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Abstract. Abstract geometrical sculptures are generated by sophisticated sweeps 
along the curves of mathematical knots.  First, a knot is laid out as an aesthetically 
pleasing 3D space curve, and an arbitrary cross-sectional profile is swept along that 
curve.  The complexity of the underlying knot is enhanced by running a “multi-strand 
cable” along the knot curve and twisting this cable in such a way that different 
strands connect into other strands in a cyclical manner, thus forming a single closed 
loop, representing a much more complex mathematical knot.  The complexity of this 
knot can be further enhanced by locally intertwining neighboring strands, by giving 
the cable a significantly higher amount of twist, or by braiding the strands of the 
cable.  Some of the resulting CAD models have been turned into sculptural maquettes 
using layered fabrication on inexpensive 3D printers.   
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1 INTRODUCTION 

For the last four decades, mathematical knots served for me and my students as inspiration and as 
a framework to design abstract geometrical sculptures [7].  In a project called “The Beauty of Knots” 
[6], we start with a knot from the mathematical knot tables [4] and geometrically deform that 
closed-loop curve in 3D space to take on a pleasing shape, often with some degree of rotational 
symmetry.  A simple profile in the shape of some regular n-gon, a simple crescent, or a small star 
shape is then swept along this curve.  This may result in some pleasing shapes that can then be 
realized as small models fabricated on an inexpensive 3D printer (Figure 2(a,b)), or in some bronze 
sculptures (Figures 2(c), 7(a)). 

In the current development, we greatly enhance the complexity of the underlying mathematical knot 
by following the basic knot curve with a multi-strand cable, and by interlinking the strands in different 
ways. 

2 KNOT SCULPTURE DESIGN 

The design process typically starts with a 2D knot diagram taken form the mathematical knot table [4] 
or sketched freehand by the designer.  This diagram is deformed into a pleasing planar layout, possibly 
with some simple rotational symmetry.  This can be done conveniently by suitably placing control points 
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for a cubic B-spline, thus assuring overall G1- (tangent) and G2- (curvature) continuity.  A symmetrical 
trefoil can easily be done with just 9 control points (Fig. 1a).  The 2-lobe D2-symmetrical version of 
knot_3_1 may employ 16 control points to yield good control in the helically intertwined central region 
(Fig. 1b), and the Knot_5_2 can be modeled with just 12 control points (Fig. 1c).  Some of the coordinates 
of these control points can be set as variable parameters that later can be adjusted interactively with 
on-screen sliders, while the resulting overall shape is being displayed. 

 

           
 

Figure 1:  Simple knot curves:  (a) D3 Trefoil,   (b) D2 Trefoil,  (c) Knot_5_2. 
 

The next step is to add a 3D component.  For instance, one might add a couple of control points at every 
curve-crossing, so that one of the two crossing lines can be raised in z, while the other one is being 
pushed down correspondingly.  Again, the amount of this 3D offset may be introduced as an adjustable 
parameter.  The resulting curve path is displayed with an interactive graphical “crystal ball” interface, 
and all sliders are fine tuned to obtain a pleasing 3D space curve. 

Finally, a cross-sectional profile must be chosen, to be swept along the knot curve, possibly with 
some twisting and changing in scale.  There are two modes in which this profile can be applied to the 
knot curve. 

The initial sweep may start out with minimal torsion, where the cross-section is pushed forward 
while keeping the locally occurring torsion to zero.  For arbitrary space curves, this will typically result 
in a sweep that does not naturally close onto itself but will exhibit some azimuthal rotation difference 
around the local tangent at the point of closure.  This can be fixed by adjusting an overall twist 
parameter.  This azimuthal adjustment can be further fine-tuned by introducing additional “control-
points,” where the local azimuthal rotation can be adjusted. 

The other approach is using an intrinsic mode.  Here, the x-axis of the defined 2D profile always 
points away from the local center of curvature.  This mode automatically generates nice saddle surfaces 
where the knot curve forms curved lobes (e.g., top of Figure 2(a)).  The disadvantage is that in the 
neighborhood of a nearly planar inflection point, the cross section will make 180° azimuthal flip, which 
may locally pinch down the generated sweep into an “hour-glass” configuration.  The designer still has 
the freedom to make local adjustments to the shape and orientation of the cross-section.  Figure 2 shows 
examples of sculptural maquettes designed with the method described above. 
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Figure 2:  “The Beauty of Knots”:  (a) Knot_5_2,   (b) Knot_7_7,  (c) Torus-Knot(3,5). 

2.1 The CAD Environment 

Most of the design experiments described below have been carried out in the context of some home-
brewed CAD systems.  Over the last 30 years, this design environment has evolved from Berkeley SLIDE 
(Scene-Language for Interactive Design Environments) [9] to NOME (Non-Orientable Manifold Editor) [5] 
and to JIPCAD (Joint Interactive & Programmable CAD) [1].  They all allow to start with some short 
program fragments to define a sweep curve and/or its cross-sectional profile.  The programs typically 
have a set of parameters that can be adjusted interactively through on-screen sliders, while the overall 
resulting geometry is displayed. 

SLIDE started out as the design environment used in the Computer Graphics and Modelling course 
CS 184 at UC Berkeley.  NOME and JIPCAD gradually added the capability to add and/or modify geometry 
in an interactive setting on a graphics screen.  The main challenge in developing this editing capability 
was in finding ways to integrate these manually added enhancement into the original program that 
describes the complete sculpture geometry [5]. 

All these programs have powerful sweep constructs that allow arbitrary cross-sections to be swept 
along any space curve in 3D space.  Moreover, at various user-defined “control-points” along the sweep 
curve, the given cross-section can be scaled non-uniformly in x and y; and it can also be rotated around 
the local tangent of the sweep curve.  In a further enhancement, called sweepmorph, cross-sections are 
allowed to change their shapes more dramatically, with the main restriction that all the cross-sectional 
profiles have to be specified with the same number of points around their perimeters. These sweep 
generators were the main tools used in defining the cable-knots and the knotted braids.   

JIPCAD files do not look much different from the other CAD files.  They introduce vertices that 
define faces, which are combined into meshes, which then may be grouped into parts geometries.  The 
latter can then be instantiated multiple times in different positions and orientations, thus exploiting any 
symmetries in the final model.  The strength of JIPCAD lies in its built-in generators, in particular the 
sweep generator.  A detail description of the operation of JIPCAD is given in reference [1]. 

The final geometry of all the knot sculptures is a boundary representation of a long, cylindrical tube 
closing onto itself.  As such, it could readily be subjected to a subdivision process to obtain an arbitrarily 
smooth surface.  However, it is much simpler to obtain a more finely tessellated surface by increasing 
two relevant geometrical parameters in the sweep generator:  the number of radial segments specifying 
the swept cross-section, and the number of longitudinal steps taken along the knot curve.  

JIPCAD, like most other geometrical CAD tools, can readily output the final boundary representation 
as an .STL-file, which is accepted by most 3D-printers.  However, it takes a bit of experience and 
judgement to decide how to orient the part on the 3D-printer in order to obtain the best support 
scaffolding that robustly supports all branches of a braid, and is still not too difficult to remove, if 
manual support removal is required.   
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3 INCREASING KNOT COMPLEXITY 

Once a pleasing symmetrical knot layout has been found, the complexity of the knot can readily be 
increased by running a multi-strand cable (Figure 3(a)) along the knot curve.  The cable is twisting 
in such a way that the cable strands connect into other strands in a cyclical manner (Figure 3(b)) 
and thus form again a single, closed loop, representing a much more complex mathematical knot.   
 

      
 

Figure 3:  (a) A 3-strand cable.  (b) Closing a twisted cable into a single-strand loop. 

3.1 Cable Un-Knots 

To demonstrate the concept of a cable-knot, we run a 3-strand cable along a simple circular un-knot and 
give the cable a 120° twist before joining its ends.  This results in a classical 1_3_Torus Knot (Figures 
4(a,b)).  Mathematically, this is still an un-knot, but now with a more interesting geometry.   

We can further modify the geometry by warping the shape of the underlying donut around which 
the torus knot has been wound.  Figures 4(c,d) show two views of the modified, warped geometry.  The 
shown 3D-print models are about six inches tall. 
 

             
 

Figure 4:  Un-knots:  (a,b) A simple torus knot, front and side;  (c,d) warped version of the same knot. 
 

3.2 Trefoil Knots: 

More interesting sculptures result when we let the cable itself form a real, non-trivial knot.  The simplest 
such knot is the Trefoil, a 3-crossing knot, also known as Knot_3_1.  Figure 5(a) exhibits its classical 
layout with 3-fold rotational D3-symmetry.  If a 3-strand cable follows this curve and exhibits a 120°-
twist before closing, a more complicated knot results (Figures 5(b,c)).  Wherever the basic Trefoil exhibits 
a simple crossing, we now find two groups of three strands each crossing over one another, thus 
generating 3×9 crossings.  The 120°-twist of the cable adds two more crossings, since one strand needs 
to cross over the two other ones.  Thus, overall, we end up with a 29-crossing knot.  Figure 5(b) shows a 
CAD model that exhibits the cyclical connectivity.  Figure 5(c) depicts a 3D-print model. 
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To generate such 3-strand cable-knots, we could run a special sweep along the trefoil curve, using a 
compound cross-sectional profile that comprises three separate patches with the chosen cross-section 
for the strand, ‒ in this case, an equilateral triangle (Figure 5(d), top).  We then apply a 120°-twist to the 
cable as a whole.  But there is another way to achieve the same result.  We can use a simpler cross-
section profile with just a single, offset strand-profile (Figure 5(d), bottom) and run this profile three 
times along the basic trefoil curve with an overall twist of 3×120° = 360°.  The azimuth rotation of the 
cable has been chosen in such a way that two strand-lobes touch the cylindrical base of the sculpture. 
 

             
 

Figure 5:  (a) Trefoil knot.  (b) CAD model of a 3-strand Trefoil cable-knot.  (c) A 6-inch-tall 3D-print. 
 (d) Two options of defining the cross-sectional profile to be swept along the knot curve. 

 
 

There is a different layout of the Trefoil knot that exhibits overall D2-symmetry with three mutually 
orthogonal 2-fold rotation axes (Figure 6(a)).  Running a twisted 3-strand cable along this curve results 
in the 2-lobe Trefoil cable-knot shown in Figures 6(b,c). 
 

             
 

Figure 6:  (a) Trefoil knot with D2-symmetry.  (b,c) A “2-lobe” version of a Trefoil cable-knot, two views. 
 

3.3 Figure-8 Knots: 

The next more complicated knot after the trefoil is the 4-crossing Figure-8 knot.  This knot has a 
pleasing, D2-symmetrical layout (Figure 7(a)) with two lobes to stand on, and two more lobes stretching 
towards the sky.  Running a 3-strand cable along this knot curve results in the Figure-8 cable-knot shown 
in Figures 7(b,c).  Again, the azimuth rotation of the cable has been adjusted so that two strands in each 
of the bottom lobes connect to the supporting base. 
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Figure 7:  (a) 4-lobe layout of the Figure-8 knot.  (b,c) 3-strand Figure-8 cable-knot, two views. 
 
 

Just as for the Trefoil knot, there exists a D2-symmetrical, 2-lobe layout of the Figure-8 knot (Figure 8(a)).      
A corresponding 3-strand Figure-8 cable-knot is shown in Figures 8(b,c) from two different viewpoints. 

 

       
 

Figure 8:  (a) 2-lobe layout of the Figure-8 knot.  (b,c) 2-lobe variant of the Figure-8 cable-knot. 

4 FURTHER ENHANCEMENT OF KNOT COMPLEXITY: 

The complexity of these sculptural maquettes and of their underlying knots can be further enhanced in 
several different ways. 

First, we can simply use cables with more strands.  Figure 9(a) shows a 4-strand Figure-8 cable-knot 
that follows a knot curve that is more typical of the diagrams that one finds in a table of mathematical 
knots [4].  A corresponding 7-inch tall maquette made on a 3D-printer is shown in Figure 9(b). 

Alternatively, we can stick with a 3-strand cable, but let the three strands be more heavily 
intertwined by giving the cable a substantial amount of additional twist, ‒ while still making sure that 
the three strands connect to one another in a cyclical manner.  Figure 10 shows the result for a 3-strand 
cable-Trefoil with about ten full turns of additional cable-twist. 

 

http://www.cad-conference.net/


7 
 
 

 
Proceedings of CAD’23, Mexico City, Mexico, July 10-12, 2023, aaa-bbb 

© 2023 CAD Solutions, LLC, http://www.cad-conference.net 
 

 

       
 

Figure 9:  (a) 4-strand Figure-8 cable-knot with 90° twist.  (b) Corresponding 3D-print.   
 
 

       
 

Figure 10:  3-strand Trefoil cable-knot with 3480° twist:  (a) CAD model;  (b) FDM 3D-print. 

5 BRAIDING 

One further step to increase knot complexity is to let the multiple strands in the cable form a braid.  
Figure 11(a) shows a classical 3-strand braid, and Figure 11(b) displays a more complex, flat, ribbon-like 
braid with six strands.  If such a flat braid is wrapped around a cylinder and closes onto itself, it forms 
a Turk’s Head knot.  Such knots, made of rawhide or latigo leather, are often used by cowboys to form 
decorative handles for switches and other gear used around horses [3],[2].  They are characterized by 
two numbers:  p, the number of parts (or strands, or thongs), and b, the number of bights (or bulges) 
along the edges of the braided ribbon. 

Within the constraints of our goal to obtain a single mathematical knot (Figure 12(a)), we must pay 
attention to the width (p) and length (b) of the braid making sure that it joins to form a single closed-
loop strand.  In general, it requires that p and b are mutually prime.  If they have a common divisor, like 
the common factor of 2 used in Figure 12(b), we obtain a link with two individual loops, shown in pink 
and yellow. 
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Figure. 11:  Braids:  (a) p=3;   (b) p=6.   Turk’s Head knots:   (c) p=5, b=6;   (d) p=5, b=11. 
 
 

          
 

Figure. 12:  (a) Single-strand latigo leather knot; p=6, b=7.  (b) Turk’s Head link with 2-loops; p=6, b=32. 
 
 

The strands in these braids form a simple Tabby-weave pattern, where every strand adheres to a strict 
over–under–over–under sequence.  Of course, more complicated multi-strand braids could be used to 
obtain geometrically more intriguing patterns.  But our focus in the next sections is to apply braids to 
more interesting mathematical knots. 

5.1 Twisted Turk’s Head Knots 

As a first step towards more interesting knot structures, we can give the Turk’s Head braid a Möbius 
twist (Figure 13(a)).  To end up with a single closed-loop strand, we might think that we can simply 
reduce the length of the loop to 31 bights, which is mutually prime with 6.  But if we take a 2-colored 
braid of width 6 and length 31 and join its ends after a 180° flip, we obtain a nice color-consistent match, 
showing that this is again a 2-thong Möbius braid (Figure 13(a)). 

The closure of a Möbius band reverses the left-to-right pattern of the strands; this must be 
compensated for:  Half a braid-period also reverses the strand pattern.  Thus, to make a single-thong 
knot, we may select two mutually prime numbers and then subtract or add a half-period set of bights 
(i.e., p/2 for simple Tabby-weave braids).  We then find that for 6-part braids all even numbers of bights 
work – except for multiples of six.  Figure 13(b) displays a twisted Turk’s Head knot in which the single 
thong has been given a gradual rainbow-coloring that traverses through the whole hue circle.   

Figure 13(c) depicts a triply-twisted Möbius braid, woven from a single latigo leather thong by 
Lorenzo Larrucea [8]. 
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Figure 13:  Möbius-twisted Turk’s Head knots:  (a) 2-loops, p=6, b=31;  (b) single thong, p=6, b=16;   
(c) triply-twisted Möbius braid made from latigo leather, p=6, b=34. 

5.2 Knotted Braids                   

Making CAD models of braids that flow along more complex knot curves poses new design challenges.  
Typically, a set of points that define the path of an individual strand can be generated by a small program 
that captures the motion of a strand in subsequent cross-sectional slices as they move along the knot 
curve.  For the simple 3-strand braid (Figure 11(a)), the strand performs a repeated figure-8 motion as 
shown in Figure 14(a).  This motion can be captured in a coarse manner with as few as 6 vertices (red 
polyline), or more smoothly with many more vertices (yellow B-spline curve).  If we sweep such a cross 
section along the knot curve, we obtain a “multi-tube worm,” and the sweep paths for individual strands 
will lie in the surface of this worm.  More complex braids, such as the one shown in Figure 11(b) require 
a cross-sectional motion diagram with more “tubes” (Figure 14(b)).  
  

           
 

Figure 14:  Cross-sectional movement of strands:  (a) for 3-strand braid;  (b) for 6-strand braid. 

 
Our JIPCAD environment [1] makes the definition of these sweep paths particularly easy, since it allows 
a carefully chosen subset of vertices in the “multi-tube worm” surface to be connected into a polyline 
that defines the desired sweep path for a strand.  In the simplest definition of the two cases shown in 
Figure 14, that worm surface forms a rectangular mesh that is 6 or 12 segments wide and as long as the 
number of samples we choose to place along the knot curve.  JIPCAD automatically assigns names to 
the mesh vertices in the form of “mesh_y_x”.  For a coarse, 3-strand braid (Figure 14(a)) x runs from 0 
through 5, and y runs from 1 through the numbers of samples taken along the knot curve.  The sweep 
path for the strand is then given by a “diagonal” line in this worm surface mesh, starting with: 
“mesh_1_0, mesh_2_1, mesh_3_2, mesh_4_3, mesh_5_4, mesh_6_5, mesh_7_0, mesh_8_1, …”  This coarse 
description of the cross-sectional motion-path is sufficient to define the geometry of the strand’s sweep-
path since this coarse polyline can serve as a control polygon for a cubic B-spline that allows to generate 
smoothly curving sweeps for each of the three strands.  All three strands follow that same type of 
diagonal paths in this rectangular mesh, but with different phase-offsets between parameters y and x.  
To guarantee that the braid closes into a single-loop strand, the considerations of primality, discussed 
in the previous section, apply again.   
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Now we can apply this process for creating a 3-strand braid to a simple Trefoil knot, placing 9+2/3 braid 
periods (58 steps) along the knot curve.  This length gives us the desired cyclical connectivity between 
the three strands.  The transition from one strand into another is shown above the center of Figure 15(a). 
 
 

        
 

Figure 15:  Trefoil knot with a tight 3-strand braiding:  (a) CAD model;  (b) 3D-print. 
 
 
As a second example we use Knot_5_2 (Figure 2(a)) and follow it with different braids.  Figure 16 shows 
the result when using a simple 3-strand braid.   

 

        
 

Figure 16:  Knot_5_2 with a 3-strand braid:  (a) CAD-model;  (b) 3D-print. 
 
 

Figure 17 uses two different kinds of braids, first a flat 4-strand ribbon (Figure 17(a)), and another 
variant where the four strands are bundled into a more cylindrical cable (Figure 17(b)). 
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Figure 17:  (a) Knot_5_2:  (a) with a flat 4-strand braid;  (b) with a cylindrical 4-strand braid. 
 

5.3 Braided Braids 

A plausible question arises:  What will happen if we apply the braid-generation process in a recursive 
manner to the strands of an already braided structure?  Figure 18(a) shows the concept:  On the left is 
a 3-tube worm that forms the surface that could accommodate a 4-strand braid.  Next to it is one of the 
four strands shown in yellow, but now with a 2-tube cross-section that can serve as a carrier for a 3-
strand braid.  And further to the right are the 3 sweep paths for such a braid. 

Figure 18(b) depicts the completed braided braid with all four strands of the major braid shown in 
the colors: yellow, blue, red, and green, as well as the four completely instantiated minor braids. 

In principle there is no reason why the recursive braiding could not be carried out through more 
than just two recursion steps.  However, the current capabilities of 3D-printing render this approach of 
limited practicality. 
 

         
 

Figure. 18:  Braided braids:  (a) a single strand of the major braid  (b) the complete major braid, 
 as well as the four minor braids fully instantiated. 
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6 CONCLUSION AND FUTURE WORK: 

Cable-knots and their highly twisted or braided variants offer a rich playground for geometrical 
sculptures.  First there are several topological parameters to choose from:  the type of knot selected to 
place the cable, the number of strands, the braid type, and the amount of twist applied when closing the 
cable loop. 

In this study the focus has been on the basic topology and overall structure of the resulting 
sculptural forms.  For this purpose, in most examples the individual strands have a simple triangular or 
circular cross-section.  When building a real sculpture, additional geometrical issues must be addressed.  
The shape of the strand and its azimuthal orientation need to be carefully selected.  In Figures5(b,c) the 
triangular strand has been oriented so that one of its sides lies flat on the cylindrical pedestal.  On the 
other hand, in Figures 7(b,c) the triangular strand penetrates into the base with one of its corners.  
Braiding the cable-strands adds another set of parameters and possible patterns. 

Furthermore, the cross-sectional profile need not remain constant along the whole sweep. As 
illustrated in Figure 2(c) and Figure 8(b,c), the profile has been reduced in those parts of the sweep that 
pass through the tightly linked center of the sculpture, and it has been enlarged in the outer parts of 
the lobes. 

Combining such geometrical fine-tuning with the almost limitless possibilities of starting with a 
cable-knot with enhanced complexity, resulting from heavily twisting or braiding the cable strands, gives 
sculpture designers an inexhaustible set of possibilities. 
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