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1.   Introduction 

Small legged robots have unique potential for widespread application in search 
and rescue, hazardous exploration, battlefield reconnaissance, and almost any 
remote, inaccessible or dangerous situation not reachable by humans. Dynamic 
running robots have used a variety of steering means, including differential 
velocity drive [1][2] and actively changing leg kinematics [3][4]. Previous 
robots have also used tails for various functions, such as turning in an aquatic 
environment [5], active pitch control [6][7], or stabilization during climbing [8]. 
The robot discussed here uses a tail to produce a turn on rough or flat ground. 
This paper examines the way in which this is done, through the use of angular 
momentum exchange and internal impacts that generate a turning impulse.  

2.   Description of Robot and Model 

 
2.1 The TAYLRoACH Robot 
The TAYLRoACH (Tail Actuated Yaw Locomotion RoACH) is a 45 gram 
robot that features three 7 mm brushed DC motors, two which independently 
control a set of 3 legs on one side of the robot. It is an evolution of the 
OctoRoACH platform [2], with a similar configuration. TAYLRoACH is also 
equipped with a 4 gram, 11.5 cm tail, driven by a custom gearbox and the third 
DC motor. This gives the tail a moment of inertia of 5.3x10-5 kg-m2 about its 
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