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Abstract— In this work the effect of substrate roughness on the
adhesion of gecko foot-hair like nano structures as opposed to
solid elastic materials is described and models of both synthetic
nano-hairs and hair-substrate interaction are developed. First,
by combining linear beam theory and geometric constraints, a
nonlinear elastic model for the hair is derived. Then it is shown
how for a given random surface, once its Zero Order Hold (ZOH)
model is acquired through Atomic Force Microscopy, only the
height distribution is needed to compute pull-off forces.

In the effort of replicating gecko foot-hair adhesive properties,
we synthesized arrays of nano hairs by casting polyurethane into
a nano-pore array. Hairs of controlled size, in the range of 20-60
microns long and 200 nanometers thick, were thus fabricated,
imaged via Scanning Electron Microscope (SEM).

Elastic properties of polyurethane are measured and then
fed into a model, based on cantilever beam theory, which,
together with the height distribution of sample surfaces, provides
a prediction for pull-off forces as well as a description of the
hysteresis phenomena arising in push-in/pull-off cycles.

I. INTRODUCTION

Geckos’ ability of climbing surfaces, whether wet or dry,
smooth or rough, has attracted scientists attention for decades.
By means of dry and compliant micro/nano-scale high aspect
ratio beta-keratin structures at their feet, geckos manage to
adhere to almost any surface with a controlled contact area [1].
It has been shown that adhesion is mainly due to molecular
forces such as van der Waals force [2]. In the effort of
replicating the dry adhesive properties [3] of gecko foot-
hair, in this paper the adhesion between nano-hair like elastic
structures and random rough surfaces is described.

Despite its compliance, a solid material fails to perfectly
conform to a very rough substrate when the elastic energy
required to fill out a cavity of the substrate exceeds the
thermodynamic energy gained from the contact itself [6]. The
elastic energy at a point x depends on the deformation at the
point itself, determined by s(x), as well as the deformation
occurring at nearby points which can be determined by the
spatial derivatives of s(x), evaluated at x, via the Taylor series
expansion. For a qualitative result, see [6]. If η and λ represent
respectively perpendicular and parallel roughness length scales
(for a purely sinusoidal substrate, λ would be the spatial period
and η the amplitude as in [5]), the elastic energy required to
fill out a cavity can be estimated to be Uel ≈ Eλη2 where E
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is the Young’s modulus of the elastic material1.
Since the elastic deformation is confined in a volume of

the order of λ3, the density of elastic energy would be
Uel ≈ E η2/λ2. The adhesion energy density, instead, is
Uad ≈ −∆γ, where −∆γ is the change of surface free energy
upon contact.

For rough surfaces λ � η. The balance Uad − Uel becomes
negative, i.e. elastic energy works against adhesion, making
elastic solid materials such as rubber not suitable for adhesive
purposes.

On the other hand, when hair-like elastic surfaces are
considered, deformation of a single hair is not affected by the
deformation of neighbor hairs. In other terms, elastic energy
at a point x only depends on s(x) and not on its spatial
derivatives for static contact.

This point, pictorially sketched in Fig.(1), will be developed
in detail in the next section.
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Fig. 1. Partial contact in the case of a solid elastic materials (left) and a
hair-like one (right).

II. HAIR-SURFACE INTERACTION MODEL

In this section, first a simple model for a single hair will
be developed and then the interaction of a hair patch with a
randomly rough surface will be modelled.

A. Single hair model: nonlinear stiffness and hysteresis

A hair patch, as the one depicted on the right side of Fig.(1),
consists of an array of similar hairs whose base is fixed onto
a substrate (at an angle θ0) and whose tip will be mainly
responsible for contacting a randomly rough surface. In order
to evaluate the compliance of a single hair, a cantilevered beam
model will be deployed. Although gecko foot hairs exhibit a

1As in [6], consider a cavity of planar dimension λ2 and depth η.
Uel = Eε2 V ol, where ε is the strain and V ol is the volume containing the
deformation. Such a deformation is assumed to be confined in cube V ol = λ3

and thus strain can be estimaded as ε = η/λ which leads to Uel ≈ Eλη2.



curvature throughout their length, our synthetic hairs will be
straight due to fabrication constraints. Nevertheless, with slight
modifications, the model can be extended to real gecko hairs
by considering initially curved cantilever beams.

Consider a cantilevered circular beam of radius r = 100nm
and length l = 60µm made out of polyurethane, whose
Young’s modulus was experimentally estimated to be E ≈
1GPa. Such a cantilever will prove to be very stiff when
subjected to axial tension/compression but very compliant
with respect to lateral (transversal) bending. In fact, from
basic beam theory, the axial stiffness ka (axial force to axial
displacement ratio) and the transversal stiffness kθ (shear force
to tip lateral displacement ratio) are:

ka = πr2E
l

kθ = 3πr4E
4l3

(1)

Thus kθ/ka ≈ r2/l2, i.e. kθ � ka. Thus, each hair is equiva-
lent to a rigid link (ka → ∞) which is free to rotate about its
base joint. The transversal stiffness of the beam is taken into
account by an equivalent torsional stiffness krot. The torsional
stiffness relates torques (transversal forces times hair length l)
to angular displacement (tip transversal displacement divided
by hair length l) and therefore krot = kθ l2.

When contacting locally flat surfaces2, adhesion will con-
strain the hair tip to lie on the surface (as long as a single
hair adhesion force F0 ≈ 200nN is not exceeded). Pull-
off forces can be experimentally characterized by letting the
hair patch undergo vertical, i.e. normal to the surface, cyclic
displacements. Similarly, each hair base will be thought as
constrained, at any time, to the same vertical displacement. A
convenient quantity is the projection of the hair length onto
the vertical, i.e. normal to the surface, z-axis h = l sin(θ).
For a given h (around the rest value h0 = l sin(θ0)) there
exists a unique angle θ such that the tip makes contact while
preserving the hair length.

Given the height h of the hair patch with respect to
the surface, the corresponding angle sin(θ) = h/l can be
determined and therefore the corresponding torsional torque
−krot(θ − θ0). For a frictionless surface, the tip is subject to
a total force F0 − Fn, where F0 ≈ 200nN is the adhesion
force and Fn ≥ 0, in the opposite direction, is the normal3

surface reaction, resulting in a zero total moment:

(F0 − Fn) l cos(θ + Ψ) = krot(θ − θ0) (2)

where Ψ is the tilting angle between the hair patch substrate
and the (locally) flat surface, as in Fig.(2). In order to keep the
model simple the assumption Ψ → 0 will be made throughout
the paper4. In case of friction, by letting the hair patch freely
move laterally in reaction to forces parallel the surface, the
same result can still be obtained.

2Although randomly rough, many surfaces of interest can be considered
flat at a length scale of the order of the hair thickness.

3Because of the frictionless assumption.
4This is the strongest assumption so far. In many cases Ψ can be considered

small but in general it can be said that the average Ψ is zero over the whole
surface and that also its effect will cancel out.

The hair elastic behavior can be summarized as:
{

h = l sin(θ)
F = l−1 krot

θ−θ0
cos(θ)

(3)

where F = F0 − Fn ≤ F0 is the force exerted at the base of
the hair (at the patch substrate).
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Fig. 2. Left: hair model consisting of a rigid link with torsional stiffness
krot. Right: force F = F0 − Fn to distance h for a single hair. The cross
(×) denotes the rest position h0 = l sin(θ0) = l/2 for θ0 = π/6.

For a single hair, the force F vs. displacement h, as in
Eq.(3), is shown in Fig.(2). Clearly, the hair is very compliant
around the rest position h0 while it becomes very stiff as
θ → π/6, i.e. h → l.

At pull-off, Fn = 0 and θ = θmax, i.e. the hair will reach its
maximum bending but contact will be broken slightly before
the hair is perfectly vertical (π/2).

This allows evaluating the maximum stretching of the hair
as:

δmax
∆= hmax − h0 = l [sin(θmax) − sin(θ0)] (4)

Such a simple system, i.e. a spring with an adhesive tip,
contains the basic elements to show hysteresis in a push-
in/pull-off cycle as sketched in Fig.(3)
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Fig. 3. Push-in / pull-off cycle for a single hair (the same hair is represented
at different times). Hysteresis appears when considering the amount of spring
elongation (proportional to the elastic force) versus spring base (i.e. the hair
patch base) displacement.

B. Roughness of surface

Consider a hair patch facing a randomly rough surface such
as the one in Fig.(4). Every hair will face a different point x



on the surface, let s(x) be the surface height at x. For any
two points x1 and x2 of same height, i.e. s(x1) = s(x2), the
hair will undergo the same deformation according to Eq.(3),
at anytime. Hairs facing the same surface level can thus
be considered equivalent and the pull-off forces of a class
of equivalent hairs are simply given by the pull-off forces
generated by a single hair times the number of hairs in that
particular class.
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Fig. 4. Atomic Force Microscope (AFM) image of a sample surface.

Previous arguments allow one to reduce the two-
dimensional problem of a surface to simply determining
a one-dimensional height distribution. Referring to Fig.(4),
instead of considering 0 ≤ s(x) ≤ 5.3µm for any x in a
100µm×100µm patch, the percentage of area (or equivalently
the percentage of hairs facing an area) whose height lies within
given ranges can be determined. In Fig.(5) the whole height
distribution was divided into 20 intervals and, for example,
about 12% of the whole area is at a height between 2.25µm
and 2.50µm.
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Fig. 5. Abbot-Firestone plots of a sample surface. The histogram represents
percentage of surface area (readings at the bottom horizontal axis) at a given
depth (vertical axis). The solid curve represents percentage of surface area
(readings at the top horizontal axis) above a certain depth (vertical axis).

C. Hair-surface interaction

In Fig.(5) only 20 intervals were used for sake of clarity but,
in order to simulate the overall hair patch interaction with the
surface in Fig.(4), N = 256 equally spaced intervals Ii =

[si−1 si], where si−1 < si, 0µm = s0, and sN = 5.3µm, will
be used. The surface will now be supposed to assume only
discrete values si.

Consider a system of coordinates where the z-axis is normal
to the (mean) surface and points towards the hair patch. Set
the origin at the surface absolute minimum. Let every hair
base be at z = zb, for an undeformed hair the tip would be at
z0 = zb − h0, where h0 = l sin(θ0) as before.

Consider a situation where the patch is close enough to the
surface so that z0 = sj for some j. Clearly, every hair facing
si with i > j will be in compression. A priori, nothing can
be said for hairs facing si with i < j since it depends on the
history of hairs; some hairs might in fact be stretching out
reaching depths below the level z0.

Let’s consider an initial situation where no contact is made,
i.e. the hair patch is very far from the surface. Then the hair
patch is (slowly) lowered until some hairs start making contact,
i.e. z0 = sN . If z0 is monotonically decreased down to a
certain level, say z0 = sj1 , contact will be made for i > j1
but not for i < j1.

If z0 is now brought to a slightly higher level, say sj0 with
j0 > j1 then all the hairs facing si such that j0 < i < j1 will
be in a stretching condition. Slightly here means that maximum
stretching δmax should not be exceeded.

Hairs contacting the level sj1 will be subject to the highest
amount of stretching. If we keep increasing z0, hairs in contact
with sj1 will reach maximum stretching δmax, and eventually
break contact, exactly when z0 − sj1 = δmax.

The previous example argues that there exists a level z1
such that z0 − δmax ≤ z1 ≤ z0 and that for a level si:

if si > z0 : hairs are in contact (compression)
if z1 < si < z0 : hairs are in contact (tension)
if si < z1 : no contact is made

As for the dynamics of z1, as z0 slowly varies in discrete
time tn, starting from the initial condition z1 = z0 the
following is easily derived:

if @ tn−1 then @ tn
z1 = z0 and ż0 < 0 z1 = z0

z1 = z0 − δmax and ż0 > 0 z1 = z0 − δmax

otherwise z1 = const.

(5)

where ż0 is the time derivative of z0 and z1 = const means
that z1(tn) = z1(tn−1).

At any time tn and at any height si such that si ≥ z1,
contact is made. The force Fi of a single hair making contact
with si can be found by Eq.(3) where h = h0 + z0 − si.

The number of hairs (per unit area) ni in contact with si

can be derived by the height distribution, as in Fig.(5).
The total pressure, at any time, can be computed as:

Ptot =
N∑

i=i1

ni Fi (6)

where i1 is the index for which si1 = z1.
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Fig. 6. Simulated push-in/pull-off cycle. Adhesive pressure is plotted versus
z0 (related to the distance between hair patch and minimum surface level) for
surface roughness of 1µm, 5µm, 10µm, and 15µm. For each curve a large
amout of hysteresis arises (the bottom flat part is common to all curves).

Simulation results, shown in Fig.(6), of adhesive pressure
versus z0 for push-in/pull-off cycles reveal, as expected, a large
amount of hysteresis. MATLAB was used to implement the
method previously described. Polyurethane cylindrical hairs,
60µm long, with 100nm radius, with 200nN adhesive force
at the tip, forming a π/6 angle with the surface have been
modelled. The AFM image shown in Fig.(4) was used as a
random 5µm rough test surface. By re-scaling, the other 1µm,
10µm, and 15µm rough surfaces were also obtained.

Clearly, Fig.(6) shows how roughness influences adhesion
and in particular allows, for a given roughness, to estimate
pull-off forces, i.e. maxima of the curves. Although data
for a specific surface were used, results are quite general.
Similar results can be found in [7], although hysteresis is not
mentioned, where a Gaussian height distribution was assumed
and elastic energy was considered instead of elastic forces.

Different surfaces can thus be considered equivalent when
their height distribution is similar enough since that is all
that is needed for computing pull-off forces. A statistical
knowledge of height distribution will also allow estimating
adhesion for a given hair-like nanostructure.

III. FABRICATION OF NANO HAIRS

Synthetic hair fabrication begins with a negative mold.
Alumina oxide self-assembly nanopore membrane (Anodisc,
Whatman Inc.) with pores of 0.2µm diameter, 60µm length,
and 109/cm2 pore density is placed on an adhesive surface
(Gel-Pak 8x, Gel-Pak Inc.) to create a seal on one end of the
alumina membrane pores.

Evacuation of the membrane pores occurs as the sample is
brought under vacuum, and liquid polyurethane (TC-882, BJB
Enterprises) is applied to the exposed membrane surface.

The sample is then returned to atmospheric pressure; mem-
brane pores remain under vacuum due to adhesive material
and polyurethane seals. This pressure gradient is relieved
as atmospheric pressure presses liquid polyurethane into the
evacuated pores, and the assembly is allowed to cure.

Fig. 7. Scanning electron microscope (SEM) image of synthetic 60µm long
polyurethane hairs.

Desired hair morphology is realized through a micro-
polishing process, which allows variation in hair length,
sample planarity, and hair-tip roughness. NaOH selectively
etches the alumina oxide membrane from around the cured
polyurethane, and hair-like polyurethane structures remain. A
final cleaning step occurs in a sonic water bath to remove
remnant alumina oxide and hair debris. Fig.(7) depicts an
SEM of a 1.33cm2 patch of hairs created with these methods.
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