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Abstract— The Micromechanical Flying Insect (MFI) project
aims to create a 25 mm (wingtip to wingtip) flapping wing micro
air vehicle inspired by the aerodynamics of insect flight. A key
challenge is generating appropriate wing trajectories. Previous
work [1] showed a lift of 506 µN at 160 Hz using feedforward
control. In this paper, refinements to the MFI design including
those in [2] increased wing beat frequency to 275 Hz and lift
to 1400 µN using pure sinusoidal drive for a fixed benchtop
experiment. We show through simplified aerodynamic models
that not only do sinusoidal actuator drives produce close to
maximal lift, but significantly improved wing trajectories due
to non-sinusoidal actuator drives are practically unobtainable
due to actuator limitations.

I. INTRODUCTION

A flapping indoor micro air vehicle is an attractive propo-

sition for its miniature size, ability to maneuver aggressively

and hovering capability. The Micromechanical Flying Insect

(MFI) at UC Berkeley (current prototype in Fig. 1) has been

under development since 1998 to fulfill such a role. For each

of its two wings, it utilizes two piezoelectric bending actu-

ators [3] whose displacement is amplified through a double

fourbar mechanism and a differential to create a flapping and

rotational degree of freedom. The current version of the MFI

fourbar/differential thorax is shown in Fig. 2.

Fig. 1. Current two wing, 4DOF MFI.

Previous versions of the MFI transmission mechanism

have produced lift forces up to 506 µN [1] from a single

wing. However, this lift is marginal considering the target

weight of the MFI (1000 µN). To improve lift forces, several

design changes were made to increase the resonant frequency
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and general behavior of the thorax. The result is a structure

discussed in Section II which produced 1400 µN of lift from

a single wing, well in excess of the required 500 µN.

In Section III-A, different methods of driving the resonant

thorax to maximize lift force are explored. Considering the

structural and actuator limitations, we attempt to optimize the

lift force with respect to the constraints detailed in Section

III-B.
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Fig. 2. MFI thorax

II. STRUCTURE 06-β

A. Structural Improvements

Considering the borderline lift of the 160Hz flapping

mechanisms of the past, we take inspiration from honeybees

to increase the lift force of the structure. Honeybee flight

is characterized by high frequency (on the order of 250Hz)

low amplitude (about 43 degrees) wing stroke for flight force

generation [4]. Lift forces are expected to rise as the square

of wing velocity (which is proportional to the product of

flapping amplitude and frequency) [5]. The current stroke

amplitude of the thorax is limited to 40 degrees (80 degrees

total flap angle) due to plastic strain in the flexures. Flapping

frequency, however, can be increased without significant flex-

ure loading. The MFI thorax runs at resonance to maximize

power transmission to the air; therefore the challenge is to

increase the resonant frequency of the structure. However,



the damping of the wing flapping at higher frequency will

be much higher, so power transmission to the wing also needs

to be increased to keep the flapping amplitude high enough

for proper stroke trajectory.

To increase the resonant frequency of the thorax, the wing

inertia was reduced by utilizing a fabrication process that

allows for carbon fiber wing spars (the previous spars were

made of hollow polyimide tubing). This reduced the wing

inertia from 17mg∗mm2 to 13mg∗mm2. Both wings are

shown in Fig. 3. Since the wing inertia is the dominant inertia

in the system, this can significantly increase the resonant fre-

quency. The piezoelectric actuators’ stiffness (the dominant

stiffness in the system) was increased from 200 N/m to 400

N/m. Along with utilizing weight optimized fourbars and

differential, the flapping frequency was increased from the

previous reported value of 160 Hz in [1] to a new flapping

frequency of 275 Hz.

8mm

Fig. 3. Previous polyimide spar wing (left) and new carbon fiber spar wing
(right).

To assure proper wing stroke amplitude, power losses

in the structure must be minimized. The structure’s flexure

joints were optimized according to [2] to minimize joint

power loss. At the time of this work, it was not known if

the previously used miniature 10mg bimorph piezoelectric

actuators had adequate power output; since the goal of this

paper is not to test the actuators themselves, oversized,

100mg unimorph bending actuators were utilized so that

power input to the system was not in question. Thus, the

behavior of the thorax could be isolated without questioning

the actuators. More recent work in [6] has further optimized

and directly measured adequate power output from the 10mg

bimorph actuators.

B. Lift Results

Structure 06-β appears in Fig. 4 on a precision weighing

balance (model AAA-250L, Adam Equipment). A wind

shield (white cardboard) was constructed to shield the weigh-

ing scale from the structure’s thrust. Ground effects were

minimized by spacing the wind shield at least one wing chord

length below the wing.

As a first experiment, simple sine waves were used as

input to the two oversized actuators driving structure 06-β.

Using only the phase difference between these sine waves

and their amplitudes, the wing stroke was tuned manually

to the profile of Fig. 5, graphically shown in Fig. 6. The

Wind Shield

Fig. 4. Closeup of lift measurement setup for 06-β.

target of this tuning was a constant 45 degree angle of attack

through midstroke in addition to maximizing flapping angle

and attempting to retain stroke symmetry, all occurring at

the resonant frequency of the structure (275 Hz). Fig. 7 is a

side view illustration of the wing stroke data of Fig. 5.

06-β Wing Trajectory
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Fig. 5. Wing trajectory for 06-β. Flapping angle is the top trace, rotation
angle is the bottom. Raw data is plotted with a dotted line, filtered data
with a solid line.

Three lift trials were run for the trajectory of Fig. 5, shown

in Fig. 8. We measured an average mean lift of approximately

1400 µN, which is nearly three times the target lift value for

a single wing.

III. OPTIMIZATION OF LIFT FORCE

Even though simple sine wave inputs to the system pro-

duced a significant amount of lift, other waveforms were

explored to potentially improve lift forces. To formally begin

this optimization process, all the limitations of the plant and

actuators must be considered. Again, the plant referred to

here is that of Fig. 2.



Fig. 6. Top view wing trajectory of 06-β.
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Fig. 7. Side view illustration of 06-β wingstroke.

Lift Measurement Data
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Fig. 8. Lift measurement data for 06-β.

A. Optimization Considerations

Several fundamental aspects of the plant dynamics govern

the available control strategies for the system. Most are

associated with the actuators; as mentioned earlier, for these

lift maximization tests, we used oversized (about 100mg)

piezoelectric unimorph actuators. The key limits are:

• Actuator Force Saturation - The most important

aspect of the plant is the severe actuator saturation

which typical feedback control problems usually do not

encounter. Our composite PZT unimorph actuators are

typically limited to voltages of about 200V. For this

input level, they typically produce forces of around

200mN (with no displacement) and a free displacement

of 400-500 µm. Beyond 200V, the actuators saturate,

i.e, they do not produce significant additional force or

displacement. Beyond about 300V, there is a risk of

electrical breakdown across the PZT plate.

• Actuator Dynamics - The PZT unimorph actuators

are used in a bending mode. Up to their first bending

resonant mode, they behave well, but they rapidly begin

to exhibit undesirable bending modes beyond their first

bending resonance.

• Poor behavior at high frequencies - High frequency

oscillatory modes arise if the complete system is driven

with frequencies beyond approximately 1000Hz. Thus

any allowable control system must restrict itself to

producing actuations with frequency content below

1000Hz.

• Periodic Motions - Interesting flight trajectories have

periodic motions in the range 150Hz-300Hz. Since the

plant is not chaotic or naturally unstable, this implies

that the input has to be periodic as well with the same

base frequency as the desired output period.

• Lift maximization - Finally, overall lift production

rather than the exact trajectory used to generate this

lift is of interest. In other words, if two different

trajectories produce equal lifts, we do not differentiate

between them. As a long term problem, different trajec-

tories must be analyzed to optimize system efficiency.

However, for now, we only consider overall lift force

production.

The aerodynamic model is given by [7]. This leads to one

limitation of the optimization. The aerodynamic model of

[7] is specialized for fruitfly flight (150Hz, 120 degrees of

flapping). Structure 06-β flaps at 275Hz and 40 degrees of

flapping amplitude, which leaves a considerable difference in

the Reynolds number for the two cases and a possible loss of

dynamic similarity. In fact, the aerodynamic model predicts

a lift force of 740 µN for the trajectory of Fig. 5 where 1400

µN was measured. Although a revised high frequency, low

stroke aerodynamic model would be ideal, we will assume

that although the absolute magnitude of the lift force may

not be accurate, the general aerodynamic trends will remain

valid in the optimization procedure. Thus the best drive u

is:

max
u∈Pu

F̄L(u) (1)

where Pu is the family of inputs that are possible given ac-

tuator and structural limitations and F̄L is the time averaged

lift force.



B. Wing Drive Model

As stated earlier, only periodic system inputs that do not

excite undesirable high frequency resonances of the structure

are of interest. If the highest drive frequency component must

remain below 1000Hz and the main drive frequency is up to

300Hz, the system input can be expressed generally as

u(t) = u1 sinωt + u2 sin 2ωt + u3 cos 2ωt

+ u4 sin 3ωt + u5 cos 3ωt
(2)

For now, actuator saturation will be ignored to optimize

considering an ideal actuator. Some of the trajectory outputs

of the optimization, therefore, might not be feasible, but

could hint at design improvements to the structure. An addi-

tional assumption of a “perfect” differential was made, which

means the two fourbar motions are completely dynamically

uncoupled. This ideal differential acts purely kinematically to

produce flapping and rotation from the two fourbar outputs.

In other words, the simplified method shown in Fig. 9

was used to calculate lift force generated for a given input

trajectory u(t).

ut(t)

ub(t)

θt

θb

θf

θr

DifferentialFourbar

Dynamics
Aerodynamic

Model
FL(t)

Tdiff

Fig. 9. Simplified model for calculating mean lift

We consider five separate families of inputs, using the

conventions illustrated in Fig. 10. The angles of the top

and bottom spar of the differential are denoted θt,i and

θb,i respectively (equivalent to the output angles of the

final fourbar links, which are attached to differential links

4 and 1 of Fig. 10) for the ith trajectory. θr,i represents

the rotation angle of the wing, which is attached to link

2. Tdiff is a known nonlinear function that represents the

relationship between the difference in the fourbar angular

inputs (θt,i − θb,i) and the wing rotation θr,i. A detailed

analysis of the differential kinematics will not be presented

here; the reader is referred to [8] for a complete analysis.

We consider 5 different distinct families of system behav-

iors and define them in terms of either the output or input

trajectory.

C. Case 1

The first case will be the “best” case, taken as a maximum

lift case from experiments by Dickinson [5] et. al. The

flapping in Case 1 is forced to be a smoothened triangular

wave while the rotation is forced to be a smoothened

square wave. A triangular flapping trajectory implies that

the flapping velocity is a smoothened square wave; a square

wave rotation trajectory implies that the wing is maintained

at the optimal angle of attack (45 degrees) for the majority

of the wing stroke. The wing stroke is therefore defined by
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Fig. 10. Kinematic representation of the wing differential mechanism.

θt,1(t) = θ0 (cos ωt + 1/9 cos 3ωt) (3)

θr,1(t) = θr,0 (sin ωt + 1/9 sin 3ωt) (4)

θb,1(t) = θt,1(t) + T−1

diff (θr,1(t)) (5)

Note that in this case, the torques required to drive the

leading and lagging spars are unequal because θt,1(t) 6=
θb,1(t − η)∀η. In other words, the top and bottom spar

trajectories are not simply different phases of the same

trajectory.

D. Case 2

Next consider a slight variation of Case 1, where instead

of directly forcing the rotation to be a certain trajectory, the

top and bottom spars are the same trajectory but offset in

time.

θt,2(t) = θ0 (cos ωt + 1/9 cos 3ωt) (6)

θb,2(t) = θt,2(t− 2
20

180ω
) (7)

θr,2(t) = Tdiff (θb,2(t)− θt,2(t)) (8)

In other words, θb,2(t) is θt,2(t) delayed by 20◦ phase.

E. Case 3

In this case, the flapping and rotations are pure sinusoids:

θt,3(t) = θ0 cos ωt (9)

θr,3(t) = θr,0 sin ωt (10)

θb,3(t) = θt,3 + T−1

diff (θr,3(t)) (11)



Like in Case 1, the torques for the top and bottom spars are

unequal because the trajectories of the spars are not simply

offset in phase.

F. Case 4

In this case, the same sinusoidal trajectory is used for both

the top and bottom spars, but they are delayed in phase to

achieve rotation.

θt,4(t) = θ0 cos ωt (12)

θb,4(t) = θt,4(t− 2
20

180ω
) (13)

θr,4(t) = Tdiff (θb,4(t)− θt,4(t)) (14)

In this case, the torque on both the top and bottom spars are

equal but delayed in phase.

G. Case 5

Lastly, instead of actively trying to achieve any specific

wing trajectory, simple sinusoidal drives are used on the two

actuators. The dynamics of the system take these simple

sinusoids into a periodic trajectory. The two actuators are

driven out of phase and generate the rotation from the

difference of the two fourbar outputs.

ut,5(t) = u0 cos ωt (15)

ub,5(t) = u0 cos ω(t− tu) (16)

The dynamics of the fourbar are then solved to find the

trajectories of the top and bottom spars of the fourbar.

These trajectories will, in general, have higher harmonic

content due to the nonlinearities in the fourbar. Since an

ideal differential has been assumed (no coupling between the

fourbar outputs), the top and bottom spar trajectories will be

related by

θb,5(t) = θt,5(t− tu) (17)

and the wing rotation follows as:

θr,5 = Tdiff (θb,5(t)− θt,5(t)) (18)

The specific kinematic and dynamic parameters used in the

optimization simulations are omitted here, but can be found

in [8]. A visualization of the trajectories in the 5 cases appear

in Figs. 11 and 12.

If the output trajectories in cases 1-4 are used to solve

the dynamic model for the inputs (and for case 5 simply

run the dynamic model forward) while considering the

aerodynamic model, the lift force trajectories of Fig. 13 and

the mean forces summarized in Table I are produced. The

input trajectories to the two actuators are also plotted in Fig.

14.

TABLE I

PREDICTED MEAN LIFT OBTAINED BY VARIOUS TRAJECTORIES.

Trajectory 1 2 3 4 5

Mean lift (µN) 919 782 830 786 867

Req. Actuator Voltage (V) 1110 1110 240 240 220
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Fig. 11. Comparison of flapping angle obtained in the five trajectories.
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Fig. 12. Comparison of rotations obtained with the four trajectories.
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Fig. 13. Comparison of predicted lift forces obtained from various
trajectories.

Several interesting observations can be made from these

simulation results. First, one immediately notices that the

inputs shown in Fig. 14 for cases 1 and 2 are well above



Case Comparison of Input Voltages
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Fig. 14. Comparison of input voltages required for various trajectories.

the available saturation limits of the actuator and are there-

fore not feasible. Besides this point, these trajectories only

produce about a 6% increase in mean lift at the cost of a

five-fold increase in the required input actuation. Combined

with superior lift production with less input effort than in

cases 3 and 4, this analysis presents a convincing case for

higher harmonic content not being necessary in the actuator

input waveforms. The authors would like to note that this

conclusion is drawn only for our structure given the available

piezoelectric technology and plant dynamics; this conclusion

might not be true for all flapping wing transmissions. In fact,

it is true that actuator inputs with higher harmonic content

can produce higher mean lift forces. This being said, the

best drive scenario for the specific structure detailed in this

paper is case 5 - simple sine waves with a phase difference

as the input to the piezoelectric actuators. Again, this does

not mean that the output trajectory only has the main mode

for its frequency content; fourbar nonlinearities in fact will

introduce higher order modes naturally.

IV. CONCLUSION AND FUTURE WORK

We have explored several important issues regarding wing

trajectories of a flapping micro air vehicle. Notably among

these is with the given plant dynamics and actuator limita-

tions, it is not desirable to drive the wing into a trajectory

with higher harmonic content than the main drive frequency;

in fact it is counterproductive when considering the input

power it would require and the small gain in lift force one

achieves.

We have also presented an improved MFI thorax structure

from what is presented in [1] with new flexure technology

and a wing with less inertia. In combination with stiffer and

oversized actuators, we created the structure 06-β, which

produced 1400 µN of lift force. To the authors’ knowledge,

this is by far the most lift from a flapping wing structure of

this scale ever to be produced. Future work includes scaling

down the drive actuators while keeping them energetically

capable of the same wing trajectory and repeating the lift

result of 06-β. With the recent work in [6], the power density

of 10mg bimorphs has been significantly improved, leading

us to believe that takeoff using MFI technology is imminent.

Our conjecture has recently been proven with the takeoff of a

60mg flapping air vehicle using MFI technology at Harvard

[9].
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