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Abstract— To keep pace with recent advances in micro-
robotic structures demands actuator technologies which can
deliver high power and precise motion. For electroactive
material based actuators, high power typically implies either
high field or high current drives which may lead to greater
nonlinearities such as saturation, softening, and increased
loss. Physical modeling of actuators is normally taken to be
linear since the range of displacements, applied loads, and
applied fields is typically small. If extrapolated to high drive
conditions, these linear models significantly over predict the
power which can be delivered. For actuators driving dynamic
systems, a complete nonlinear model of the system will
improve controllability and give more accurate estimations
of power delivery capabilities. Here static nonlinearities and
dynamic linear and nonlinear parameters are derived for high
performance piezoelectric bending actuators.

Index Terms— piezoelectric actuators, creep, saturation,
nonlinear modeling, microactuators

I. INTRODUCTION

There have been various approaches to formulating
the static constitutive equations of piezoelectric bending
actuators. Examples of these include Weinberg [22] and
Smits [18] who used energy methods, DeVoe [7] mod-
eled multilayered actuators, and Wang [20] described the
performance of bimorphs with a central layer. There have
also been descriptions of the dynamic response of such
actuators as by Goldfarb [9], [11], and Sitti [17], as well as
the inherent nonlinearities of piezoelectric materials under
high applied fields such as in Wang [21].

Wood, et al [25] described the design and static linear
modeling of high energy density piezoelectric bending
actuators by utilizing laminate plate theory. These actuators
achieve their high performance through intrinsic and extrin-
sic geometric improvements that uniformly distribute the
actuator strain along its length thereby maximizing the total
strain energy at fracture. High field driving techniques were
presented in [25] which greatly increase static bimorph
actuator performance, however these results do not scale
linearly with changes in field. The high fields described in
[25] reach a maximum of approximately 2.5Vµm−1 where
commercially available specifications are typically lower
(0.5Vµm−1 from Piezo Systems, Inc.). Intrinsic nonlineari-
ties that arise from high field drive of piezoelectric ceramics
are modeled here through least squares fitting of empirical
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data. The effect geometric changes have on the dynamic
properties of the actuator is nontrivial and are derived
here as part of a full nonlinear model of such actuators.
Because of the field effects on the dynamic properties, the
ultimate power delivery capability of piezoelectric actuators
is greatly reduced. Piezoceramic softening and increased
loss at high fields cause dissipation to occur withing
the actuator, which creates significant divergence between
static linear predictions and actual performance.

The modeling and results from this paper are specific to
the morphology of the particular actuators used, however,
the methods used apply to a number of transducers, both
precision and power. Moreover, they examine a collection
of phenomena inherent to piezoelectric materials and ways
of describing them. First, three phenomena are investigated:
creep, saturation and hysteresis, and stress effects. Finally,
the conservative and nonconservative parameters are de-
termined for use in a complete dynamic model. Of these,
field effects on actuator softening and losses are examined.
The models presented here encompass any piezoelectric
bending actuator regardless of material makeup, geometry,
anisotropies, and ply layup.

A. Materials and Methods

The transducers in question are custom made bimorph
clamped-free bending (d31 mode) actuators. These devices
were designed for optimal energy density as described
in [25] for use in microrobotics projects, specifically for
flapping wing micro air vehicles (MAV) [2], [3], [23].

1) Actuator Construction: The actuator design is shown
in Fig. 1. The two geometric improvements to the actuator
consist of a rigid extension [4] and variable width tapering
[25]. Adding a rigid extension not only gives the ability to
tailor kinematic properties, but also improves the energy
density by a maximum of 33% by acting as a lever arm
to more uniformly distribute the external moment along
the length of the beam. By tapering the width (while
constraining the planform area to be constant), the strain
can be uniformly distributed along the actuator which
yields a 33% increase in energy density. The actuators are
constructed from commercially available PZT-5H plates,
laser micromachined to desired geometries. Passive layers
consist of composites: S2-glass for the extension and ultra
high modulus (UHM) carbon fiber for the actuator elastic
layers. Both are prepregs (preimpregnated with a catalyzed,



Fig. 1. Bimorph drawings with (a) pertinent dimensions and (b) cross
section showing layup.

uncured epoxy resin) and are also laser micromachined,
layed up with the ceramic, and cured under vacuum. The
actuators used in this study are a total of 10mm long,
and weigh approximately 12mg. Along with the geometric
modifications, a novel drive method was developed which
allows PZT plates to have high fields applied without
the risk of depolarization. This drive method grounds one
outer surface of the bimorph, applies a static bias voltage
Vb to the other, and the center electrode is driven from
Vb/2 to ±Vb/2. Thus no plate is ever reverse biased with
respect to its polling direction. The convention used in this
work calls Vb/2 applied to the center electrode the neutral
actuator position. A brief overview of the static actuator
performance derivations is given in appendix A.

2) Position Sensors: To characterize the behavior of the
actuators, a real time measure of tip position is desired.
Because of small actuator motions (< 500µm) and small
form factor, commercially available displacement sensors
are not feasible and thus custom made versions are used.
Initially, strain gages (either externally mounted [24] or
using the PZT surface itself [4]) were used to monitor
curvature and therefore determine actuator tip position.
However, difficulty in wiring and questions of nonlinear-
ities on the surface of the PZT (i.e. hysteresis) led to a
search for a non-contact position sensor.

Custom reflective position sensors were created [19]
utilizing a side view fiber optic to sense the actuator
position. The sensors operate by reflecting light off the
actuator tip and receiving the reflected signal. For increased
sensitivity the light signal was amplitude modulated and
then demodulated in analog circuitry.

The custom position sensors and associated analog cir-
cuitry are experimentally accurate to approximately 3.7 µm
of actuator deflection and have a bandwidth of 3700Hz.
However, the dynamics of the processing circuitry were
characterized; processing data off line leads to a bandwidth
increase to approximately 10kHz. The only actuator modi-
fication the sensors require is to enhance the reflectivity of
the tip of the extension.

II. STATIC NONLINEARITY MODELING

Piezoelectric transducers are used in a number of sce-
narios in which either precise position control or high

Fig. 2. Generalized Kelvin-Voigt model for viscoelastic materials.

bandwidth sensing and actuation is desired. Certain in-
herent material properties cause piezoceramics to exhibit
a viscoelastic response and cause saturation with high
applied fields.

A. Creep

Creep is a phenomenon which appears in the voltage-
displacement characteristics of piezoelectric ceramics as a
viscoelastic material property. The presence of creep can
cause substantial errors for precision positioning actuators,
or could affect the dynamics of power actuators. Creep
exists in both the electrical and mechanical domains,
however it is modeled by a series connection of parallel
spring damper elements collectively called the generalized
Kelvin-Voigt model and is shown in Fig. 2. This model for
viscoelastic materials is similar to those in [12], [16]. As
the number of elements N is increased, the accuracy of
the fit to creep data is improved, however each additional
spring damper element increases the order of the model.
The displacement δ (t) for the system in Fig. 2 is derived
as follows:

δ (t) = F0u (t)

[
1
k0

+
N∑

n=1

1
kn

(
1 − e−

t
τn

)]
, (1)

where τn = bn/kn, F0 is the static internally applied
stress from the piezoelectric effect, and u (t) is the unit
step. Ideally, creep would be observed by applying a static
field and measuring the displacement for t > 0. This is
not practical for the case of a bending actuator however
since the Q is typically high so that such a test will cause
mechanical failure. Instead, the applied field was ramped
slowly to a set value (in this case 0.5V µm−1), but done
so such that the ramp time was significantly lower than
min (τn) (for this test, the ramp was completed in 0.2s)
to mimic a step input. Finally, the steady state field value
was kept small so as to eliminate the effects of high field
displacement saturation as in [6]. A nonlinear least squares
regression fitting of this measured displacement to the
model parameters in Fig. 2 was done for various model
orders and is shown in Fig. 3. Note that this is done for
one set field value. It is assumed that this will not scale
with increasing field because of softening and other effects
discussed later.

B. Saturation

Displacement-voltage saturation is always present for
piezoelectric ceramics operating at high fields. This is due
to the finite strain available through domain reorientation.
The model for saturation is analogous to the Kelvin-Voigt
model for creep but is instead a number of parallel series
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Fig. 3. Creep data with fit to Kelvin-Voigt models of increasing order.

Fig. 4. Maxwell Slip model for actuator saturation.

of spring dampers called the Maxwell Slip model similar
to that in [9] (and similar to the Prandtl-Ishlinskii operator
and the Preisach Hysteresis model [6]) and is shown in
Fig. 4. The dampers in the above model are not viscous,
but instead are analogous to Coulomb friction in which
a break away force f b must be overcome to achieve any
motion. Since the elements are in parallel, the forces add
as follows:

F =
∑
n∈Ω

kn

(
δ − δd

n

)
+

∑
m∈Ψ

f b
m sgn

(
δ̇
)

, (2)

where the individual damper positions are defined as:

[
δd

]
=

{
δd
i : i ∈ Ω

δ − fb
j

kj
sgn

(
δ̇
)

: j ∈ Ψ
, (3)

where in the above two equations the sets Ω and Ψ are
defined to be Ω =

{
i :

∣∣ki

(
δ − δd

i

)∣∣ < f b
i

}
and Ψ ={

j :
∣∣kj

(
δ − δd

j

)∣∣ ≥ f b
j

}
. Note that the sum of the sizes

of the two sets must equal N , the number of Maxwell Slip
elements. An experimentally measured hysteresis curve is
shown in Fig. 5 along with the model fit.

C. Stress based effects

Finally, it is desired to discover if the displacement
properties of the actuator change with increased external
loading. This is done by again performing hysteresis tests,
however in this case static loads are isotonically applied
to the actuator with a fixed mass. For the case of the
actuator in question, the loads chosen are of the order
of the maximum loading expected during use (0, 50, and
100mN). The actuator is brought to the neutral position,
the load is applied, and the field is ramped from 0 to
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Fig. 5. Measured hysteresis (a) and fit to Maxwell Slip model (b).
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Fig. 6. Work loop for various applied static loads.

E3,max for a number of cycles while observing the tip
displacement. If there is stress based saturation or softening
of the piezoelectric material, the displacement magnitude
will decrease with increasing external loading. For a linear
actuator, the motion will remain the same for any arbitrary
loading, thus any stress based effects will appear as another
nonlinearity. The hysteresis loops for the three loads are
shown in Fig. 6. What is interesting from these results is
that there is no saturation, however there is a slight inverse
effect. Note that the magnitude of the displacement with
an applied load is greater than that with no load (with a
peak at 50mN for saturation reasons not discussed here).
This is easily explained by the presence of stress based
d31 enhancement. It has been shown [1], [13], [26], [27]
that compressive stress on PZT degrades the piezoelectric
coupling coefficients while tensile stress causes an en-
hancement. Applying a load to the distal end of a bimorph
actuator puts the PZT plate which is doing work on the
load in tension, causing the above phenomena.

III. LINEAR AND NONLINEAR CONSERVATIVE

PARAMETER MODELING

Wood [25] described how the quasi-static performance
and stiffness of an actuator will vary with extension length
and degree of tapering for a given field. Here, the remaining
dynamic parameters are derived. The mechanical model
used to describe the actuator dynamic performance is
shown in Fig. 7.



Fig. 7. Mechanical model of actuator.

Fig. 8. Model for calculating the effective mass of a cantilever.

A. Effective Cantilever Mass

The mass of a cantilever as represented by the mass in
the system in Fig. 7 is termed the effective mass, meff. This
quantity is determined by calculating the kinetic energy of
a massless rod with a point mass at the distal end (shown in
Fig. 8) and equating this to the sum of each particle in the
beam. The kinetic energy of an oscillating point mass at
the distal and of a massless rod is given by the following:

T =
1
2
meffδ̇ (l)2 . (4)

Equating the sum distributed kinetic energy of a cantilever
beam is as follows:

T =
1
2
wtρ

∫ l

0

δ̇ (x)2 dx, (5)

where w, t, and ρ are the width, thickness, and density of
the beam respectively. Rearranging the terms in (4) and (5)
and solving for meff for a homogeneous rectangular beam
gives,

meff = mbeam

∫ l

0
δ̇ (x)2 dx

lδ̇ (l)2
, (6)

where mbeam is the gross beam mass defined as wtlρ. This
can be rewritten to accentuate the mass multiplier M (·)
as follows: meff = M (·) mbeam. For a rectangular beam
with a point load, the term δ (x) is given in appendix
B. Substituting this into (6) yields the classic result for
a straight cantilever beam, meff = (33/140) mbeam. This
gets to be more difficult when considering beams which
are tapered along the length. For reasons of comparison,
the planform area of the actuator is held constant and now
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define the width as a function of x as follows:

w (x) = wnom

(
2 (1 − wr)

l
x + wr

)
, (7)

where wnom is the nominal width, the width at x = l/2,
and wr is the width ratio defined as wr = w0/wnom. Now
(6) becomes:

meff = mbeam

∫ l

0
δ̇ (x)2 w(x)

wnom
dx

lδ̇ (l)2
, (8)

where now mbeam is wnomtlρ. Now M (wr) can be explic-
itly defined (using the displacement defined in appendix
B): M (wr) = (g4 + g5 + g6 + g7) /g8 where the gi terms
are given in appendix B. This function is plotted in Fig. 9.
Note that limwr→1 = 33/140 yields the same result as for
the rectangular beam.

Next, the effective mass is determined for a rectangular
cantilever with a rigid extension. This is done by splitting
the integral in (6) to account for the discontinuity in
displacement as a function of x.

meff = mbeam

∫ l

0
δ̇ (x)2 dx + dr

∫ l(1+lr)

l
δ̇ (x)2 dx

l (1 + drlr) δ̇ (l + lext)
2 , (9)

here lr is the extension ratio equal to lext/l, mbeam is again
the gross mass of the beam, wl

∑
ρbtb (1 + lrdr) where

dr is defined as:

dr =
∑Ne

n=1 ρe (n) te (n)∑Nb

n=1 ρb (n) tb (n)
, (10)

where ρi (n) and ti (n) are the density and thickness of the
nth layer of ith section (i ∈ {b, e}) respectively, and Nb

and Ne are the number of layers in the beam and extension.
For a beam with a rigid extension, the δ (x) term is again
defined in appendix B. Solving (9) yields the result shown
in (11). This solution is plotted as a function of both lr and
dr in Fig. 10. Note once again that M (0, dr) = 33/140.
Finally, these two results are combined to form a solution
for M (wr, lr, dr). Again the effective mass is calculated
as follows:

M =

∫ l

0
δ̇ (x)2 w(x)

wnom
dx + (2 − wr) dr

∫ l(1+lr)

l
δ̇ (x)2 dx

l (1 + drlr (2 − wr)) δ̇ (l + lext)
2 .

(12)



M (lr, dr) =
33 + 7lr (13 + 9lr + 5dr (4 + 3lr (6 + lr (11 + 2lr (5 + 2lr)))))

140 (1 + drlr) (1 + 3lr (1 + lr))
2 (11)
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The displacement is defined as a combination of (22) and
(23) and is shown in appendix B. Substituting this into (12)
yields the complete result for the effective mass of a tapered
beam with a rigid extension. This result is so massive that
it is not presented here for brevity, however a few level sets
are shown in Fig. 11 for discrete values of dr. Note that
in all cases, the effective mass can be decreased through
proper choice of geometry and material properties. This
is a significant result since for a given stiffness, this will
increase the actuator resonance. Thus for the same energy,
this will yield higher power at the actuator resonance as
well as give a higher bandwidth for control.

B. Nonlinear Stiffness

In appendix A, the actuator stiffness is derived based
upon the constitutive equations for actuator performance.
Now this will be re-evaluated based upon empirical ob-
servations of softening. From Wood [25], the resonant
frequency of the actuator falls as a function of the peak
drive field as is shown in Fig. 12. Since the effective

Fig. 12. Experimental magnitude frequency response for increasing field
strengths (low field, Vb = 5 to 50V).
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Fig. 13. Empirically measured actuator stiffness with increased field.

cantilever mass is static with respect to the applied field the
resonant frequency decrease is a function of the stiffness
and effective damping changing with the field. Thus highly
accurate softening and loss models can be extracted by
frequency sweeps, such as the one in Fig. 12, which would
span the space of desired drive fields. Unfortunately, again
this would fracture the actuator at high fields because of a
typically high unloaded Q. Thus, to determine the stiffness
as a function of applied field, static loads are applied
for increasing bias field strengths and the displacement is
observed. This can be done because it is assumed that there
are minimal saturation effects due to an applied load, as
was shown in Fig. 6. The stiffness is then extracted from
this and is shown in Fig. 13.

IV. NONCONSERVATIVE PARAMETER MODELING

All of the loss elements are lumped into the damper in
Fig. 7, collectively called the actuator damping. Empirical
measurements of damping for bending actuators is difficult
to study since the Q of such structures is typically high so
that large DC motion will result in mechanical failure (frac-
ture) of the system at resonance. Thus, such measurements
must be made at either low fields or in the presence of
an external damper. Models for structure damping such as
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in [5], [11] are useful for first order frequency-dependent
damping approximations, however it is known that the
losses for such materials increase with increasing field. To
empirically verify this, static hysteresis tests are performed
for increasing field strengths and the loss as a function of
this field is calculated by observing how the hysteresis area
changes. First, the frequency-dependent model for the loss
is presented. This model is based upon the damping ratio
and is given by the following:

ba = 2πζ
√

meffka, (13)

where ζ is the damping ratio which is related to the loss
ratio η = 2ζ and the loss ratio (fraction of energy lost to
total energy in one cycle) is defined as a transverse heat
flow process in [5] by the following:

η =
α2EY T

cv

f/fr

1 + (f/fr)
2 . (14)

In the above equation, α, EY , T , and cv are the coefficient
of thermal expansion, Young’s modulus, operating tempera-
ture, and specific heat respectively while f is the operating
frequency and fr is the relaxation frequency defined in
(15).

fr =
π

2
κ

cvt2b
. (15)

In the above equation for the relaxation frequency, κ is
the thermal conductivity and tb is the beam thickness. This
frequency-dependent damping is simulated and shown in
Fig. 14. Next, the damping as a function of the applied field
is determined from the hysteresis loops shown in Fig. 15
(with no external load). From this, the loss can be measured
by calculating the area in the hysteresis loop and comparing
this to the total area under the curve to calculate the loss
ratio (per cycle). This yields the field-dependent damping
curve shown in Fig. 16.

V. COMPLETE MODEL FORMULATION

Now all the pieces for the dynamic model are known
and can be used to determine the equations of motion.
Once this is complete, more interesting questions can
be answered, such as actuator frequency response, power
delivery capabilities, etc. The actuator model is:

meffδ̈ + ba (f,E3) δ̇ + ka (E3) δ = Fext − Fa, (16)
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where δ represents δ (l + lext). This model can now be
used to determine the dynamic response, for example the
magnitude response for various fields as is shown in Fig.
17. A few interesting points can be seen from the predicted
frequency response. First, the Q degrades rapidly with
increasing fields. Second, the peak displacement is a non-
monotonically increasing function of the drive field. Both
of these are shown in Fig. 18.
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VI. CONCLUSIONS

To calculate the power delivered to the load, it is
necessary to know the load dynamics as well. For the
case of a resonant system, all that is needed is the load
damping bl. The sum of the mechanical damping at the
system resonance and the electromechanical damping at
the drive field yields the total actuator damping. The peak
power delivered to the load is given by the following:

Pl =
1
2

F 2bl

(bl + ba)2
(17)

where F is the peak blocked force. It may appear that
lowering the load damping to match the actuator losses
will increase the power delivered to the load. This is not
true in general since decreased load damping will increase
the system Q potentially bringing the actuator closer to
its strain limit at resonance. For example, with a load
of bl = 0.1Nsm−1 (the load expected for the actuators
shown in Fig. 1 for the example MAV application), the
linear, low damping model predicts > 1kWkg−1. However,
when considering the effects described in this paper, this
power density is reduced to approximately 800Wkg−1.
This places such actuators at nearly the performance of
DC motors, and well above commercially available piezo-
electric bending actuators.

These models and methods are of value to robotic
structures because of the diverse applications and demands
upon such actuators. Examples of the diverse applications
which would benefit from accurate static and dynamic
models are tactile displays [14], minimally invasive surgery
end effectors, precision micromanipulators [15], vibration
control [10], crawling robots [8] and MAVs [3].

APPENDIX

A. Derivations of Static Actuator Performance

In this section, a brief overview of the results obtained by
Wood [25] are presented for use in further derivations. The
model for quasi-static actuator performance is based upon
laminate plate theory and is versatile enough to incorporate
all possible combinations of piezoelectric and elastic layer
layup configurations as well as intrinsic and extrinsic
geometries. First, the actuator deflections are determined

as a function of the geometry and internal and external
excitations as follows:[

ε0

κ

]
=

[
Aij Bij

Bij Dij

]−1 ([
Next

Mext

]
+

[
Np

Mp

])
.

(18)
In the above equation, the Aij , Bij , and Dij terms are
material and geometric constants defined in [25],

[
ε0κ

]T

are the strains and curvatures, and the N and M terms
are the forces and moments per unit width acting on the
structure where [NextMext]

T and [NpMp]T represent the
external and piezoelectric forces and moments respectively.
Of the strain terms, the curvature κx determines the actua-
tor displacement since it represents the actuator curvature
d2δ (x) /dx2. Integrating this twice yields the following
description of actuator motion:

δ =
P (E3) l2

2
Gδ − C44Fextl

3

3wnom
GF , (19)

where the C matrix is the inverse of the material con-
stant matrix in (18), P (E3) is the piezoelectric term
C41N

p
x + C42N

p
y + C44M

p
x + C45M

p
y and the terms Gδ

and GF are dimensionless geometric constants. The reader
is urged to refer to [25] for a more detailed version of
these derivations, they are only mentioned here to give
an understanding of the interactions of the internal and
external forces acting on the structure. Note that with no
applied field, the stiffness of the actuator, k0 is easily
derived from (19):

ka =
3wnom

C44l3
GFb

Gδ
. (20)

B. Detail of Effective Mass Derivations

For convenience, the terms used in the derivations of the
effective mass are presented here. First, the displacements
due to point loads are presented. For a rectangular can-
tilever with no extension, the displacement is given by the
following:

δ (x) = −C44F

wnom

(
l
x2

2
− x3

6

)
. (21)

Now allowing for width tapering as defined in (7), the
displacement if modified as follows:

δ (x) = − C44Fl
8wnom(1−wr)3

[2g1x (g2l + g1x)
+ lg2g3 (lwr − 2g1x)] ,

(22)

where the terms g1 = wr − 1, g2 = wr − 2, and
g3 = ln [−2g1x/ (lwr) + 1]. Next, the displacement for a
rectangular cantilever with a rigid extension is similar to
(21), but split into two sections:

δ (x) =

{
−C44F

wnom

[
(l + lext) x2

2 − x3

6

]
−C44F

wnom
[δl + αl (x − l)]

x : 0 → l
x : l → l + lext

.

(23)
In (23) the terms δl and αl are shorthand for δ (l) and
(dδ (x) /dx)|x=l respectively. The displacement for a beam
encompassing any tapering or extension length is given in
(24) (where g9 is defined as 2lrg1 + g2). Finally, the gi

terms used in section III-A are given in (25).



δ (x) =

{
− C44Fl

8wnom(1−wr)3
[2g1x (lg9 + g1x) + lg3g9 (lwr − 2g1x)]
−C44F

wnom
[δl + αl (x − l)]

x : 0 → l
x : l → l + lext

. (24)

g4 = 2g1 (−39624 + wr (135808 + wr (−182782 + wr (120878 + wr (−39257 + 4992wr)))))
g5 = 450g6

2 ln (2 − wr)
2

g6 = 15g4
2 ln (2 − wr)

(−396 + (676 − 279wr) wr − 60g2
2 ln (wr)

)
g7 = 15g4

2 ln (wr)
(
396 + (−676 + 279wr) wr + 30g2

2 ln (wr)
)

g8 = 3600g1

(
−6 + 10wr − 4w2

r + g2
2 ln

(
2−wr

wr

)) (25)
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[1] M. Algueró, B.L. Cheng, F. Guiu, M.J. Reece, M. Poole, and
N. Alford. Degradation of the d33 piezoelectric coefficient for PZT
under static and cyclic compressive loading. J. of the European
Ceramic Society, 21:1437–1440, 2001.

[2] S. Avadhanula, R.J. Wood, D. Campolo, and R.S. Fearing. Dy-
namically tuned design of the MFI thorax. In IEEE Intl. Conf. on
Robotics and Automation, Washington, DC, May 2002.

[3] S. Avadhanula, R.J. Wood, E. Steltz, J. Yan, and R.S. Fearing.
Lift force improvements for the micromechanical flying insect. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Las Vegas,
Nevada, October 2003.

[4] D. Campolo, R. Sahai, and R.S. Fearing. Development of piezo-
electric bending actuators with embedded piezoelectric sensors for
micromechanical flapping mechanisms. In IEEE Intl. Conf. on
Robotics and Automation, Taipei, Taiwan, September 2003.

[5] S.H. Crandall. The role of damping in vibration theory. J. of Sound
and Vibration, 11(1):3–18, 1970.

[6] D. Croft, G. Shed, and S. Devasia. Creep, hysteresis, and vibration
compensation for piezoactuators: Atomic force microscopy applica-
tion. J. of Dynamic Systems, Measurement, and Control, 123:35–43,
March 2001.

[7] D.L. DeVoe and A.P. Pisano. Modeling and optimal design of piezo-
electric cantilever microactuators. J. of Microelectrical Mechanical
Systems, 6(3):266–270, September 1997.

[8] M. Gogola, G. Fischer, M. Goldfarb, and E. Garcia. The develop-
ment of two piezoelectrically-actuated mesoscale robot quadrupeds.
In SPIE Conf. on Microrobotics and Microassembly, volume 3834,
pages 76–84, Boston, Massachusetts, September 1999.

[9] M. Goldfarb and N. Celanovic. A lumped parameter electrome-
chanical model for describing the nonlinear behavior of piezoelectric
actuators. Trans. of the ASME J. of Dynamic Systems, Measurement,
and Control, 119:478–485, September 1997.

[10] M.R. Kermani, M. Moallem, and R.V. Patel. Optimizing the
performance of piezoelectric actuators for active vibration control.
In IEEE Intl. Conf. on Robotics and Automation, Washington, DC,
May 2002.

[11] N. Lobontiu, M. Goldfarb, and E. Garcia. Achieving maximum tip
displacement during resonant excitation of piezoelectrically actuated
beams. J. of Intelligent Material Systems and Structures, 10,
November 1999.

[12] L.E. Malvern. Introduction to the Mechanics of a Continuous
Medium. Prentice-Hall, Englewood Cliffs, NJ, 1969.

[13] S.W. Meeks and R.W. Timme. Effects of one-dimensional stress on
piezoelectric ceramics. J. of Applied Physics, 46(10):4334–4338,
October 1975.

[14] J. Pasquero and V. Hayward. STReSS: A practical tactile display
system with one millimeter spatial resolution and 700hz refesh rate.
In Proc. Eurohaptics, pages 94–110, 2003.

[15] E. Shimada, J.A. Thompson, J. Yan, R.J. Wood, and R.S. Fearing.
Prototyping millirobots using dextrous microassembly and folding.
In Symp. on Microrobotics ASME Int. Mechanical Engineering
Cong. and Exp., November 2000.

[16] U. Singh and R.S. Fearing. Tactile after-images from static contact.
In 7th Symp. on Haptic Interfaces for Virtual Environment and
Teleoperator Systems ASME IMECE, Anaheim, CA, November
1998.

[17] M. Sitti, D. Campolo, J. Yan, R.S. Fearing, T. Su, D. Taylor, and
T.D. Sands. Development of PZT and PZN-PT based unimorph
actuators for micromechanical flapping mechanisms. In IEEE Intl.
Conf. on Robotics and Automation, Seoul, Korea, May 2001.

[18] J.G. Smits and W. Choi. The constituent equations of piezo-
electric heterogeneous bimorphs. IEEE Trans. on Ultrasonics,
Ferroelectrics, and Frequency Control, 38(3):256–270, May 1991.

[19] E. Steltz, R.J. Wood, and R.S. Fearing. Characterization of the
micromechanical flying insect by optical sensing. In IEEE Intl.
Conf. on Robotics and Automation, Barcelona, Spain, April 2005.

[20] Q.M. Wang and L.E. Cross. Constituative equations of symmetrical
triple layer piezoelectric benders. IEEE Trans. on Ultrasonics,
Ferroelectrics, and Frequency Control, 46(6):1343–1351, November
1999.

[21] Q.M. Wang, Q. Zhang, B. Xu, R. Liu, and L.E. Cross. Nonlinear
piezoelectric behavior of ceramic bending mode actuators under
strong electric fields. J. of Applied Physics, 86(6):3352–3360,
September 1999.

[22] M.S. Weinberg. Working equations for piezoelectric actuators and
sensors. J. of Microelectrical Mechanical Systems, 8(4):529–533,
December 1999.

[23] R.J. Wood, S. Avadhanula, M. Menon, and R.S. Fearing. Mi-
crorobotics using composite materials: The micromechanical flying
insect thorax. In IEEE Intl. Conf. on Robotics and Automation,
Taipei, Taiwan, September 2003.

[24] R.J. Wood and R.S. Fearing. Flight force measurements for a
micromechanical flying insect. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Maui, HI, October 2001.

[25] R.J. Wood, E. Steltz, and R.S. Fearing. Optimal energy density
piezoelectric bending actuators. To Appear: Sensors and Actuators
A: Physical, 2005.

[26] G. Yang, S.F. Liu, W. Ren, and B.K. Mukherjee. Uniaxial stress
dependence of the piezoelectric properties of lead zirconate titanate
ceramics. In Proc. of the 2000 12th IEEE Intl. Symp. on Applications
of Ferroelectrics, pages 431–434, 2001.

[27] Q. M. Zhang, J. Zhao, and J. Zheng. Change of the weak-
field properties of Pb(ZrT i)O3 piezoceramics with compressive
stresses and its links to the effect of dopants on the stability of the
polarizations in the materials. J. of Materials Research, 12(1):226–
234, 1997.


