
the hp-15C. To use it to solve f(x) =0,
follow t hese three steps:

- Enter into the cal cul ator under, say, |abel [A]
a programthat evaluates f(x) given any x .
(Cher labels can be used instead of [A] .)

- Enter a guess or two at the desired root, the
cl oser the better.

- Press [SOLVE] [A] and see what happens ..

If f(x) changes sign anywhere, then [SOLVE]
will surely locate such a place to within a few
units inits tenth sig. dec. whenever

-- f(x) is strictly nmonotonic, or
-- f(x) is convex, or concave, or
-- |f(x)| has no nonzero |ocal mninmm or
-- f(x) has different signs at two guesses.

If both the last two conditions are viol ated,
then [SCOLVE] nmay display an approximation to
the | ocation of a nonzero |ocal mninmumof |f(x)]
and signal that it could not find a change of
sign. Under no circunstances will [SOLVE] run
indefinitely; it always finds sonething, even
if sonetimes the search takes a long tinme. Here
is an exanpl e:

\%
Z

By(X) = signum'x-N) = +1 if X

Try, say, N:=7 and first guesses xg := 101
and x4 := 102. The programfor By(x) is this:
LBL B 7 - ENTER ABS x#0? =+ RIN
To enter the first guesses and sol ve B;(x) =0

for x , press 101 ENTER 102 SOLVE B and wait
a mnute to see x = 7.000000000 displayed after
B;(x) has been sanpled 45 tines. ( How does

[ SOLVE] know which way to turn? See [9].)
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Changing N from 7 to O extends the tine to
6 mn. after 361 sanples. Yet |onger search
times in difficult cases m ght have been | essened
had a few nore than the five scratch registers
allocated to [SOLVE] been available in the hp-
34C, but [INTEGRATE] consuned a lion's share.

THE [ NTEGRATE] KEY: Anong innunerable
nuneri cal quadrature procedures available in the
l[iterature and in conmputers, what distinguishes
this one is its relative ease of use. Estinmating

X
[ = [ f(t)dt
J,
on the hp-34C and hp-15C entails these steps:

- Enter into the cal cul ator under, say, |abel [A]
a programthat evaluates f(x) given any x .
(Cher labels can be used instead of [A] .)

- Set the display to show as nmany digits of the
integrand f as matter. (Mre on this below)

- Put inthe limts of integration thus:
y ENTER x

- Press [ﬁ] [A] and wait for the results.

Forenost in the display, in the X-register,
will be the estimate of the desired integral [ ;
behind it, in the Y-register, wll be the
uncertainty Al in | inherited fromthe
tolerance allowed in f . Mre precisely, the

[J;] key estinmates not nerely | .= J’Xf(t)dt
y

but actually [ = Al := Ix(f(t)tAf(t))dt where all
y

that is asserted about Af is that f(t) £ Af(t)
agrees with f(t) in all digits displayed.

Ceonetrically, the graph of f £ Af is a ribbon,

centred along the graph of f , containing all

graphs regarded as practically indistinguishable
fromthat of f . The area under the graph of f
is [/, andis uncertain by =*A/ where 2A/ is

the area of the ribbon.
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Here is a famliar exanple:
| = Qx) = Imexp(—tz/z)dt/ﬁ .
X

Since the integrand underflows past 107°° to zero
when t > 22, replacing the upper limt o by
22 discards nothing but converts the inproper
integral Qx) into a proper one that any general
pur pose nunerical quadrature program can eval uate
easily. Designate this procedure "Mthod A" ;
as we shall see, it will waste nost of its tine
sanpling the integrand at places where it
contributes negligibly to the integral. Another
procedure, designated "Method B'" , substitutes
s? = sinY(exp(-t2%/2)) to transformthe inproper
integral Qx) into a proper integral:

. =1 2
Qx) = Jfo/s'” (expx"/2) g, [(sins?) + 1) (sins)=1) /1 n(si n(s))ds/

except if x <0 calculate Qx) =1- Q-x)
Al t hough the transforned integrand is finite
everywhere, it does have two weak singularities:

Oheis at s =0 where an attenpt to calcul ate
In O could stop the calculator, but it won't;

t he [J?] key is designed to avoid draw ng

sanples of the integrand fromthe ends of the
range of integration lest singularities that are
otherwi se easily integrable derail it there.

The second is a renovable O0/0 type singularity

that occurs when s? = W2 . It |ooms near when
X 1s sotiny, and the upper limt of integration

so nearly V(m2) , that s° approaches TU?2
near enough for sin s? to round to very nearly

1; then both sins?-1 and In sin s?
will be seriously contam nated by rounding error.

Coul d that error reduce the integrand to usel ess
Junk := Roundoff/Roundoff ? Not on the hp-34C
nor hp-15C. The roundoff cancels itself; treat

sin s instead of s as the I ndependent vari abl e
to see why.

File MathSand.pdf January 9, 2001 8:40 am Page 23 /49



Mathematics Written in Sand Version of 22 Nov. 1983

Therefore, the integrand will be eval uated
accurately provided subtraction and |ogarithm
are both accurate to full working precision, as
they are on these nachi nes but not sone ot hers.

The prograns for nethods A and B are short
enough to show here:

LBLA 22 [(*1 m m + LBLO VvV + xy LSTx =+ x>.y RIN
LBL1 x2 2 CHS =+ ¢ RIN
LBL B RAD GSB1 SIN! v 0 Xy Iyx 2 1 GIOO0
LBL 2 ENTER x2 SIN LN LSTx 1 - = LSTx 2 + x>y + Vv x RIN

Before they are run, the display should be set
to show just as many figures as are wanted. For

four significant figures, press [SC] 3. Shown
bel ow for both nmethods and for a few val ues of X
are estimates of the integral Qx) , and how

often the integrand was sanpled to get each, and
the el apsed ti ne.

X Qx) by Mthod A # sanpl es sec.

------ and by Method B # sanpl es sec.

10 7.619819-24 + 1744-28 127 227
------ 7.6199,5-24 + 18;5-28 7 27
1.96 0.024998 + 0.000006 127 227
------ 0.024998 + 0.000006 15 58

0 0. 499999 + 0.000045 63 116

------ 0.500003 + 0.000146 15 58

For hi gher accuracy, say 7 or 8 sig. dec., press

[SCI] 7 before running the prograns; typical

results for nethods A and B respectively are
Qi(0) = 0.4999999998 + 0. 0000000047 at 255 sanples in 444 sec.
&(0) 0. 5000000002 0. 0000000135 at 63 sanples in 216 sec.

+
+

Thi s exanple nmakes it all seemeasy. Actually,
reliable and rapid nunerical integration is still
sonewhat a black art, especially when conbi ned
with devious transformations to tanme ot herw se
wld or nearly inproper integrals. Frequently
these transformations flirt with singularities.

Sone singularities, designed to cancel each other
harm essly, wll do just that despite roundoff
because the underlying arithnmetic and el enentary
functions in the hp-34C and hp-15C have been
i npl enented so carefully. Qher singularities
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cannot be renmoved but can be weakened enough to
be tolerated by the [J?] key’ s quadrature

procedure [10] ; and then even if thousands of
sanpl es of the integrand have to be accumul at ed
they will be added so accurately, because the
calculators carry three extra digits for the
pur pose, that roundoff inside the quadrature
procedure will not obscure the desired result.

The user of these nmachines can remain blissfully
unaware of details that, on sone other conputers,
could bring grief to a program he thought was
pretty clever.

However, no integration procedure nor equation
sol ver based excl usively upon a sanpling strategy
can be fool proof. To understand why, consider a
procedure that purports to acconplish one of the
following tasks for an arbitrary function f
given only a programthat calculates f(x) for
any given argunment x in sonme specified range:

-- Evaluate [ f(t) dt over the given range.
-- Mnimze f(x) over the given range.

--  Find out whether and where f(x) =0 .

W shall test this procedure first upon a program

that returns always f(x) := 1 but also prints
out a record of its argunent x . Then for sone
finite N we shall know that the procedure drew
sanples f(xq), f(x2), f(x3) ..., f(Xpn1), T(XN

while attenpting to acconplish the assigned task.
Next | et us test the procedure upon a second
programthat returns

F(X) 1= 1 - (c(x-Xq) (X-X2) (X-X3) (... ) (X-Xpne1) (X-XN)) 2
where ¢ is chosen so big that f reverses sign
nmore than tw ce. Since both functions f(x)
return exactly the same value 1 for every
sanpl e drawn, the procedure nust deliver the
sane result for both functions; but no such
result can be correct for both.

Therefore the [ ] Kkey nmust be as fallible as
y

all other sanpling procedures. Spikes or junps
or violent oscillations can precipitate failure.
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For exanple, attenpts to evaluate nunerically
1
[, o, (t=0.05)1 Bexp(l/t)dt = -134.26994. ..

too often deliver instead a very wong estinate
like +0.1359 . That is the area under the graph
of the integrand between t =1 and t = 0.6,
an area shaped like a triangular sail. The graph
practically coincides with the t-axis between

t =0.6 and t =0.016 . Between t = 0.016

and t = 0.01 the graph is a sharp spike rising
from -1,075,246.9 at t =0.01 upto -1.571
at t =0.012, upto -0.0106 at t = 0.013,
and nearly zero thereafter. Therefore, nost of

the integral lies in a narrow spi ke only 1/ 500"
the wdth of the range of integration. Sanpling
is nost unlikely to reveal that spike unless the
sanpl es are very nunerous, as is the case only
when high accuracy is desired. Evaluating the
integral in the obvious way with 3 sig. dec.
displayed ([SCI] 2) on the hp-34C yields the
expected msleading result +0.1357 = 0.0003
after 31 sanples. Wth 4 sig. dec. displayed
([SC] 3) the result is -134.26994 £ 0.02

after 2047 sanples, <correct but costly. A nore
econom cal way to evaluate this integral is as a

.013
= + .
sum léDl 001 léDl3 : each termcan be

eval uated separately and added later to yield
-134.270 £ 0.022 after 126 sanples all told
at [SC] 3. Neither this partitioning of the
integral nor its necessity would be obvious to
soneone who did not know what to | ook for; the

[J?] key coul d m sl ead an uneducat ed user badly.

THE CALCULATOR OMER S HANDBOOK: A conput er
is deemed Reliable when its users are never
surprised by sonething its designers nmnust |ater
apol ogi ze for. How can designers and users who
never neet |earn what to expect from each ot her?
Through education. That is the key to reliable
conputati on. Exhorting nmanufacturers to build
reliable equipnment is nere counsel of perfection
unl ess they can learn howto design it at a
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tolerable cost. And then, as refined equi pnent
free from avoi dabl e anonal i es becones avai l abl e,
users nust be taught what to expect and how to
exploit it. Cbviously, expectations wll be
influenced, if not taught, by the Owner’s
Handbook and what ever ot her docunents the

manuf acturer supplies to informand indoctrinate
the custoner. Comunication the other way is

| ess obvious; only recently have sone

manuf acturers cone to appreciate how rmuch they
learn fromthe Omer’s Handbook before it is
witten, before the nmachine is designed.

How shoul d arithnetic be designed? A sinple goa
for nost of a calculator’s arithmetic functions
woul d seem easy to state [11]
Keep the error strictly snmaller than one ulp.
(An ulp is one Lhit in the Last H ace.)

But this specification acconplishes |ess than one
m ght reasonably desire; for instance it ensures
neither the sign-symetry of sin(x) = -sin(-x)
nor the nonotonicity of VX . Neither is the goa
easy to achieve; sonetinmes it is inpractical

For exanple, recent hand-held Hew ett-Packard
cal cul ators that accept and deliver data to 10
sig. dec. produce two results,

729335 _ 7.968419666,,95 and 3201 . 7.968419664,,95 ,

of which at least one (it is the latter) nust err
by nore than one ulp. Only near the overfl ow and
underfl ow t hreshol ds do the exponential functions
go so far as two ulps wong; to keep their error
bel ow one ul p here too woul d have required that
intermedi ate cal culations be carried to nore than
the 13 sig. dec. actually carried in a few
internal registers of these machines. Wuld the
cost and speed penalties paid to carry an extra
figure be offset by noticeably enhanced accuracy?

Not |ikely. And sone offensive inaccuracies
woul d persist even if twice as many figures were
carried. Consider sin(m) = 0. This equation
presunmes that the sin(...) procedure is given
exactly Tt = 3.14159 26535 89793 23846 26433..
But, instead of m, the [m Kkey delivers

[1] = 3.14159 2654 = 1 rounded to 10 sig. dec. ;
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only after we notice their difference will we
recover fromour initial surprise at pressing the
[SIN] key and seeing [SIN ([1]) = -4.1040-10
i nstead of zero. Qur second surprise is finding
error inthe 4'" instead of 10'" sig. dec. of
[SIN ([1]) # sin([r]) = -0.00000 00004 10206 76153 7..
This gross error is due to the calculator’s use
internally of only 13 sig. dec. of 1. Larger
radi an argunents incur |arger errors;

[SIN ([T] 1014) = +0.79905 50814 # sin([m] 1914) = -0.78387...

( Angles in Degrees incur no such errors; for

i nstance [TAI\I](lOk ) = -5.671281820 «correctly
for k=2, 3, 4 5 ..., 99.) The only way to
avoid such errors with large radian angles is to
retain 1 to very high accuracy; over 120 sig.
dec. woul d be needed for these cal cul ators. That
extravagance is feasible and attractive in |arge
conputers with large nenories [12] , but not in
calcul ators. Besides, because uncertainties so
smal|l as half an ulp in the input argunents swanp
the errors we have been discussing, these errors
have al nost no i npact upon the scientific and
engi neering cal cul ations for which cal culators
were designed. Wat little inpact mght remain
is further attenuated by the preservation, to
within an ulp or two on these nachi nes regardl ess
of howbig x may be, of identities |ike
sin(2x) = 2 sin(x) cos(x) that do not involve Tt
explicitly. Therefore errors caused by not using
exactly Tt , and the convol uted excuses for

them are tolerable; for nore details see [6].

I nt ol erance would not sinplify the situation
much. Suppose we insisted upon Perfection and
found it,- a nmachi ne whose every arithnetic
function rounds correctly to within half an ulp.
(This is feasible for algebraic functions but

i npractical for exponential and transcendental
functions.) Wuld this Perfection preclude
arithmetic surprises? Regar dl ess of the breadth
of our experience, NO . For exanple, nmany an
i nexperienced cal cul ator user would continue to

be surprised that (Vvx)2 = x is often spoiled by
roundoff; on decimal machi nes viol ati ons abound
for 1 <x <10 and 25 < x < 100 but none lie
in 10 £ x <25 . On the other hand, experienced
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cynics, expecting nothing to survive roundoff,
nmust be surprised to discover, on binary and
quat ernary machi nes but not on those with |arger

radi x, that despite roundoff V(x%) = |x| for

all x unless x2 over/underflows. These

surprises can be confirned first by experinent,
then by sinple proofs. Recent results of Harry
D anond [ 13] suggest that surprises |like these
nmust pervade correctly rounded arithmetic. Yet
somet hi ng worse | urks there.

Correctly rounded arithnetic conceal s anonal i es
so rare that no conscientious progranmer could
reasonably be expected to discover them W do
not expect such a programmer to prove his every
program correct; doing so mght entail a proof
as difficult as that of the Four Col our Theorem
for planar maps. Alternatively, the programmer
m ght be forced to insert defensive code to cope
with eventualities that al nost never happen, if
they can happen at all. E ther way slows down
the programmer; and defensive programm ng sl ows
down the programtoo. Besides, whatever causes
errors in prograns al so causes errors in proofs.

Therefore every program nust be run through tests
upon sanpl e data drawn reasonably densely from
its domain. But sone anonalies are too rare to
be caught by that kind of test. For instance,

consider a function f(x) :=x - sin(x) that
figures in problem2 on p. 12 of P. Henrici’s
book [ 14] . f'(x) =2 sin?x/2) 20, so f(x)

must be nonot one non-decreasing. Can the sane be
said for F(x) := x - SIN(x) where  SIN(x) is
sin(x) correctly rounded ? Yes, everywhere
except at a scattered handful of exceptions, each
an acci dent of radix and wordsi ze. For instance,
when rounding to 6 sig. dec. the sole exception
is at x = 0.100167 ; to 5 sig. dec. it is at
x = 0.010000 ; to 4 sig. dec., nowhere:

X sin(x) SI N(x) F(x)

0. 100167 0. 09999958095 0. 0999996 0. 0001674
0.100168 0. 1000005759 0. 100001 0. 0001670

0. 010000  0.009999833334  0.0099998 0.0000002
0. 010001  0.01000083328 0. 010001 0
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So, unconprom si ng adherence to the nost rigorous
rules for approxinmate arithnetic will not protect
a conputer fromunpl easant surprises. Apparently
t he approxi mation of the continuumby a discrete

set nust introduce sone irreduci bl e guantum of

noi se into mathematical thought, as well as into
conputed results, and we don’'t know how big that
guantumis. |If we have to tolerate this unknown

noise, we mght as well tolerate a little nore.

Tol erance grants the designer of a conputer’s
arithnmetic not carte blanche for arithnetic
anarchy but rather his nmandate:
Keep both noise and cost tolerably small,
the smaller the better.

Tol erable to whon? To the custoner, to whomthe
desi gner woul d rather not have to apol ogi ze for
unfortunate consequences of a conprom se that my
have been unnecessary. Thus do we circle back to
the real world, where Science can tell us howto
doit, or not totry, but not what to do. The
desi gner of conputer arithnetic nust be guided in
hi s choi ces by sonething nore than mat hemati cs:

Design arithmetic functions in such a

way that al nost no user need know nore

about themthan the designer is proud

to explain in the Owner’s Handbook.
| f the handbook says nothing nuch about the
accuracy of the functions, then they had better
be so accurate that nothing nmuch need be said.

Such is the case for all financial functions and
all elenmentary real functions of one or two real
argunents on recent Hew ett-Packard hand-hel d
cal culators. Rational operations (+, - X, =)
and VX are correctly rounded to within half an
ulp; the logarithnms and inverse trigononetric
and i nverse hyperbolic functions are al nost as
good. No errors worse than the subtle ones shown
above afflict trigononetric functions of radians,
and exponential, hyperbolic and gamma functi ons.

( The [x!'] key delivers x! = T(x+1l) for non-
integers on the hp-34C and hp-15C .) So little
wor se than best possible are these errors that no
nmention of them appears in the Oaner’s Handbook,

t hough an auxiliary handbook describes themfully
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in a chapter [6] destined to be forgotten as soon
as it is read. On the other hand the [Y+] key,
used to cal cul ate standard devi ations and perform
l'inear regression upon pairs (X;, yj) , uses
al gorithnms chosen nore for conpatibility with
past practice and for speed than for nunerical
infallibility, and gives unreliable results when
all the data x; agree in their first severa

sig. dec. The Ower’s Handbooks supply a sinple
and efficient renmedy; tenporarily omt redundant
leading digits. 1In other words, when all data
are very close to their nean, subtract an
approxi mate nmean fromthem before entering them

So far, the Owner’s Handbook has been depi cted
as nore a contractual than tutorial docunent. It
tells the custoner what he has bought, offering
advice only when it is brief and necessary to
avoi d m sunderstandi ng. The nmanufacturer of the
conputer is not obliged to teach the custonmer how
to conpute. That policy seenmed sound until it

collided with the hp-34C whose powerful [J?]

and [SOLVE] keys invite abuse. Were would the
custoner learn how to use those keys reliably?
Not fromstandard texts on Nunerical Analysis
they tend to drown the reader in formulas none of
whi ch match the calculator’s algorithnms. Hardly
any text explains howto recognize wild integrals
and tame them or what to do when an equati on-
solving iteration finds no root. Wether these
be rare pathol ogies or not, they nust happen
daily to at |east several anong the hundreds of

t housands of users of the calculator. Were
woul d bl ane for these pathol ogies cone to rest?

Robert Barkan and Hank Schroeder wote nost of
the Owner’s Handbook for the hp-34C . They
were not confident that they could reverse a | ong
standi ng policy against tutorial matter in the
handbook when they decided to include two extra
chapters, one on integration and one on equation
solving. Each chapter discusses its subject’s
pat hol ogi es wi th exanpl es worked out on the

cal culator, but the discussion is otherw se

i ndependent of the calculator’s particul ars;
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these chapters, |ike the subsequent articles [9]
and [10], mght well have been witten for a text
on nunerical nethods. The chapters constitute
part of an appendi x at the end of the handbook so
t hat nobody will think he has to read t hem before
using the calculator. Indications are that

everyone who uses the [J?] and [SOLVE] keys
has read those chapters and appreci ates them

Sonet hi ng el se was needed for the hp-15C . The
user of this slim (128mm x 80mm x 15mm)
shirt-pocket calculator can, in a single key-
stroke, attenpt to invert a singular matrix, or
eval uate a conplex analytic function at a slit-
discontinuity in its domain. Tutorial chapters
for this machine could anobunt to a text covering
two years of coll ege mathematics for engineers,
| eaving out only vector calculus (divs, grads and
curls). Qur inclination to enbed such a text in
the Owner’s Handbook was deflected by a prudent
mar ket i ng specialist who explained to us ...
"The Intimdation Factor:

A potential custoner, w shing to purchase an

advanced scientific shirt-pocket calcul ator,

peeks into the box and sees nestled there a

slimcal cul ator beside a very thick book.
Instead we put tutorial matter into a second book
[ 15] that a cal cul ator owner could buy |ater.

COVPLEX NUVBERS AND NATRI CES: The hp-15C
is distinguished fromall previous cal cul ators by
its treatnent of conplex nunbers and matrices as
arithmetic objects in their owm right [16] rather
than as nere aggregates of nunbers. The rational
operation keys [+], [-], [X], [+] and [1/ x] act
upon conpl ex nunbers or upon matrix operands j ust
as they act upon real nunbers; other keys like

[VvX], [y*], [SIN], [COSH], etc. calculate their
anal ytic functions of conplex as well as real
nunbers. The [ABS] key delivers |x|] for rea
or conplex x ; other key strokes deliver the
determ nant and various norns of a matrix. O
course, earlier calculators and conputers can be
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programred to performsimlar operations, albeit
not so easily nor so accurately. The hp-15C
takes the tediumout of these operations; in a
smal | package it offers sonme of Fortran's
conveni ent handling of conplex arithnmetic, sone
of APL’'s convenient handling of array arithnetic.
Teachers see nore than nere conveni ence there;
students using the hp-15C can experinent with
power ful abstractions and |learn their val ue
before having to | earn how to inplenent them

To illustrate the val ue of conveni ent conpl ex
arithmetic, let us apply it to three problens in
Mat hemat i cal Physics, all sharing the follow ng
figure in the (x,y) plane:

Problem 1. The figure shows the cross section of
a large netal slab whose thickness doubl es j ust
as a straight line is crossed. The slab’ s flat
upper surface is kept at a constant tenperature
U=m. The lower surface, wth the step, 1is
kept at a constant tenperature U =0 . How does
the tenperature U(x,y) vary inside the slab?

Problem?2. Material of uniformresistivity and
thickness is laid down in a very long strip whose
wi dt h doubl es at the step shown in the figure.

An electric current passes through the strip;

how nmust the voltage V(x,y) vary in the strip?

Problem 3. The figure | ooks down upon a | ong
channel of constant depth whose wi dth doubl es at
the step. Water flows slowy along the channel.
Floating in the water is a tiny cork chip; what
path nust it follow? The path, a "streamline",
is a level curve of a "streamfunction" UX,Yy).

U(x,y) and V(x,y) both satisfy the sane parti al
differential equation, Laplace’ s equation

U ax% + 9°Udy? = 0 = 9°VIox2 + d°Vloay?
but with different boundary conditions. U takes
boundary val ues shown in the figure. The nornal
derivative of V vanishes upon the boundaries
shown in the figure, and V/x tends to alimt
as X - +o0 and to twice that limt as x - -0 ,
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A Slab, a Strip, a Channel.

<c

Table 1: Points (x,y) on the Streamline U= 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01
-1.6 -1.2 -0.8 -0.4 -0.2 -0.1 0 0.1

0.2 0.4 0.8 1.2 1.4 1.6
-0.3680 -0.2540 -0.1480 -0.0566 -0.0209 -0.0075 0.0002 0.0012 0.0018 0.0028 0.0053 0.0118 0.1367 0.5248

1.0029 1.0028 1.0025 1.0020 1.0015 1.0011 1.0002 0.9921 0.9769 0.9307 0.7724 0.4636 0.0448 0.0130C
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Engi neering students are usually taught a finite
difference or finite element nethod to cal cuate

U nunerically. A nmesh is laid upon the strip to
partition it into many tiny cells. To each cel
corresponds an equation saying that U therein
approxi mates a wei ghted average of its values in
nei ghbouring cells. The solution of this system
of equations approximates U . The usual way to
i nprove accuracy is to refine the nmesh, thereby
i ncreasi ng the nunber of equations to be sol ved.
Because the solution U has a singularity at the
intruding corner (at x=0, y=1) , it will not be
approxi mated wel |l near there unless the nesh near
there /s refined. Therefore, calculating U

this way nust be tedious. |f Mathematics be the
Art of Calculation wi thout Conputation, this is
not Mathematics; it is nore like Sinulation.

The cl assical mathematical solution of the three
probl ens enpl oys conpl ex vari abl es and conf or nal
transformati on: Associate position in the plane
with the conplex variable z :=x + 1y and let
wWz) :=V + 11U be conposed fromthe sol utions

U x,y) and V(x,y) of the three problens. Here

12 = -1 . Rather than express w in terns of
z, we shall express z as a function of w,
as is convenient for plotting |evel curves al ong
which either U is constant or V is constant
inthe z plane. It turns out that

z = ( 2 cosh™((2e"-5)/3) - cosh™1((5-8e™/3) )/m .

To type this expression onto the page takes about
twi ce as many keystrokes (72 vs. 38) as to enter
the programthat calculates it into the hp-15C :

LBL C e ENTERENTER + 5 - 3 =+ COSH! ENTER +
5 ENTER 8 Rt + - 3 + CosH! - m + RIN

To plot streamlines, curves along which U is
constant, wuse the programas follows. Choose a
constant value between 0 and m for U. As V
runs from -8 to +4 , say, so does w:=V + U

run along a horizontal line segnent in the w
pl ane whose image in the z plane is the desired
streamline. Apoint z :=x + 1y on that curve

is |located by pressing keys thus:
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KEYSTROKES OPERATI ON PERFORMED Dl SPLAY
V[ENTER] U [f] [I] Create w=V+ 11U vV .
[f] [9 Calculate z =x + 1y X c
[f] [(i)] Di spl ay i magi nary part y c
(The annunciator "c" indicates when only one part, real

or imaginary, of a conplex value is being displayed.)

For exanple, Table 1 shows how the streamline
U= 0.01 bends around the intruding corner.

Each point costs about 15 seconds to cal cul ate
and plot on graph paper, so tediumhas not been
bani shed entirely; sone tine nust pass before

i nexpensi ve shirt-pocket calculators will be able
to display a plot of streamlines automatically.
On the other hand, some tine nust pass before
conput ers capabl e of driving graphics screens or
pen-plotters can be expected to possess as full a
set of conplex elenentary functions as has the
hp-15C . Only recently have such functions begun
to appear in a few APL installations. For over
twenty years, full inplenmentations of Fortran
have i ncluded conplex arithnetic too, but not al

the elementary functions; for instance, cosh™
is mssing. Therefore, the formula for 2z above
woul d have to be transforned by the little-known
substitution
cosh™(q) = 2 In( V((g+1)/2) + V((g-1)/2) )
i nto somet hing expressible in Fortran:
z = 2In(V(eY3) (V(e"-1)+/(e"-4))2/ (2v(e"-1)+V(e"-4)) )/ m.

Confirmng this transformation requires, besides
tedi ous al gebra, careful analysis to check that
it maps boundary val ues correctly. Such checking
is nontrivial because famliar formulas valid for
real functions frequently fail for the principal
branches of nulti-val ued conpl ex anal ytic
functions [17]. For instance, formulas |like
Vix-y) =Vx-Vy , In(x-y) =1n(x) + In(y) and
cosh™(x) = In(x + V(xz-l)) , valid when x and
y are real and positive, may fail when x and
y are conplex in the left half-plane. Moreover,
roundi ng errors can ruin fornulas that woul d be
correct otherwi se, as happens to the substitution

for cosh™'(q) above when q is near #1 .
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Fornul as robust in the face of roundoff are hard
to find; the following instance is used in the

hp-15C to calcul ate r +1s := cosh™(q)

sinh™i( Re( v(g+1)-V(g-1) ) ) and
2 arctan( In( V(g-1) ) | Re( v(g+l1) ) )

r
S .

Here the overscore signifies Conplex Conjugate
Fortunately, recondite formulas |ike these have
been found for all the elenentary functions, and
Dr. Joe Tanzini painstakingly m croprogranmed
theminto the hp-15C.

Do not be msled by the foregoing illustrations
into thinking either that conplex variables are
tricky, or that they will ever supplant finite
elements. On the contrary, conplex variables are
as easy to use as real when inplenented properly.
And t hey suppl enent rather than suppl ant ot her
nuneri cal procedures. Experience with conplex
vari abl es buil ds experience with confornal
transformations that straighten corners, and with
simlar techniques that renove singularities

anal ytically before they enbarrass nai ve nunerica
met hods. Hel pi ng students and teachers acquire
and pronul gate that experience is a part of the
hp-15C s nmission that | hope will soon be picked
up by other conputers, wth bigger displays,
capabl e of exhibiting confornal transfornmations
graphi cal ly.

Display limtations appear also to inhibit matrix
arithnmetic on a calculator, but appearances are
illusory. People rarely (perhaps too rarely)
pay attention to values generated in internedi ate
cal cul ations; and even when a displayed val ue is
examned it serves at least as often to confirm
that the correct variable has been accessed as to
check whether its value is correct. Evidently a
vari abl e’s nanme neans nore than its value. This
observation led ne to propose to Dennis Harns and
Rich Carone that a calculator be built to display
Descriptors instead of values for matrices.
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Wiereas a cal cul ator’s scal ar variabl es are naned
by their addresses, whereby we |locate their
values in nmenory, every matrix variable could be
addressed by its nane, each linked to a pointer
to an ot herwi se anonynous array of values. This
schene requires dynam c nenory managenent, which
relieves the user of the hp-15C of any need to
know where in nmenory reside his matrices (or the
auxiliary stack for conplex variables, or scratch

space for the [SCOLVE] and [r;] keys.) The

i npl enentati on of dynam c nmenory nmanagenent and
matrix input/output for the hp-15C fell to FEric
Evett; Paul McOellan mcrocoded the matrix
arithnmetic operations. Details appear in [15]

and [16], so an exanple here will suffice to
show how easy they have nmade nmatrix conputati ons.

Consider this 4x4 matrix A and its inverse:

6 -1 -3 1 -5 -6 23 9

I I I I
A=| -2 0 1 3 |; Al=1]-11 -13 50 20
| 2 -1 0 1 | | -7 -8 31 12 |
| -3 2 -1 0 | | -1 -1 5 2
These keystrokes enter A into the hp-15C:
4 ENTER DIM A ... Declare that A is 4x4 .
USER MATRI X 1 ... Initialize walk through matri x.
6 STO A 1 CHS STO A 3 CHS STO A 1 STOA
2 CHS STO A 0 STO A 1 STO A 3 STOA
2 STO A 1 CHS STO A 0 STO A 1 STOA
3 CHS STO A 2 STO A 1 CHS STO A 0 STO A
Each time [STQ [A] is pressed during this walk
through the matrix A, "[ A i, j ]" displays

nonentarily to tell the user which el enent of
which matrix is being altered. At the end of the
wal k, after "[ A 4, 4 ]" has been seen, all
el enents of A have received their val ues.

This i nput takes about 40 sec.

The next few keystrokes conpute C:= A1 :

RESULT C ... Tells hp-15C where to put Al .
RCL MATRI X A ... See [ A 4 4] displayed.
[ 1/ x] ... See [ running ] for 11 sec.,

then [ C 4 4]
The di spl ayed descriptor tells the user that a
4x4 matrix C resulted fromthe |ast operation
and is now ready for the next. To viewthe 16
elements of C, press [RCL] [CQ 16 tines.
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Each time, "[ C i,j ]" wll display for a
nmonent, and then the value of G; , where the
indices i,j advance in |exicographic order from
1,1 to 4,4 . This walk takes about half a
mnute, or two mnutes if the elenents are copied

onto paper, and shows

| -5.000000049 -6.000000059 23. 00000022 9. 000000085
C=| -11.00000011 -13.00000013 50. 00000048 20. 00000019
| -7.000000067 -8.000000080 31. 00000030 12. 00000012
| -1.000000011 -1.000000013 5. 000000048 2.000000019

A systemof linear equations Ad = b can be

solved for d = Alb without calculating A7l .
Instead, wuse the [=+] key thus; press
RESULT D RCL MATRX B RCL MATRIX A [+]
to display the descriptor of the solution d
cal cul ated faster and nore accurately.

How accurate is C? Wre it not obvious, we
woul d have to overestimate the | oss of accuracy

by conputing a condition nunber [A7L- A ; the
norm |...|| here can be any of three built into
the hp-15C . The biggest-rowsumnorm Matrix
Qperation #7, is invoked thus:

RCL MATRIX C MATRIX 7 ... [AY = | = 94.
RCL MATRIX A MATRIX 7 ... Al = 11.
[ x] . Icll- Al = 1034.

Thi s indicates that sonmewhat |ess than 1034 ul ps
was | ost to roundoff; the reasoning is explained
in the chapters on nmatrix operations and errors
in [15]. Aso explained there is how to inprove
the accuracy of d by [Iterative Refinenent; the
residual ¢ =b - Ad is calculated in one step
by Matrix Operation #6, and the solution e of
Ae = c added to d . In this process, as in
matrix multiplication and inversion, the hp-15C
fares better than m ght be expected of a machine
that carries ten sig. dec. For exanple, let E
be a multiple of the notorious Hlbert mtrix;
E; = 360360/ (i+j-1) for 1 <i,j <8 . The
constant 360360 ensures that every el enent of

E is an integer, hence exact, and 8x8 1is as
large a matrix as fits in the calculator. In

under 90 sec., it gets E?! correct to roughly
three sig. dec., three nore than are expected in

view of |[EY-|IE| > 10° . This extra accuracy
is no accident with ill-conditioned matrices |ike
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E prone to systematic cancellation, but is due
to extra-precise accunul ati on of scal ar products
to 13 sig. dec. during matrix operations.

The hp-15C does not refuse to invert a singular
matrix A but instead inverts sone nearby nearly

i ndi stinguishable A+AA ; since [[(A+AA) 7Y nust
be huge, bigger than 1/||AA]|, the nature of A
is reveal ed. Because of this policy, one of the
solutions d of a consistent system Ad = b

will always be delivered with d not nuch

bi gger than it has to be.

Least squares problens can be solved on the hp-
15C by using the nornmal equations and sinple
programnms, or by nore robust prograns based upon
ort hogonal factorization techniques |Iike those in
t he book [18] by Lawson and Hanson, especially
on pp. 66, 208-212, and 275. Prograns of both
kinds witten by Paul McCdellan appear in ch. 4
of [15] together with advice on when to use them
One of them can sol ve | east squares problens with
linear constraints and performlinear regression
upon up to five independent variables with any
arbitrarily large nunber of observations.

Wth machines like the hp-15Cin their shirt-
pockets, students of engineering, nathenatics,
science or statistics can practise what we preach
inthe first two years of college, ever nore
confident that what we teach will, as it should,
serve themthroughout their careers.

THE |INTEL 18087 : Dr. John F. Palner, a
nunerical analyst working for Intel in 1976,

di scerned the invidious possibility that two

di fferent conputer systens inside one small box
bearing the logo "Intel" mght be unable to
wor k upon nunerical data in a shared nenory for

| ack of a conmon format. He was asked to dea
with this problem and he asked ne to help him
design "the very best arithnetic" that could be
i npl enented upon all the diverse mcroprocessors
Intel was pl anning.
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W chose binary formats with an inplicit |eading
bit, wvery like 1. Bennet Goldberg’ s variation
[19], so the 32-bit Single and 64-bit Double
formats have ranges and precisions usually better
and never nuch worse than any formats avail abl e
el sewhere in conparabl e wordsi zes. An Extended
format as wide as we dared (80 bits) was included
to serve the sane support role as the 13-deci nal
internal format serves in Hew ett-Packard’s 10-
decimal calculators (their 12-digit calculators
use 15 digits). The tightest possible rounding,
statistically unbiased, was specified for the
arithmetic operations +, -, x, = V because we
knew how and why. Finally, we provided =*oo and
a " Not-a- Nunber” synbol (NaN because they are so
val uabl e to those who have used themon the few
conputer architectures that include such things.
They turn conputer arithmetic into a systemt hat
is fornmally closed. every arithmetic operation,
valid or not, now produces a result and al so,
whenever the operation is exceptional, a signal.
The signal, called a flag, warns a program when
a subprograms result, if not obviously wong, is
guestionabl e because an unpreneditated arithnetic
exception may have occurred. Therefore, closure
is no nere mathematical frill; now conputation
can proceed after an isolated invalid datumor a
m st ake, rather than have to hang up and | eave,
say, the control surfaces of an aircraft stuck
in an unusual position.

Qur design was not so nuch new as eclectic; we
chose the best that we could nmake work together
in a systemabout which no user has to | earn nore
than wll matter to him

Shortly after the design was announced [20] its
singl e and double formats (but not its exception
handl i ng) appeared in a floating-point slave-
processor chip, the Intel 8232, second-sourced
as the ANMD 9512. Another inplenentation used up
alnost a third of the mcrocode in the Intel 432
m croprocessor. So far, the nost anbitious and
nost wi dely known inplenentation is Intel’s 8087
coprocessor chip [21] that w dens the instruction
set of 8086 and 8088 m croprocessors to include
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floating point arithnmetic. Its features, |Ilisted
in this paper’s abstract and expl ai ned el sewhere
[22 - 25], deserve only a few comments here.

Li ke Hew ett-Packard s el enentary transcendent al
functions in its recent calculators, |Intel’s are
accurate to within an ulp or two, but that ulp

isinthe 640 sig. bit, beyond 18 sig. dec.
Both the cal culators and the 8087 achieve their
accuracies via digit-by-digit nethods [26] that
generate |In(1l+x), exp(x)-1, tan(x) and arctan(x)
qui ckly and correct to 64 sig. bits in the i8087,
13 sig. dec. in h-p calculators. Then sinple but
unobvi ous prograns produce the other el enentary
functions accurately fromthose four. Intel’s
prograns were witten by Steve Baunmel wth ny
hel p, and appear in the CEL (Common El enentary
function Library) in RMW-86 on the 86/330A
Their accuraci es surpass crafty prograns by Cody
and Waite [27] run on less refined arithnetics.

Nurerical prograns that will run correctly on a
conmputer after reconpilation fromsone standard

| anguage like Fortran, or after sone other al nost
m ndl ess translation, are called /nportable to
that conputer. The 18087 confers inportability
upon al nost every programthat runs upon severa
if not all diverse conputer arithnetics. |ndeed,
experience [28] indicates that Portable prograns,
t hose designed to run universally, can be nade
sinpler, shorter and faster when adapted to run
on an 18087. For two years the nain obstacle to
its use has been a dearth of conpilers that would
generate code to exploit it in the nmany conputers
t hat have one, anong themthe |1BMPC  Except
Intel’s, those early conpilers that served the

i 8087 hedged against its possible unavailability
by using only whatever subset of its capabilities
could be enulated easily in software. Now t hat
the chip is abundant such a policy is no |onger
econom cal, and |anguage processors that use the
chip efficiently are or soon will be avail able
for APL, C Forth, Fortran and Pascal, and with
several operating systens. | have obtai ned good
results from Intel’s Fortran running in RWVX- 86
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on an Intel 86/330A and from APL*PLUS™ PC by
STSC Inc. on an IBMPC; and the |atest versions
of Fortran on the IBMPC are getting pretty good.

THE PROPGSED | EEE STANDARD: Mat henmat i cal
craftsmanshi p can be shared as conputer software
desi gned to be used conveniently by peopl e anong
whom nost will understand its mathematics little
better than nost notorists understand their cars’
drive trains. But nunerous obstacl es inpede the
di ssem nati on anong conputers of prograns as easy
to use as are the keys of cal culators di scussed
above. One of those obstacles is gratuitous:
conputer arithnmetics are too diverse and, as we
have seen earlier in this paper, occasionally too
capricious to allow prograns so delicate as those
in the calculators to be copied mndlessly onto
ot her machines with no risk of mal function.

Port abl e progranms denmand craftsnmanshi p of anot her
ki nd, capable of coping with the vagaries of
conputers and conpilers w thout sacrificing too
much accuracy, speed or conveni ence. Anong the
nmonunents to that craftsmanship are the ElI SPACK
[29], LINPACK [30] and PORT [31] libraries of
Fortran codes. Sone portable libraries are |ess
satisfactory; the portable elenentary functions

coded in C inthe UNXM systemare slow and

i naccurate, and tend to be replaced by prograns
(often unnecessarily in assenbly | anguage) that
may be worse but ought to be at |east as good as
those in the book [27] by Cody and Waite if
chosen properly for the machine. Commercially
distributed libraries like IML's [32, 33] and
NAG s [34] nust forego a neasure of portability
toregain reliability and speed; these libraries
are distributed in versions each tuned to the one
conmputer and conpiler on which it will run. They
are not available for conputer systens too unlike
others and too little used to repay the cost of
putting together and mai ntaini ng anot her version.
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| would like to believe that these considerations
wei ghed upon all our m nds when, responding to

Dr. Robert G Stewart’s invitation late in 1977,
we convened to draft a floating-point arithmetic

standard. Intel’s plans to build the i8087 also
influenced us, if only by lending credibility to
t he otherw se utopian "KCS proposal” advocated

by nyself, Jerone T. Coonen and Prof. Harold S
Stone, and derived fromthe Intel design by
refi nement and extension [35]. |Inplenentations
[36, 37], analyses [35, 38, 39] and especially
amendnments and sinplifications by GCoonen led in
1980 to the tentative adoption [40] of the KCS
proposal, despite its unusual features, as the
basis of a draft |EEE standard p754. Its nost
controversial feature was @Gadual Underflow, a
schene inplicit in CGoldberg' s variation [19] but
exploited hitherto by al nost nobody but ne [41].
Thi s schene enforces a kind of closure property
descri bed precisely by insisting that the Theorem
about p - q, cited above while discussing the
area of triangles, be true without the clause
" unless p - g suffers exponent underfl ow.
Consequently, the calculated value of p - q is
zero just when p = q . Mre inportant, gradua
underflow differs fromthe usual schemes because
it al nost never (but, alas, not never) generates
nore nunerical uncertainty than roundoff does, so
it enhances the provable [38-41] reliability of
many equati on-sol vi ng codes, anong others. But
it costs sonething to inplenent, so it remains
controversial even if much ado about very little.

P754, like the 18087, is a closed arithnetic
systemthat, by default, supplies a result and
raises a flag for every exceptional arithnetic
operation. The default results are these:

Exception Type Def ault Result
Invalid Qperation NaN (Not a Nunber)

Overfl ow +oo and signal |nexact too
D vi de- by- Zero too exactly

Under f | ow G adual - subnormal nunbers
| nexact Correctly rounded result

O course, exceptions are by nature inimcal to
any single preselected default result. NaN may
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be the best single response to 0/0 or oo/oo or
V(-3); but APL programmers expect 0/0 =1,
and others may prefer to stop on that occasion.
P754 does allow the inplementor, at his option,
to provide Traps whereby a user may sel ect such
non-default responses to exceptions as he |ikes.
Also, NaNs nmay be used for uninitialized and/or
m ssing data, and for retrospective diagnostics.
And the inplenentor is obliged to offer the user
a choice of four rounding algorithnms in case the
default is unsatisfactory. A discussion of these
features woul d burst beyond the space allowed for
this paper, so a few final conmments nust suffice.

Despite a residuum of controversy and uncertainty
about how hi gher-1evel |anguages will interface
to its unusual features [35, 42-46], p754 has
been adopted by surprisingly many manufacturers,
with conmplete inplenentations ranging in speed
from about a thousand fl oati ng-poi nt operations
per second in an Apple IIl [47] to three mllion
inan ELXSI 6400 [48], wth others like Intel,
Hewl ett-Packard [49], National Sem conduct or
Motorola and Zilog [42] in between, to nmention
only the best known firnms. However p754 is not
an official standard; although its final draft
(#10) was finished in Dec. 1982, it has not been
endorsed yet by the IEEE, nor is it available
yet fromwhat nust ultimately be its source:

|EEE, 345 E. 47'M St., New York Ny 10017.

An earlier draft #8 [40] was no sooner published
for public comrent than it was adopted officially
by the International El ectrotechnical Conm ssion
in Geneva, but that is an inferior version, rmuch
harder to understand and to inplenent; dont use
it. Draft #10 of p754 is avail able now from

Ri chard Karpi nski, UCSF U 76,

San Francisco, Calif. 94143
Avail able fromthis sanme source is draft #1 of a
proposal p854 [50] that generalizes p754 from
binary arithmetic to decimal and al |l ows ot her
word-sizes than just 32 or 64 bits. Like a nmuch
earlier proposal [51], p854 |ooks forward to the
day when the nunbers humans see will be the
nunbers they deserve.
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