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Abstract— Mechanisms utilizing rigid links and relatively
small flexural joints are very suitable for fabrication at the
meso scale. The Micromechanical Flying Insect (MFI) project
at UC Berkeley has developed a simple fabrication method
which works very well at the scale where the links are a few
millimeters in length and the flexures are few hundred microns
in length. Previous analysis has concentrated on the geometry of
the composite material links for creating rigid links. Recently,
we have found that for useful performance, detailed analysis is
required of the flexures also. This paper presents a brief analysis
of the issues involved in the design of the flexural components
of such mechanisms.

I. INTRODUCTION

Flexural mechanisms have recently been used in increas-
ingly many applications [1], [2] and have come under a lot of
analysis [3], [4]. Some of the basic design issues involved
in the fabrication of small length flexure mechanisms has
been treated previously in [5]. Researchers have also studied
various kinds of flexures for obtaining rotational motion
from the point of view of optimal force transmission [6].
In this paper, we present an application of some of these
general principles to a novel fabrication technology which
was developed at UC Berkeley during the Micromechanical
Flying Insect (MFI) project [7]. This technique is ideally
suited to fabricating mechanisms at the millimeter scale. Fig. 1
shows some microrobots which have been constructed using
this technology. The details of this new fabrication method
have been elaborated in [8]. Briefly, the method consists of
creating link/joint pairs by sandwiching polyester between
layers of carbon fiber. By utilizing “folds” in the design, the
planar sandwiched layer can be folded into a wide variety
of 3D mechanisms [9]. Related work is concentrating on
methods of automatically folding the mechanisms [10] and
embedding wiring inside the flexures themselves [11]. The
various performance aspects of the CF links have been elabo-
rated in [8]. Various dynamic features of the MFI mechanism
have been analyzed extensively previously [12], [13]. Over
the course of the last few years using this new fabrication
technique, we have come across many general design rules
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for the design of the flexural components of the mechanism.
This paper presents these design rules, which we believe
will be widely applicable in the construction of mechanisms
using this procedure. For this paper, we use two flexural
mechanisms currently used in the MFI project as driving
examples. The first is a simple fourbar mechanism which
is designed to amplify the motion of the PZT actuators by
about 3000 rads/m. The second is a 3D five-bar mechanism
with 2DOF which is meant to couple the rotations of the two
fourbars into a composite flapping and rotation (Fig. 2).

(a) Latest airframe structure of the Micromechanical Flying
Insect

(b) Biomimetic Fishbot [14] (c) Microrobotic Crawler

Fig. 1. Various mechanisms constructed using carbon fiber microfabrication
techniques.
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Fig. 2. Kinematic diagram of the MFI differential
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Fig. 3. Kinematic diagram of a simple fourbar mechanism showing the
typical external forces acting on it.

The paper is organized as follows: Section II reviews
a method for calculating the force transmitted through the
flexures of a planar flexural mechanism which is subjected
to a matched set of external forces. From this analysis, we
derive a method for calculating the orientation of the flexures
which leads to minimal serial stiffness. In Section III, we
analyze the mechanism for the possibility of buckling in the
flexures and design them for the required force transmission.
Section IV analyses the parallel stiffness of the mechanism
assuming no buckling in the flexures. We examine the effect

which pre-stressing in the flexures has on the overall stiffness
of the mechanism. We also qualitatively examine the effect
of misalignment on the stiffness of a flexural mechanism.

In the above discussion, “parallel stiffness” refers to the
force Fact required to drive the input joint (Fig. 3) with all the
links left free to rotate. For planar mechanisms like fourbars,
this stiffness depends purely on the stiffness of the flexures.
As we will later show, for 3D mechanisms, we also need to be
very careful about alignment of the flexures. “Serial stiffness”
refers to the free movement possible at the output link of the
fourbar when the input link is fixed. In Fig. 3, this refers to
the motion caused by Fwing when the input link is fixed.

II. FORCE ANALYSIS

In this section we do a force analysis of the fourbar and give
a systematic method for choosing the correct flexure orienta-
tions. To see why this is important, we focus first on a simple
flexural setup. Consider two basic singular mechanisms with
the flexures oriented differently (Fig. 4(a),(b)). If the flexures
were ideal pin joints, then in both cases, the force F would
not cause any motion at all, i.e the two configurations would
be infinitely stiff. If we perform a small motion FEA analysis
of the two configurations, we find that the stiffness in the first
case is almost an order of magnitude more than the second.
This result implies that it is advantageous to have the flexures
oriented in such a manner that the force transmitted through
them always points along their length.

F

F

(a) (b)

Fig. 4. FEA analysis of two simple flexural mechanisms.

To utilize this knowledge of flexural hinges, we first need
to find out the direction of the forces transmitted through the
various flexures for the typical external forces acting on the
mechanism.

Fig. 3 shows the typical forces acting on the fourbar
mechanism of the MFI. Here Fwing is the wing force acting
on the output link of the fourbar and Fact is the actuator
force acting on the input link. For this analysis, we make the
following simplifying assumptions. First we assume that each
flexure is an ideal pin joint with a torsional spring. Thus it is
capable of transmitting both forces and moments. However,
the transmitted forces are independent of the rotation of the
flexure, while the transmitted moment follows directly from
the rotation. Next, we assume that the links are moving quasi-
statically, i.e, the links have no acceleration. This implies that
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Fig. 5. Exploded view of the fourbar links showing the flexure forces acting
on the links

given a fourbar configuration (specified by the link angles)
and a force Fwing acting on the output link, we need to also
specify a unique blocking force Fact to retain the fourbar
at the given configuration. Since we know the way in which
the actuator is attached to the fourbar, we will assume that
the direction of Fact is known relative to the input link. The
problem statement therefore becomes: Given a force Fwing

acting on the output link of the fourbar, find the four vector
forces transmitted through the fourbar flexures and also find
the magnitude of the required blocking force Fact. Thus we
need to solve for 9 unknown quantities.

Fig. 5 shows an exploded view of the fourbar links showing
the forces and moments acting on the various links. For our
problem, we have to solve for the vectors Ff,i, i = 1, . . . 4 and
the scalar, |Fact|. Ff,i here represents the force transmitted
via the ith flexure from the (i−1)th to the ith link. Similarly,
Mf,i represents the moment transmitted to the ith link via
the flexure connecting it to the (i− 1)th link. The forces and
moments have to satisfy the following equilibrium equations
for each of the link they act upon:

Ff,i − Ff,i+1 + Fi
ext = 0 (1)(

Ff,i × ri
1 − Ff,i+1 × ri

2

+Mf,i − Mf,i+1 + M i
ext

)
= 0 (2)

i = 1, . . . , 3

Thus there are 9 scalar equilibrium equations involving 9
unknowns.

In the above equation ri
1 and ri

2 are the moment arms of
Ff,i and −Ff,i+1 about the CG of the ith link. Note that we
can simplify the solution method of (1) and (2) by proceeding
with link 2 which has no external forces acting on it. This
solution method for fourbars is well-known and will not be
further elaborated upon here. See [3] for similar analysis. Here
we present the final results of the force analysis. Fig. 6 shows
the forces transmitted through the various flexures super-
imposed on the fourbar geometry for various configurations.

These forces were calculated in response to a constant force
Fwing acting normal to the output link of the fourbar at all
these configurations.

Fig. 7 shows how the transmitted flexural forces vary with
the configuration of the fourbar. At the extremes, where the
fourbar exhibits “stiffening” in the actuator coordinates, we
see that we require a much larger Fact to balance the same
wing force Fwing .
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Fig. 6. Forces transmitted through the fourbar flexures
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Fig. 7. Variation of transmitted Flexural Forces

This analysis tells us the direction in which the forces trans-
mitted via the various flexures. This tells us the best way to
orient the various flexures in the fourbar during fabrication for
the most efficient force transmission. Combined with various
fabrication limitations, this gives the fabricated configuration
of our latest fourbar as shown in Fig. 8.

Note how all the flexures are oriented to be along the mean
direction of the transmitted forces. We have experimentally
measured the serial stiffness of the optimized fourbar mech-
anism and found it to be well over 4000 N/m. This is a huge



Fig. 8. Latest MFI Fourbar design

improvement from the serial stiffness of previous fourbars
which had a measured serial stiffness of about 1000 N/m.

III. BUCKLING STRENGTH OF THE FLEXURES

The force analysis of the fourbar also allows us to calculate
the maximum forces which can be transmitted through the
fourbar. Alternatively, it allows us to design the fourbar
flexures to match a given maximum force which needs to be
blocked by the actuator. For the MFI, the maximum blocking
force of the actuator is about 100mN. This allows us to
calculate the maximum forces being transmitted through the
various flexures. Using the previous analysis, we find that
|F1| = 65mN, |F2| = |F3| = 35mN and |F4| = 27mN for
|Fact| = 100mN. This force configuration is able to withstand
a aerodynamic force of 7mN applied at the centroid of the
wing.

We want to design the flexures to not buckle under these
kinds of loads. The maximum force which a flexure of length
l can withstand before buckling is given by

Fcr =
EIπ2

L2
, (3)

where E is the Young’s modulus, I is the moment of area and
L is the length. In practice, we will design with a factor of
safety of 5 since the flexures are not always exactly parallel
to the direction of the transmitted force. For our flexures,
fabrication constraints restrict us to flexure lengths of 125µm
or greater and a thickness of either 12.5µm or 6.25µm. Since
a 12.5µm flexure 125µm long cannot be used in the 3rd and

4th joints of the fourbar because the motions are too large,
this puts yet another constraint on the allowable dimensions of
the flexures. Taking all these factors into account, we finally
arrive at the following flexure dimensions:

1 2 3 4
l (µm) 125 125 125 125

w (mm) 3 3 4 4
t (µm) 6.25 6.25 12.5 12.5

IV. CALCULATION OF PARALLEL STIFFNESS

The parallel stiffness of a flexure mechanism is easy to
calculate if we assume that each flexure is an ideal rotational
joint with a constant rotational stiffness. For small rotational
angles, the rotational stiffness of a flexure is given as

kflex =
EI

l
(4)

In an N -link mechanism, the total PE stored in the flexures
of the mechanism is given by:

PEtot =
N∑

i=1

1/2kiγ
2
i (5)

where ki is the stiffness of the ith flexure calculated using
(4) and γi is the total deflection of the ith flexure. To find
the rotational stiffness of the mechanism with respect to the
driving actuation angle, call it α, we need to first find the
restoring force for a given value of α. This is given as the
gradient of the PE as

F =
∂PE

∂α

=
N∑

i=1

kiγi
∂γi

∂α
(6)

For small displacements about some nominal value of α = α0,
the stiffness of the mechanism is given as:

keq =
∂F

∂α

∣∣∣∣
α=α0

=
N∑

i=1

ki

(
∂γi

∂α

)2

+ kiγi
∂2γi

∂α2
(7)

Note that it doesn’t make sense to use a stiffness number
for large motions. For the complete non-linear dynamics,
we should directly use the value of the restoring force F
according to (6).

A. Effect of flexure pre-stress

Note that in (7), γi represents the total displacement of the
flexural from its strain-free state. This displacement depends
not just on the kinematics of the mechanism but also on the
fabrication method, which might impart a pre-stress to some



of the flexures without any driving actuation. In other words,
γi in (7) can be thought of as:

γi = γkin
i + γfab

i (8)

Here, γkin
i = 0 when the driving angle α = 0. γfab

i is the
pre-stress in the joint which results from fabrication. Note that
it is constant for a given fabricated part. Since

∂γi

∂α
=

γkin
i

∂α
,

therefore, the first term in (7) depends purely on the kine-
matics and not on the initial pre-stress due to fabrication.
Thus, we need to take the initial pre-stress of the flexure into
consideration only for those flexures for which we have

∂2γi

∂α2
�= 0,

about the nominal operating point.
We can see the effect of pre-stressing on the differential

stiffness in Fig. 9. As we can see there is almost a 100%
increase in the differential stiffness when the θy flexure is
pre-stressed by 90◦. To minimize the effect of flexure pre-
stress, we have found that its usually a good idea to “cure”
the whole mechanism at a heightened temperature after the
fabrication is complete.
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Fig. 9. Effect of flexure pre-stress. The solid line represents the stiffness
of the differential w.r.t α when θ0

y = 0◦ and the dotted line represents the
stiffness with θ0

y = 90◦.

B. Effect of misalignment

Detailed geometric analysis turns out to be extremely
important in mechanisms where certain geometric constraints
need to be met for the mechanism to move.

Consider the wing differential mechanism of the MFI
shown in Fig. 2. It consists of two links labeled 1 and 4
which are actuated independently via two fourbars. They
are connected together by a series of 3 links which are

interconnected by simple flexural elements. The basic idea
is that when the links 1 and 4 are moved in phase, then the
middle plate 2 rotates along with them about their common
axis Z. However, when 1 and 4 move out of phase, the link
4 in addition to rotating about Z also rotates about the other
axes X , Y and W .

The kinematics of the differential in the absence of any
misalignments has already been derived in previous work [12]
as

θx = sin−1(λ sin α) (9)

θy = β − cos−1(λ sin β) (10)

where β = tan−1( 1
λ cos α )

To emphasize the importance of alignment in the differen-
tial mechanism, it is appropriate to step back and start from
one of the most simplistic concerns of kinematics, namely to
find the available degrees of freedom in the mechanism. If
we simply “count” the number of degrees of freedom in the
mechanism using Gruebler’s criterion:

Ndiff = 6 ∗ Nlinks − 5 ∗ Nflexures
= 6 ∗ 4 − 5 ∗ 5

Ndiff = −1 (11)

What this means is that an arbitrary closed 4 linked (5 with
ground link included) spatial mechanism with flexures along
arbitrary axes will be “jammed”. In the MFI differential, the
two extra degrees of freedom come from two of the flexural
constraints becoming redundant in the presence of geometric
constraints.

Consider the purely kinematic diagram of the differential
shown in Fig. 2. From a kinematic perspective, the mechanism
would jam completely if the flexural axes represented by the
axes θ1, θ2, θx, θy and θw were to not intersect exactly at
the single point shown in the figure as the origin. In reality,
the flexural compliance allows some movement albeit at the
expense of added unwanted stiffness.
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Fig. 10. Cut pattern of differential on Carbon fiber

To ensure the kind of alignments we need, we utilized a
fabrication design in which the complete differential is cut out



under the laser machine as a single part. Fig. 10 shows the
final design of the differential cuts. The alignment is critical
enough that we needed to account for the width of the laser
beam which cuts out the pattern on the carbon fiber sheet.
In addition to this, we also fabricated the output links of the
fourbar links as part of the differential mechanism to ensure
the alignment mentioned above. Features are added to the dif-
ferential design which mate and thus ensure good alignment.
The latest differential mechanism exhibits a parallel stiffness
which is just 1.5-1.6 times the predicted stiffness with perfect
alignment. This is quite a gain from previous designs which
were almost 40-50 times the predicted stiffness.

V. CONCLUSIONS

To summarize, we need to account for the following factors
while designing a flexural mechanism using the new carbon
fiber fabrication techniques:

• Analyze the forces transmitted through the flexures in
the fourbar and design the flexures to always point in
the direction of the transmitted forces.

• For flexural mechanisms, it is also very important to de-
sign the flexures to never buckle under typical operating
conditions.

• It is important to account for flexure pre-stressing in the
calculation of mechanism stiffnesses.

• For 3D mechanisms where mobility arises from geomet-
ric constraints, it is important to analyze for the effect of
misalignment and design the structure in a manner which
ensures proper alignment.

Fig. 11 shows a photo of the latest MFI thorax mechanism
which utilizes these various design rules in construction. For
clarity, we also show the a 3D sketch of the mechanism in
Fig. 12.

Fig. 11. Photo of the latest MFI differential
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Fig. 12. 3D sketch of the latest MFI differential
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