
Cooperative Control and Modeling for Narrow Passage
Traversal with an Ornithopter MAV and Lightweight Ground

Station

Ryan C. Julian
Department of EECS

Univ. of California, Berkeley
Berkeley, CA 94720

ryanjulian@berkeley.edu

Cameron J. Rose
Department of EECS

Univ. of California, Berkeley
Berkeley, CA 94720

c_rose@eecs.berkeley.edu

Humphrey Hu
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
humhu@cmu.edu

Ronald S. Fearing
Department of EECS

Univ. of California, Berkeley
Berkeley, CA 94720

ronf@eecs.berkeley.edu

ABSTRACT
The power, size, and weight constraints of micro air vehicles
(MAVs) limit their on-board sensing and computational re-
sources. Ground vehicles have less mobility than MAVs,
but relaxed size constraints, and typically more computing
power. These specializations present many opportunities
for robot-robot cooperation. In this work, we demonstrate
cooperative target-seeking between a 13 gram ornithopter
MAV and a lightweight ground station using computer vi-
sion. We develop models for the ornithopter, ground station,
and cooperative system dynamics. We determine model pa-
rameters of the real systems through experimental system
identification. Finally, we verify those models using experi-
ments on narrow passage traversal, and arrive at a coopera-
tive system model which accurately predicts the backwards-
reachable region for successfully negotiating ornithopter flight
through narrow passages.

We also introduce a new ornithopter MAV, the 13 gram
H2Bird. It features clap and fling wings, improves upon
previous designs by utilizing a carbon fiber airframe, tail ro-
tor, and elevator, and carries a 2.8 gram payload. We aug-
ment the ornithopter’s built-in gyroscope-based control with
a lightweight ground station, which has power and weight
requirements appropriate for deployment on ground vehi-
cles with 10 gram payloads. The ground station provides
heading estimates to the ornithopter by running a real-time
motion tracking algorithm over a live video stream.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous Vehicles; I.2.9 [Robotics]:
Distributed Artificial Intelligence—Multiagent Systems; I.2.9
[Robotics]: Vision and Scene Understanding—Motion

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: H2Bird ornithopter MAV

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
AAMAS proceedings, multiagent systems, cooperative con-
trol, particle filter, micro air vehicle, ground station, vi-
sual servoing, pose estimation, flapping wing, ornithopter,
biomimetic

1. INTRODUCTION
Power, size, and weight constraints on 10 gram scale mi-

cro air vehicles (MAVs) significantly limit their sensing and
computational capabilities. MAVs can execute only low-
complexity control and state estimation algorithms in real-
time. The constraints on flapping-wing MAVs are even more
restrictive. Although they demonstrate safety and noise pro-
files superior to those of rotorcraft MAVs, this comes at the
expense of reduced payload.



The non-linear dynamics of flapping-wing flight compound
these constraints [4][12]. Much past research on flapping-
wing MAVs focuses on overcoming the difficulties of con-
trolling and modeling flapping-wing vehicles in the face of
this non-linearity [9]. Common approaches to simplify these
dynamic models include averaging over the wing-beat pe-
riod [4][25], and using linear, low-dimensional models to pre-
dict flight behavior [26]. These advances led to the devel-
opment of high-performance platforms such as the sub-15
gram DelFly, described by deCroon et al. [5].

Many control laws, such as periodic forcing and other con-
trol methods described by [7][15][19], require powerful on-
board computing. In this work, we develop a simpler, less
computationally-intensive method of control for negotiating
narrow passages, by exploiting cooperation between special-
ized robotic agents.

In contrast to flight control, there is considerably less
previous work on guidance and navigation of flapping-wing
MAVs. Baek demonstrated altitude control with an external
camera [2]. de Croon et al. demonstrated obstacle avoid-
ance with an onboard camera and offboard processing [6].
Baek et al. provide one of the few examples of completely
autonomous target seeking for vehicles at the sub-20 gram
scale [3].

There also exists a body of work on the guidance and con-
trol of fixed- and rotary-wing MAV platforms, but many of
these methods make extensive use of GPS or motion cap-
ture systems [14][16]. Indoors, using GPS to estimate the
pose of an MAV is unreliable, and motion capture requires
extensive and stationary modification of the environment.

The literature on cooperative control of MAVs is similarly
limited to larger vehicles or analytical explorations. Hyams
et al., Jung et al. and Nebot et al. all demonstrated coop-
erative visual servoing for heterogeneous UGVs [11][13][22].
Luo, et al. and Mehta, et al. analyze UAV-UGV coop-
eration from a modeling perspective [20][21]. Rudol et al.
demonstrated a similar cooperative visual servoing system
with UGVs and MAVs [24], but the vehicles used were orders
of magnitude larger than the lightweight systems we target,
and so were able to take advantage of high-performance pro-
cessors and specialized cameras. Stirling et al. describe a
method for cooperation amongst quadrotor MAVs to navi-
gate an indoor environment [27]. Stationary MAVs provide
external sensing for navigation through the environment,
and the network can be extended by using the exploring
MAVs for sensing in undiscovered areas. Their implementa-
tion relies solely on local sensing, although our size range re-
quires that the actual environment sensing be external to the
MAV. Additionally, they do not consider time constraints in
their planning, whereas our MAV has a minimum forward
speed and turning radius. The small size of lightweight air
and ground vehicles necessitates specialization, but it also
pays dividends in agility. A group of specialized hetero-
geneous, lightweight robots can navigate more challenging
terrains and interact with their environments in ways that
larger, monolithic vehicles cannot. Despite this advantage,
in order to collectively equal the sensing and computational
capabilities of larger robots, small robots will have to in-
teract so that multiple robots can benefit from the special-
ized capabilities of cooperating vehicles. In this paper we
consider both experimentally, and in simulation, the perfor-
mance of the externally-directed ornithopter to demonstrate
how millirobotic system can benefit from cooperation.

Wings

ImageProc

Elevator servo

Tail elevator

Tail prop

Figure 2: H2Bird ornithopter with attitude control
axes and labeled control surfaces.

2. ROBOTIC AND VISION PLATFORMS
We develop a new flapping-winged MAV, the H2Bird, and

ground station. We use these systems to cooperatively nav-
igate through a narrow passage, by sensing the position of
the MAV and the goal using the ground station.

2.1 H2Bird Ornithopter
To explore these cooperative control concepts, we designed

a new flapping-wing MAV, known as the H2Bird (Figure 1).
Built around the Silverlit i-Bird RC flyer power train and
clap-fling wings1, the H2Bird has a wingspan of 26.5 cm
and a flight weight of 13 grams. A tail propeller and servo-
controlled tail elevator provide control in the yaw and pitch
axes (Figure 2). The on-board ImageProc 2.42 controller
includes a 40 MIPS microprocessor, 6 DOF IMU, IEEE
802.15.4 radio, VGA camera, and motor drivers, all pow-
ered by a 90 mAh lithium polymer battery. In routine flight,
the H2Bird averages 1.2 m/s ground speed, and operates for
approximately 10 minutes.

2.2 Ground Station Computer Vision Platform
Cooperative behavior is a promising strategy for autonomous

navigation in unexplored and unstructured environments.
To operate in these environments, a cooperative system must
be fully mobile, not tied to a static ground station or mo-
tion capture laboratory. To demonstrate the feasibility of
this approach, we designed our ground station to conform
to the power and weight constraints of highly mobile mil-
lirobotic ground vehicles, such as OctoRoACH, which can
traverse rough terrains with speed and agility [23].

Rather than power-intensive PC processors, we used the
ARM-based BeagleBoard single-board computer as a ref-
erence computation platform. The BeagleBoard consumes
approximately one watt while running our computer vision
and control algorithms. It uses the same processor as pop-
ular sub-10 gram processor modules–such as the Gumstix
Overo and LogicPD Torpedo–which are light enough for de-
ployment on lightweight ground vehicles. We pair the Bea-

1Silverlit Toys Manufactory Ltd.: i-Bird RC Flyer
http://www.silverlit-flyingclub.com/wingsmaster/
2ImageProc 2.4:
https://github.com/biomimetics/imageproc pcb

http://www.silverlit-flyingclub.com/wingsmaster/
https://github.com/biomimetics/imageproc_pcb


Camera Beagle 
Board Radio MCU Flight 

Dynamics 

Camera Frame 
Position Desired 

Heading 

Heading 
Error 

Actuator 
Input 

Gyro Estimated 
Heading 

Ground Station H2Bird 

Pose 

Figure 3: Overview of the cooperative control sys-
tem.

gleBoard with an off-the-shelf consumer USB web camera,
for similar image quality and resolution to the miniature
camera modules available at millirobot scale. The Beagle-
Board communicates with the H2Bird via a USB radio mod-
ule which implements the IEEE 802.15.4 wireless standard.

Our ground station software is based on the Ubuntu Linux3

distribution modified with a custom version of the Linux
kernel. We use the Python4 programming language for con-
trol, robot communication, and telemetry, and the OpenCV5

computer vision libraries for image capture and processing.
All software and hardware we developed for this system is
open source and freely available under a BSD license6.

3. SYSTEM CONCEPT AND ALGORITHMS
Our system combines both the sensing of the H2Bird and

the execution of the desired headings to steer the robot to-
wards the goal. The sensing is performed on the ground
station using frame differencing and a particle filter. The
H2Bird steers to the heading directed by the ground station
using a quaternion-based proportional-integral-derivative con-
troller.

3.1 Ornithopter Attitude Control
We implement attitude estimation and control of the H2Bird

on-board to achieve high sample-rate attitude control. We
estimate the vehicle pose by integrating the IMU, and use
a proportional-integral-derivative (PID) controller to feed
these estimates back to the attitude control flight surfaces
(Figures 3 and 4).

The high pitch angles at which flapping-wing MAVs reg-
ularly operate distinguish them from other MAVs. Baek
demonstrated control on a similar vehicle using PID and
an Euler angle parameterization of orientation [3]. How-
ever, Euler angle parameterizations of vehicle orientation
suffer from singularities around high pitch angles. So we
instead represent the vehicle orientation with quaternions.
The quaternion representation allows us to represent relative
body and world coordinate angular displacements compactly
with quaternion multiplication [10]. Our implementation of
quaternion-based control is similar to Knoebe’s [17]: Given
a reference pose represented in quaternion form qr, we define
the error as the rotation qe required to reach the reference

3Ubuntu: Canonical Ltd., http://www.ubuntu.com/
4Python: Python Software Foundation,
http://www.python.org/
5OpenCV: Willow Garage,
http://opencv.willowgarage.com/wiki/
6Biomimetic Millisystems Laboratory on GitHub,
https://github.com/biomimetics

pose from the estimated pose q:

qe = q′ · qr (1)

= qe,w + qe,x î+ qe,y ĵ + qe,z k̂

We then convert this error quaternion to an angle axis rep-
resentation and use it as input to the PID controller (Equa-
tions 2 and 3). We perform these calculations on-board,
with trigonometric lookup tables for real-time performance.

Qe = α · qe/ sin(α/2) (2)

= αx î+ αy ĵ + αz k̂

α = 2 arccos(qe,w) (3)

3.2 Ground Station Pose Estimation
The ground station performs simple two-dimensional pose

estimation on H2Bird using a particle filter-based motion
tracking algorithm [28]. This pose estimate is the feedback
input to the cooperative visual servoing feedback loop, which
is represented as the outermost feedback paths on the block
diagrams in Figures 3 and 4. We limit our pose estimation
approach to monocular two-dimensional object tracking in
pixel space. This allows us to perform real-time video track-
ing using the modest computational resources available on
the ground station, and similarly, millirobotic ground vehi-
cles.

We initialize the particles uniformly across the frame be-
fore tracking begins. To improve numerical stability, we
normalize the weights of all particles on each iteration, and
only resample the particle population when the mean parti-
cle weight falls below a pre-determined threshold.

3.2.1 Motion Model
Our motion model (Equation 4) is a simple Gaussian tran-

sition centered around each particle’s current position, aug-
mented with an ε-random uniform sampling strategy [8].
The sampling law is as follows:

x
[i]
t ∼

{
N (x

[i]
t−1,Σ), with probability 1− ε

U(0, b), with probability ε
(4)

In Equation 4, x
[i]
t is the position of the ith particle in

640x480 pixel space at time t, Σ is a chosen covariance ma-
trix, and b is a vector of the bounds of the pixel space. The
sampling method requires that, with probability ε, the par-
ticle filter will choose a pixel from a uniform distribution of
all of the pixels in the pixel space for the location of the ith

particle. The ε-random uniform transitions increase track-
ing robustness, by forcing the filter to always sample broadly
across the pixel space. This helps prevent overconfidence
and collapse, and decreases reacquisition delay.

In the experiments, we used a diagonal covariance matrix
with a variance of 256, and an ε of 0.3. We find the Gaussian
transition model is sufficient for tracking motion in which
frame-to-frame position changes are relatively small.

3.2.2 Emission Model
The emission model weights the particles’ likelihood of

containing a pixel location that is part of the H2Bird [8].
The particles with higher weights have a greater probabil-
ity of being resampled. Our emission model implements a
sampling approach to motion tracking via näıve background

http://www.ubuntu.com/
http://www.python.org/
http://opencv.willowgarage.com/wiki/
https://github.com/biomimetics


P-D 
Controller

Pose

Angular 
position

Desired 
Heading

PID
Controller

Camera

Window 
position

Internal Control Loop – 300Hz

External Control Loop – 10Hz

Pose 
Estimation

Translational 
Position

-
Attitude 

Estimation

Ornithopter
Dynamics

Figure 4: Overall block diagram of the cooperative
control system.

subtraction, e.g. frame differencing [1]:

w
[i]
t = 1 + ‖f0(x

[i]
t )− ft(x[i]t )‖2 (5)

On each iteration, the system provides the emission model
with f0, the frame representing the background, and ft, the
most recent frame captured. The model assigns a weight

w
[i]
t to each particle x

[i]
t , proportional to the color distance

in RGB space between the pixels of f0 and ft at the location

x
[i]
t . Hence, particles are more likely to be resampled in

regions of the image which are dissimilar in color from the
background.

We assumed that neither the bird, nor any other moving
object, were visible in the frame on system start. The first
frame was captured by the system, and used as the back-
ground frame f0 for every iteration of the particle filter.

Näıve background subtraction is brittle to changes in a
scene over time [1]. However, we find it very efficient and
sufficiently reliable for the short time spans–less than five
seconds–necessary for H2Bird to successfully negotiate nar-
row openings. Calculating f0 using a more sophisticated
background extraction would retain the underlying motion
tracking features of the filter, while providing the algorithm
with a more robust way of differentiating subject motion
from the background.

3.3 Cooperative Visual Servoing
The ground station guides the H2Bird by setting the ref-

erence attitude of its on-board attitude controller (Figures 3
and 4). Using the estimate of 2D vehicle pose from the pose
estimation algorithm, the ground station calculates an alti-
tude error and horizontal error between the H2Bird and the
goal. The ground station then uses a PID control law to cal-
culate a new reference pitch and yaw, which it sends to the
H2Bird over radio. We apply a fixed-lag window to the PID
controller integral term to prevent wind-up while we launch
the ornithopter. We tuned the proportional and derivative
terms of this outer controller to dampen the overshoot and
drift caused by the cooperative system latency.

4. SYSTEM MODEL
We developed models using system identification concepts

to simulate the behaviors of the H2Bird and the ground sta-
tion. We use these models to determine the set of initial
conditions that are most likely to result in successful win-
dow traversal.

4.1 Ornithopter Attitude Control

We divide our model of the vehicle dynamics into two
independent models for simplicity. We develop one model
for yaw motion, and another for translational motion.

We approximate the yaw dynamics of the ornithopter with
a one-dimensional model to limit complexity, and because it
matches our physical implementation. The H2Bird uses an
on-board PID controller to follow the heading sent by the
ground station, and the yaw dynamics are largely decoupled
from the rest of the fight dynamics. Thus, the yaw response
θ is modeled as:

θ(s) =
K

1 +Rs
u(s) (6)

with constants K and R from system identification, reference
heading angle u(s), and output θ(s), the physical heading
angle of the H2Bird. To model the translational position of
the ornithopter, we use a form of Dubin’s car model [18]:

ẋ = ussin(θ)

ẏ = uscos(θ)

θ̇ = u

u ∈ U = [− tanφmax, tanφmax]

(7)

In the car model, φmax is the maximum steering angle and
us is the forward speed. Here, the angular position θ is an
input rather than a state. The overall motion of the system
can be modeled as shown in Equation 7, where θ is the time-
domain output of Equation 6, θ(t).

4.2 Ground Station Pose Estimation
Our model of the ground station includes models for both

the camera and the pose estimation computation. Referring
to Figure 4, the camera model experiences a delay in se-
ries with the path between the “Camera” and “Ornithopter
Dynamics” blocks. The pose estimation algorithm experi-
ences latency in the pose estimation block when updating
the particle filter, and during the transmission of the desired
heading from the external PID controller to the internal PID
controller on the robot, via radio.

In addition to the latencies in the system, we model the
viewing angle of the camera as a pixel map from one edge
of a 63◦ viewing triangle to the other. The camera has an
image width of 640 pixels. We calculate the desired heading
angle in degrees, for a given distance from the camera:

Desired heading =
640 px

2d tan 63◦
2

× 63◦

640 px
× x (8)

where d is the distance between the ornithopter and the
camera, and x is the horizontal position of the robot rela-
tive to the center of the window in meters. Note that the
pose estimation algorithm does not determine the depth of
the robot, which can be problematic for control algorithms.
For example, if the ornithopter remains at a constant hor-
izontal distance from the window, but moves closer to the
camera, the ground station’s directed heading steadily in-
creases, even though the robot has not actually moved far-
ther from the window. These problems are most severe in
areas close to the camera.

5. EXPERIMENTS AND RESULTS
To bound the performance of the cooperative control sys-

tem, we determine the feasible set of initial conditions that



−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [sec]

Y
a
w

 R
o
ta

ti
o
n
 [

ra
d
]

 

 

Reference Yaw
Measured Yaw
Fitted Model

Figure 5: H2Bird step response

result in successful narrow passage traversal, using both an-
alytical and empirical methods. We then conduct experi-
ments to validate this model.

5.1 System Identification
We determined the turning speed and turning radius of

the H2Bird experimentally, by measuring the response of
the system to a step input of a clockwise 90◦ turn. We
measured the response of the system by recording the at-
titude estimates calculated by the ornithopter using its on-
board gyroscope. We then used MATLAB7 to fit a simple
low-order model to the yaw step response, as discussed in
Section 4.1:

θ(s) =
0.95

1 + 0.62s
u(s) (9)

We calculated the step response rise time to be 1.4 seconds
(Figure 5). The H2Bird flies at an average forward velocity
of 1.2 m/s, thus we estimate the minimum turning radius of
the robot to be 1.07 meters:

Minimum radius =
360◦ × Rise time× Flight speed

Final angle× 2π

=
360◦ × 1.4s× 1.2m

s

90◦ × 2 ∗ π = 1.07m

(10)

In the experiments, we choose a flight speed lower than the
maximum speed of the ornithopter, to facilitate more robust
tracking.

To measure the capture latency of the camera, we wrote
a simple test application which draws a large colored rect-
angle on the ground station’s screen, then uses the camera
to detect the changes in the rectangle’s color. By noting the
value of the system timer just before the rectangle changes
color and just after the camera detects the change, the appli-
cation records the estimate of the video capture pipeline la-
tency. We averaged the result over several hundred rapidly-
executed trials to determine the capture latency we used to
model the system.

7The MathWorks, Inc. Matlab:
http://www.mathworks.com/products/matlab/

To compute the particle filter and controller latency, we
again used system timers to determine the average time be-
tween the start and end of computation. We measured a
camera capture latency of 40 ms, pose estimation computa-
tion latency of 12.5 ms, and radio transmission latency of 25
ms.

5.2 Model Verification by Simulation
We determine the backwards reachable set of initial states

for successful narrow passage traversal both geometrically
and using Monte Carlo simulation. We also simulate the
motion of the ornithopter beginning from various position
and angular heading initial conditions. We use our model,
as determined through system identification and described
in Section 5.1, using the cooperative control method in Fig-
ure 4. The results are presented in Figures 6 and 7.

In Figure 6, the blue lines represent the camera viewing
triangle, the black line represents the window, and the black
dot represents the camera. For the initial conditions, we
used a uniform grid of 5 cm increments within the camera
viewing region, and an initial angular heading perpendicular
to the window plane. A success, or feasible initial condition,
consists of a path that intersects the window at some point
and does not leave the camera viewing triangle, and is indi-
cated in green. The geometrically infeasible region is com-
puted using the minimum turning radius and the geometry
of the camera’s field-of-view, and is indicated in blue. The
region in red is geometrically feasible, but is infeasible as a
result of the cooperative control simulation dynamics.

We conducted a Monte Carlo simulation to determine the
probability of successful window navigation for a given point
within the testing area. Using this information we can make
assumptions about ideal starting positions for cooperative
control. For each point in a 10 cm grid within the cam-
era viewing triangle, we simulated 40 trials using an initial
heading randomly sampled from a uniform distribution be-
tween -90◦ and 90◦, with the 0◦ heading perpendicular to
the window. Figure 7 depicts the results of the Monte Carlo
simulation.

As shown in the figure, there is a region in the middle
where we had success in all 40 of the trials, which is a subset
of the feasible region presented in Figure 6. Along the edges
of the camera viewing triangle, however, the probability of
success decreases.

5.3 Experiments
We tested our cooperative visual servoing system with

a simple target seeking experiment: the H2Bird must fly
through a specified obstacle, in this case, a wooden frame
we used to simulate a window. The ground station provides
remote guidance to H2Bird to allow it to navigate through
the window. A motion capture system records ground truth
data. Our setup is shown in Figure 8.

Each trial included the following steps (Figure 9):

(1,2): We identify the window to the ground station by
dragging a bounding box over it using a mouse.

(3): We release the H2Bird by hand, in view of the camera
at the desired starting grid point.

(4-6): The H2Bird attempts to fly through the window,
with remote guidance from the ground station.

http://www.mathworks.com/products/matlab/


−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x [meters]

y
 [

m
et

er
s]

 

 

 Feasible Region

 Geometric and Simulation Infeasible Region

 Simulation Infeasible Region

Figure 6: Plot of backwards reachable set for suc-
cessful window traversal.

Figure 7: Probability of success, resulting from a
Monte Carlo simulation of the reachable set model,
for all starting locations.

0.66 m

0.94 m

3.66 m

Figure 8: Conceptual sketch of experimental setup.

Every 5 trials, we replaced the ornithopter’s battery with
a fully charged one.

We collected 80 trials over a variety of starting positions.
Our goal for these experiments was to verify the model de-
scribed in Section 4, so we conducted 60 of the 80 trials in a
grid along the edges of the camera view plane, and in 5 cm
increments from the window plane, in an effort to determine
the success rate on the edges of the testing space. We con-
ducted 20 additional trials directly in front of the camera to
determine the success rate near the center of viewing plane.

The H2Bird achieved a success rate of 80% for initial con-
ditions in the middle of the testing space and in front of
the camera. As the H2Bird moved towards the edges of the
feasible region in Figure 11, the success rate diminished to
50%.

The lower success rate on the edges of the camera frame
can be explained by several factors. On the edges of the
viewing triangle, the yaw control inputs can be large in mag-
nitude. Since the control algorithm has no notion of depth,
it applies the same control input whether the ornithopter
is close to the camera, where small changes in heading are
adequate, or far away from the camera, where large changes
in heading are necessary. Due to this phenomenon, the con-
troller often over or under-compensates in certain regions,
depending upon the PID tuning and the distance from the
camera. Tracking noise and variations in the H2Bird hand
launch can cause the system to respond differently for simi-
lar initial conditions, or to fail completely. In addition, the
H2Bird performance is affected by battery power variation.

The results of our experimental trials verify the results of
the Monte Carlo simulation of our model. The trials that we
conducted in Figure 10 correspond to the circled region in
Figure 7. The 80% success rate that we measured in the ex-
periments corroborates our calculated probability of success
of approximately 80%, demonstrated by the Monte Carlo
simulation. Additionally, the diminished success rate of 50%
near the edges of the viewing triangle that we determined
through experimentation supports the reduced probability
of success calculated by the simulation.

Our experimental data validates Figure 6, as there are no
successes within the geometrically infeasible region. There
are few successes near the boundary of the infeasible region
determined in simulation. While there are successes along
the boundary of the camera viewing triangle, there are also
many failures.



−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

x [meters]

 

y
 [

m
et

er
s]

 Success

 Failure

Figure 10: Plot of camera field of view and ex-
perimental trials within the feasible region.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

x [meters]

 

y
 [

m
et

er
s]

 Success

 Failure

Figure 11: Plot of camera field-of-view and
perimeter experimental trials overlayed.

1 2

3 4

5 6

Figure 9: Frame sequence from video feed used for
tracking. Particles are shown in red, the current
state estimate as a yellow circle, the window bound-
ing box in blue, and the target location as a green
circle.

6. CONCLUSIONS AND FUTURE WORK

We have demonstrated cooperative guidance of a 13 gram
flapping-wing MAV with a lightweight base station. In addi-
tion, we developed a model of the cooperative system using
system identification methods on the individual system ca-
pabilities, and composing it with known system interactions.
The corroboration between our simulated and experimental
results shows that our simplified modeling approach is useful
for predicting the performance of cooperative systems at low
computational cost. Our model could also be used to deter-
mine when to begin control with high probability of success,
even though we lack information about the complete pose
of the MAV.

We intend to further explore the benefits and limitations
of collaboration in unstructured environments by deploying
our base station on millirobotic ground vehicles. The effec-
tiveness of our modeling approach, when applied to more
complex systems with more interactions and agents is also
a future area of interest.

7. ACKNOWLEDGMENTS
The authors thank Fernando Garcia Bermudez for his as-

sistance with the Vicon motion capture system, Andrew
Pullin for his help with robot photography, and the members
of the Biomimetic Millisystems Laboratory and the EECS
community at the University of California, Berkeley for their
advice and support. This material is based upon work sup-
ported by the U.S. Army Research Laboratory under the
Micro Autonomous Systems and Technology Collaborative
Technology Alliance, and the National Science Foundation
under Grant No. IIS-0931463.

8. REFERENCES
[1] M. A. R. Ahad. Computer Vision and Action

Recognition: A Guide for Image Processing and



Computer Vision Community for Action
Understanding. Atlantis Publishing Corporation, 2011.

[2] S. Baek and R. Fearing. Flight forces and altitude
regulation of 12 gram i-bird. In IEEE RAS and EMBS
Int.l Conf. on Biomedical Robotics and
Biomechatronics, pages 454–460, Sept. 2010.

[3] S. Baek, F. Garcia Bermudez, and R. Fearing. Flight
control for target seeking by 13 gram ornithopter. In
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 2674–2681, Sept. 2011.

[4] B. Cheng and X. Deng. Translational and rotational
damping of flapping flight and its dynamics and
stability at hovering. IEEE Trans. on Robotics,
27(5):849–864, 2011.

[5] G. de Croon, K. de Clercq, R. Ruijsink, B. Remes,
and C. de Wagter. Design, aerodynamics, and
vision-based control of the DelFly. In Int. Journal of
Micro Air Vehicles, volume 1, pages 71–97, June 2009.

[6] G. de Croon, E. de Weerdt, C. De Wagter, B. Remes,
and R. Ruijsink. The appearance variation cue for
obstacle avoidance. IEEE Trans. on Robotics,
28(2):529–534, April 2012.

[7] D. Doman, M. Oppenheimer, and D. Sigthorsson.
Dynamics and control of a minimally actuated
biomimetic vehicle. Part 1: Aerodynamic model. In
AIAA Guidance, Navigation, and Control, 2009.

[8] A. Doucet, J. De Freitas, and N. Gordon. Sequential
Monte Carlo Methods in Practice. New York:
Springer, 2001.

[9] D. Floreano, J. Zufferey, M. Srinivasan, and
C. Ellington. Flying Insects and Robots. Springer,
2009.

[10] W. Hamilton and W. Hamilton. Elements of
quaternions. Longmans, Green, & co., 1866.

[11] J. Hyams, M. Powell, and R. Murphy. Cooperative
navigation of micro-rovers using color segmentation.
In IEEE Int. Symp. on Computational Intelligence in
Robotics and Automation, pages 195–201, 1999.

[12] J. S. H. Imraan Faruque. Dipteran insect flight
dynamics. Part 2: Lateral-directional motion about
hover. Journal of Theoretical Biology, 265(3):306–313,
2010.

[13] D. Jung, J. Heinzmann, and A. Zelinksy. Range and
pose estimation for visual servoing of a mobile robot.
In IEEE Int. Conf. on Robotics and Automation,
volume 2, pages 1226–1231 vol.2, May 1998.

[14] T. Kanade, O. Amidi, and Q. Ke. Real-time and 3d
vision for autonomous small and micro air vehicles. In
IEEE Conf. on Decision and Control, December 2004.

[15] Z. Khan and S. Agrawal. Control of longitudinal flight
dynamics of a flapping-wing micro air vehicle using
time-averaged model and differential flatness based
controller. In American Control Conf., pages 5284
–5289, July 2007.

[16] D. B. Kingston and A. W. Beard. Real-time attitude
and position estimation for small UAVs using low-cost
sensors. In AIAA Unmanned Unlimited Technical
Conf., Workshop and Exhibit, September 2004.

[17] N. Knoebe and T. McLain. Adaptive quaternion
control of a miniature tailsitter UAV. In American
Control Conference, pages 2340–2345, June 2008.

[18] S. M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[19] N. E. Leonard and P. Krishnaprasad. Averaging for
attitude control and motion planning. In IEEE Conf.
on Decision and Control, pages 3098–3104, 1993.

[20] C. Luo, A. Espinosa, A. De Gloria, and R. Sgherri.
Air-ground multi-agent robot team coordination. In
IEEE Int. Conf. on Robotics and Automation, pages
6588–6591, May 2011.

[21] S. Mehta, G. Hu, N. Gans, and W. Dixon. Adaptive
vision-based collaborative tracking control of an UGV
via a moving airborne camera: A daisy chaining
approach. In IEEE Conf. on Decision and Control,
pages 3867–3872, Dec. 2006.

[22] P. Nebot, D. Gomez, and E. Cervera. Agents for
cooperative heterogeneous mobile robotics: a case
study. In IEEE Int. Conf. on Systems, Man and
Cybernetics, volume 1, pages 557–562 vol.1, Oct. 2003.

[23] A. Pullin, N. Kohut, D. Zarrouk, and R. Fearing.
Dynamic turning of 13 cm robot comparing tail and
differential drive. In IEEE Int. Conf. on Robotics and
Automation, pages 5086 –5093, May 2012.

[24] P. Rudol, M. Wzorek, G. Conte, and P. Doherty.
Micro unmanned aerial vehicle visual servoing for
cooperative indoor exploration. In IEEE Aerospace
Conf., pages 1–10, March 2008.

[25] L. Schenato, X. Deng, and S. Sastry. Flight control
system for a micromechanical flying insect:
Architecture and implementation. In IEEE Int. Conf.
on Robotics and Automation, pages 1641–1646, 2001.

[26] K. S. Shigeoka. Velocity and altitude control of an
ornithopter micro aerial vehicle. Master’s thesis,
University of Utah, 2007.

[27] T. Stirling, J. Roberts, J. Zufferey, and D. Floreano.
Indoor navigation with a swarm of flying robots. In
IEEE Int. Conf. on Robotics and Automation, pages
4641 –4647, may 2012.

[28] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, Cambridge, Mass, 2005.


	1 Introduction
	2 Robotic and Vision Platforms
	2.1 H2Bird Ornithopter
	2.2 Ground Station Computer Vision Platform

	3 System Concept and Algorithms
	3.1 Ornithopter Attitude Control
	3.2 Ground Station Pose Estimation
	3.2.1 Motion Model
	3.2.2 Emission Model

	3.3 Cooperative Visual Servoing

	4 System Model
	4.1 Ornithopter Attitude Control
	4.2 Ground Station Pose Estimation

	5 Experiments and Results
	5.1 System Identification
	5.2 Model Verification by Simulation
	5.3 Experiments

	6 Conclusions and Future Work
	7 Acknowledgments
	8 References

