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Abstract

A linear elastic plane strain model for a cylindrical finger with a
solid core and elastic surface is developed. This model is used to
determine the subsurface strain impulse responses as well as pres-
sure distributions in the contact region for indentation of the cylin-
der by rigid objects with friction. Singular value decomposition is
used to find a reduced basis in which to analyze the shape-from-
strain inversion problem. This decomposition shows that sensor
depth must be small to achieve good shape sensing. However, if
only contact location and applied force magnitude and direction
are required, deep sensors can quickly and easily provide this in-
formation.

1 Introduction

Methods for inversion of tactile sensor data have used the linear
elastic half plane and half space models to determine subsurface
strain fields due to surface contacts. This paper develops a model
specifically for cylindrical geometries and compares the predicted
subsurface strain response to that of the half space model.

In [Fearing 85] it is shown how the linear elastic half space
model can be used to determine contact location, shape, and force
from subsurface normal strain data on a cylindrical finger. One
of the open questions was the effect of the cylindrical geometry
on the subsurface strain. Most recently [Ellis 92] has used a finite
element model to investigate the effect of a cylindrical geometry
on subsurface strain data. Their conclusions, that shape interpre-
tation is difficult due to the high degree of similarity of subsurtace
strain profiles, are supported by this paper.

[Canepa et.al.] describe a neural net approach to inverting
tactile sensor data. They discuss the low pass filtering effect of
the rubber and the resulting limitation on shape discrimination.
They point out that the shapes recognized must be restricted to
those that are represented by low frequencies. This paper specifi-
cally investigates the map from surface pressure to deformed shape
to determine the required frequency response for shape discrimi-
nation.

Previous work on modeling cylindrical elastic bodies
[Bentall 67, Nowell 83, Poritsky 50] has focused on the surface
loading and has not been concerned with the subsurface state of
stress and strain. In these cases the elastic half-space model is
appropriate. In our case we must know both the state for the
material in the contact region at the surface, as well as beneath
the surface, where sensors will be located. For subsurface strain
modeling, a cylindrical model is more appropriate.

We proceed by first determining the solution to the boundary
value problem of an elastic cylinder with a rigid core given the so-
lution to the linear elastic plane problem in polar coordinates This
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Figure 1: Cylinder in Plane Strain

model can be used to find the state of the body given the normal
and tangential load in the contact region. Section 3 investigates
the subsurface strain impulse response that follows directly from
the model. In the next section we show how to determine the
loading in the contact region given its size and the shape of the
indenter in the region by solving the forward problem from inden-
ter to state of the body. The following section investigates the
properties of the solution using singular value decomposition. In
section 6 we describe how sensor data may be inverted to provide
the best estimate for contact location, size, load, and shape.

2 Solution given surface tractions

2.1 Problem statement

We assume that displacements are small and constant in time
and that the rubber is homogeneous and isotropic. Under these
assumptions we can use a linear elastostatic model. Additionally
we make the assumption that the displacement field is indepen-
dent of the axial direction of the cylinder, that is:
Uy = up(r,0) ug = ug(r, 8) u, =0

where u, denotes radial displacement, uy denotes displacement in
the angular direction, and w, denotes axial displacement. These
constitute the plane strain assumption. By making these assump-
tions we require the indentation to be along the length of a long
cylinder.

To solve the elasticity problem we first assume that the sur-
face traction in the radial direction, p(), and the tangential trac-
tion, ¢(#), are known. In section 4 this assumption is removed.
We also assume that the rubber layer is rigidly bonded to the solid
core in the center of the cylinder. We let r, be the radius of the
core and r, be the outer radius. The contact is centered at 8, and



has a total width, in radians, of ,. Referring to Figure 1, the
boundary conditions may be stated as follows:

Ci: 1 = p(0), e = q(8)
Co: 7 = p0)=0, 17,y = ¢q(0)=0
Cs: wu, = 0, ug = 0

where:

(0) = sp(9) full sliding
=1 < psp(0) adhesion

We have used (' to indicate the contact region. In this re-
gion non-zero tractions, both radial and tangential, are exerted
by the indenter on the elastic surface. In Cy, the region outside
the contact on the surface, there are zero tractions. On (35 the
elastic region is bonded to the rigid core. Note that the functions
p(0) and ¢(8) are assumed to be zero outside the contact region.
With these mixed-mixed boundary conditions the problem is well
posed.

2.2 Fourier series decomposition

As we are using linear elasticity to solve this problem we may use
the principle of superposition to sum independent partial solu-
tions. The sum of these partial solutions gives the desired solution.
Since all the partial solutions will be periodic in 8 with period 2,
a fourier series decomposition is natural. Using a trigonometric
fourier series we can write the surface tractions as follows:

T (15, 0) = p(0) = po + D _ pj, cos kO + > pj sin ko

k=1 k=1
Tro(rs,0) = q(0) = qo + Y _ qicos kO + > g;sin ko
k=1 k=1

We desire a solution of the form:

TTT(T7 0) = TTTQ(T) + Z TTCTk(T) cos k@ + Z TTSTk(T) sin k6
k=1 k=1

T0(r,0) = Teoo(r)+ > 7rp (1) coskd + Y 75 (r)sin ko
k=1 k=1

u(r,0) = up(r)+ Z uy (r)coskf + Z uy, (r)sin kg
k=1 k=1

ug(r,0) = wug(r)+ Z ug, () cos ké + Z ug (r)sin kg
k=1 k=1

By solving the elasticity problem for each £ and summing we
solve the complete problem. In this paper we have also computed
the fourier series coefficients for the normal strain, e,,, as ¢.,,, €/,
and e, . In polar coordinates the shear strain can be computed

directly from the shear stress with e,q(r, ) = ing(r, 6).

2.3 Plane-strain solutions for cylindrical co-
ordinates using Airy functions
We use an Airy function in polar coordinates to find the so-

lution that satisfies the 3 basic equations of linear elastostat-
ics: strain-displacement, stress-strain, and the stress equations

of equilibrium. The derivation of the following may be found
in [Sokolnikoff]. [Timoshenko 70] provides an overview of two di-
mensional problems in polar coordinates. Given a function ¢(r,9)

satisfying:
Vig = 0
9% 10 1 02
2 f— _ _— _
Vi or? + ror + r2 00?

then ¢ generates the plane strain solution:

_ 19 10%
Trr = ror r?200?
_ 199 19
o= r2 00 rorod
L = V%, f(z)=L+iM, z=rc"
g(z) = l+im= [ f(n)dy
0¢ )
2uu, = —E—I—(l—a)(lcos@—l—msm@)—l—
aj cosf + a5 sin 0
2uug = —l@—l—(l—a)(—lsin@—l—mcos@)—
r 00

ajsin 4 a3 cos § — wr

Here p is the shear modulus and o is Poisson’s ratio. These
parameters are related to the more well known Young’s modulus,
E, by F =2u(1+ o). The function M is the conjugate harmonic
to L. The details of the derivation {, m, and M can be found in
a standard text covering complex analysis. The following set of
Airy functions, pointed out by [Bogy], will generate the required
set of solutions.

apInr + bor? + cob

(ﬂ—l—blr?’—l—clrlnr) sin 0 + dirf Cf)se
r cos 0

sSin

¢ =
¢ =

¢7’L

(anr™ 4 br ™" + e + dr* ") { sinnf }

cos nd

The above set of Airy functions can be shown to be a com-
plete set of solutions. Given this set we now must solve for the
constants, a, , by, ¢,, d,,, af, a3, and w® given the boundary con-
ditions. We do not give the explicit formulas for these constants,
but instead give the equations for the fourier series coefficients
which are based on these constants.

2.4 Solutions

By substituting in the boundary conditions, the constant coeffi-
cients in the previous equations are solved for each n. It is useful
to define the following:

a= | f=r  4y=L | 7=3-4do

Note that « .3, and ~ are all less than 1.



241 n=0

For n = 0 the following solution is obtained.

[ 248%(=1+5) 0 T
2to?(—140)
TTTOET.; 0 ,}/—2
oo 4 (1-52)
Urg (1) | = | Zu(2to2(-149)) / . [ZS] (1)
ué’o(r) 0 %

(1+8%)(1-5)
L 2u(—2402(1-6))

0

We should point out here that the shear stress and shear
strain at r, due to a constant shear load at r, increase as 7. This
is important to consider when designing rubber coated fingers.
Also we note that ug, () indicates how much rotation occurs about
the axis of the cylinder due to a tangential load. Finally we note
that for incompressible materials where o = % there is no radial
displacement due to a constant load applied normally over the
complete surface of the finger.

242 n=1

For n = 1 the solution is more involved, but simplifies to the
following form (A; and Bj are given in the Appendix):

127“; = Bu(r)er + A(r) (p7 + q1)

= —Bi(r)gi + A(r) (p — ¢5) (2)

243 n>?2

For n > 2 the form of the solution is similar:
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A quick glance at the above solutions reveals that the sine
terms for e,,, the normal strain, and the cosine terms for e,4, the
shear strain, depend only on the sine terms for the normal surface
pressures and the cosine terms for the tangential surface pressures.
This is an important property which has implications for indenter
shape sensing.

3 Impulse and frequency response

It the cylinder is indented with a sharp edge, then the loading
will be distributed over a very small area. In terms of the model
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Figure 2: Surface and subsurface displacements due to a concen-
trated load applied at 45 degrees to the surface. It is assumed that
pg > 1.0. The dashed lines are drawn between the undeformed
and deformed positions. The units are meters. The center of the
cylinder is located far off to the left hand side of the page.

parameters, 8, will be very small. The fourier series coefficients

for such an impulsive load with pressure magnitude )\% applied
at an angle ¢ from the surface normal (assuming no slip) at contact
location 8. are:

A

bPo = gcosqﬁ
A

p. = —cos(kf.)cos ¢
T
A

p;. = —sin(kf,)cos ¢
T
A

do = 5511“1(/5

c A .

g = ;Cos(kec) sin ¢
A .

q, = —sin(kf.)sin ¢

s

To allow comparison with the cylindrical model to the half
plane used in [Fearing 90] we use the same parameters.

83+10'N, & = 05
12.7mm

ILL _=

r, = &.9mm ry, —

Additionally we assume that the sensors are located at radius
r, = 1, + 0.5bmm.

Figure 2 shows the displacement field due to a knife edge
applied at 45 degrees to the surface of the cylinder at . = 0. The
subsurface displacement field makes it immediately clear that a
large degree of spatial frequency filtering is occurring. To get
a better idea of the type of filtering, Figure 3 shows the shear
and normal strain coeflicients, e,,, and e.q,, as they vary with
the index k. This plot is in effect the spatial frequency response
due to the rubber layer. That is, since the frequency spectrum
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Figure 3: Subsurface strain frequency responses for the cylindrical
and half plane models.

1.00 [ ‘ ]
Subsurface Normal ~ -~~~ Half Plane Model
Strain due to Normal —— Cylindrical Model
0.50 Load
)
&
0.00
-0.50
‘ ‘ ‘
1.00 - Subsurface Normal )
Strain due to Tangential
050 Load |
@
&
0.00
-0.50
T
1.00 Subsurface Normal
Strain due to Combined
Normal and Tangential
050 Load
@
&
0.00
-0.50
-3.1 -1.6 0.0 1.6 3.1

0 (radians)

Figure 4: Subsurface normal strain impulse response.
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of the loading was flat, Figure 3 shows the relative effect of each
loading frequency component on the corresponding frequency of
the subsurface strain. We note that e,,, and e,q, drop off to below
10 percent of their maximum value by the 20th coefficient. Due to
this high degree of low pass filtering, the subsurface normal strain,
as shown in Figure 4, does not change perceptibly with contacts
that vary in shape frequencies above the cut-off frequency.

Figures 3 and 4 also show the comparable frequency and im-
pulse response for the plane strain half plane model [Johnson 85,
Fearing 85]. The plots have been normalized to the peak value.
In both figures the response due to normal and tangential load-
ing has been separated to show the relative effect of normal and
tangential loads on the normal and shear strain. The half space
model shows a larger degree of filtering from normal loads the nor-
mal strain given the same rubber thickness as is apparent from
the smaller side lobes in the impulse response and the smaller cut-
off frequency in the frequency response. In figure 4 we see that
the effect of tangential loading on normal strain is similar until
the effect of the cylinder’s curvature becomes apparent at § = .4
radians .

In Figure 3 we see the dominance at low frequencies of the
tangential loading on the shear strain. Whereas the normal strain
due to the normal and tangential loading are just a factor of 2
in comparative magnitude and have a similarly shaped frequency
response, the shear strain is affected by a factor of 3 more by the
tangential load than the normal load and the frequency response
drops off much more sharply.

So far we have only discussed the filtering effects for one set of
radii parameters. Figure 5 shows how the cut-off frequencies and
tangential load influence vary as o = . approaches 1.0. As you
can see, the cut-off frequency increases exponentially. We note,
however, that e,y is filtered to only 10 cycles per revolution when
a 1s as large as 0.85. This indicates that shear strain sensing may
be used as a good indicator of tangential load, but not of contact



shape in the presence of tangential loading.

4 Determining p(f) and ¢(0)

The model developed in the previous section assumed that the
normal and tangential surface stresses were known. If we were con-
sidering only frictionless contacts then the standard Hertz contact
model could be used to determine the parabolic pressure distri-
bution. However if we wish to analyze the influence of a contact
with friction we must determine the combination of tangential
and normal loading that give the same shape of deformation in
the contact region as the indenter.

Since we want to determine p(#) and ¢(8) given an indenter
shape, load, and location we need to invert the model derived in
section 2. Unfortunately these equations do not adapt easily to the
shape and load formulation, instead we will state the equivalent
constraints: indenter shape, location (6.), and the size of the area
of contact () . The slope of the deformed surface is given by:

ou,
(o) = 2% ()
(Tbve)
With the correct loading, s(#) will be the same as the slope of the
indenter in the contact region.

At this point we must resort to numerical techniques and

truncate the fourier series. If we wish nmax periods of the highest
frequency in the series in the contact region then we must compute
the fourier series up to:

27Tnmax
0.

Since our main concern is with sensor data inversion, we can be
satisfied with picking our n = n. = 300 so that for a 2 mm contact
we will have 7.6 periods of the highest frequency component in the
contact region. This will provide an adequate approximation of
the contact shape while easily including all the frequencies that

n >

will be sensed below the surface.
We start by computing the slope of the indenter at n, >
(2n. 4 2) points in the contact region as:

0, = (5)

s(6:) (6)

S; =

and let s be the vector corresponding to s;.

We next compute a n, x (4n. + 2) real valued matrix which
maps from the fourier series coefficients of the normal and tan-
gential tractions (truncated to the frequency n.f) to the displace-
ment slope at each point in the contact region. To do this we
first compute the fourier series coefficients for surface normal and
tangential displacements due to unit normal and tangential loads
at each frequency as:

Ty (—1 4 6) (1~ 5)

ﬁrro — ~
22+’ (—116))

ﬁ’/’@o = 0

A5 ~C 1 1

u”/”/’] = u”/”/’] = gAn(rb)BnL l 0 ]

L5 1 0

uTej = EAH(T'[))BTLL [ 1 ]

1
W, = —Au(r)B.L l 0 ]

S
-1
N

J 5n 1

Coefficients for j = 1 can be computed similarly. Now, for j # 1
and j # 2n.+ 2, T is given by:

uy, kcos(k;)  jodd j < 2n.+2

T —ay, ksin(k0;) jeven j < 2n.+2 (8)
Y] dgg kcos(k0;)  jodd  j > 2n.42
—tgg, ksin(k0;) jeven j > 2n.4 2

where k& = int((j — 1)/2). The first and 2n. + 2 column of T are
given by:

Ti = ﬁrro (9)
(10)

With T constructed as above, it may be applied to a vector
of fourier series coefficients for normal and tangential tractions to

give the slope in the contact region. Let s be the vector associated
with s;, p be the vector associated with p;, and q be the vector

Ti(?nc—I—Z) = ﬁT@o

associated with ¢;. Then we have:

s:T[Z]. (11)

If we were simply to invert T to determine the fourier coef-
ficients given the slope in the contact region then we would have
no guarantee that the pressures would be zero outside the con-
tact region. To solve this problem we convolve the p; and ¢; with
the coefficients for a Hanning window truncated to n./2 before
multiplying them by T. Call this convolution matrix C. C has
dimensions (4n. 4+ 2) x (2n. + 2). We have:

HE

S =

(12)

TC l p ] (13)
q

We have used the  symbol to note the fact that the coefficients p
and g will have non-zero pressure outside the contact region, but
p and q will have minimal energy outside the contact region due
to the windowing.

A straight inversion of T would be numerically unstable, thus
we have used singular value decomposition to compute its pseudo-
inverse as:

TC = UYLV
(TC)t =VIy'U

(14)
(15)

where ¥ is diagonal and U and V correspond to pure rotations.
This decomposition provides valuable insight into the shape to
pressure map that will be discussed in the next section.

We illustrate the use of the inverse with the following exam-
ple. If we wish to model the frictionless contact of a flat surface
with the cylinder with a contact length of 2mm then we choose:

2.0
0, = —
b
S; = 7“592'

and compute the surface tractions as:

[z] — CV Y 'Us. (16)

The resulting displacement field is shown in Figure 6 and
the resulting surface stress is shown in Figure 7. As would be
expected, the surface stress is the parabolic stress given by a Hertz
contact.
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Figure 6: Displacement field for a flat frictionless indenter.

Surface Stress

Figure 7: Surface stress for flat frictionless indenter. The dotted
lines indicate the bounds of the contact region.

0.0 . I . I . I . I . I 0]
0 2 4 6 8 10 12

i (Singular Value Index)

Figure 8: Magnitudes of singular values of TC.

0
% T T
< 14 - O A
> ]
8 12 + O 4
g) L 4
£ 10 - O E
| ]
S 8¢ 0 :
S ot
T 6 O i
> |
D oar u 8
o L
g 2 ]
E 0 L | L |

0.0 0.1 0.2

Contact Width (as a fraction of r,)

Figure 9: Variation in number of singular values of TC with con-
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5 Bandlimited shape interpretation

The magnitudes of the singular values and the rows of the matri-
ces U and V can be used to determine the ability of subsurface
strain sensors to discriminate different shaped indenters on the
surface. With r,,rs, 7, and 8, as before, the matrix TC has 11
singular values with relative magnitude greater than 1/100 of the
maximum singular value. Figure 8 shows the magnitudes.

In fact there are only 8 singular values with magnitude greater
than 1/10 of the maximum singular value. The singular values
with smaller magnitude may be discarded since they will have lit-
tle influence on the slope vector s. That is, pressure distributions
with coefficients orthogonal to the rows of V corresponding to the
8 most significant singular values will have a very small effect on
the slope.

The small number of singular values is not surprising as it
corresponds closely to the number of full periods of the highest
frequency that we modeled that can occur in the contact region (
n. = 300, 6, = 0.16, number of periods = 7.6). Figure 9 shows
how the number of singular values varies with contact width for
n. = 300.

The singular value decomposition gives us more than just
a reduction in the problem size, it also helps us understand the
shape to pressure map. The rows of U and V give matched pairs
of pressure coefficients and shape in the contact region. Figure 10
plots the first four rows of the matrices giving the most significant
directions in the shape to pressure map. The following relation-
ships are immediately clear:

Odd Shape < Even Slope < Odd Pressure
Even Shape < Odd Slope < Even Pressure
What is most important is that the spectrum of the odd shapes is

near zero at the low frequencies. Given the sensor parameters of
[Fearing 90] it would be very difficult to sense the odd part of the



s(8) in Contact Region |p,| that generate s(B)

020 11— 0.20
Ip°J, p°=0
0.00 0.10 - .
-0.20 0.00 Lot 1. —_
0.20 0.20
C , S:O
0.00 0.10 |- Pl P 1
-0.20 0.00 Lt e
0.20 0.20
Ip°J, P’ =0
0.00 0.10 - .
_020 000 . | | . | N B B
0.20 0.20
S , C:0
0.00 0.10 - 1P P
_020 L L L | L | L OOO L | L | L | L
-0.08 -0.04 0.00 0.04 0.08 0 50 100 150 200 250 300

0 k

Figure 10: Basis functions

shape since, as Figure 3 shows, that information will be filtered
out. In effect the low frequency component of the odd part of the
shape can not be sensed without putting the sensors closer to the
surface, with a > 0.85.

6 Conclusions and future directions

We have presented a linear elastic model for a cylindrical sensor
and investigated the subsurface strain frequency responses to es-
timate the sensor performance. We can conclude that localization
and force information is good and may be obtained with just a
few data points. It does not appear that shear strain sensing will
aid particularly in the inversion process as it will be dominated
at the low frequencies by the tangential loading. For good shape
discrimination the sensors must be put close to the surface, at
a > 0.85, or the sensors must be highly noise free and accurate to
at least 1 percent to detect the high frequency information.

A sensor is being constructed based on the design
of [Fearing 90] to test the validity of this model. We expect to
find that localization and detection of force magnitude and direc-
tion will be fast and well posed. The first sensor will have o = 0.7
which will induce sufficient low pass filtering that the subsurtace
normal strain will depend almost exclusively on the location of the
contact and the tangential load. Both of the impulse responses,
as shown in figure 4, will vary little with indenter shape, so by
simply scaling and shifting the two responses to fit the data the
location and direction of force may be found from 3 data points.
This will require a minimum of 16 sensors around the circum-
ference. With this sensor our shape discrimination from single
touches will be limited. We will investigate other sensor designs
that will maximize shape information.
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7 Appendix: Solutions

i _ (rtop?s) 1
14+ats
(v+oB®s)
(st (-°9))
rpl v (2—6)—«a —pB<6
Bl(r) = 4#(14‘0‘4&)
Tb('y2(2—|—€r)—oz2(2—|—ﬁ2€r))
4p(14+ats)
v(2-6-p45)
L 2u(14a%s) _
i 1 L 2= a2 )H(=146) (12402526 ) T
2v(145) (3 +0+ 1+ats )
1 . 2(—ﬁ2+a2w2)+(—1+0 V240?325 )
2v(1+5) (1 -0+ 1+ats )
, . 20443240292 (—245)4(=1+6) (02 =2+ £ (022442 )
Al(T) = 2#(1:-&) <_% - Ulog(ﬂ) + 2(14+a%6) )
- . (—146) (02 =72 =Z(—a?B2 4+~ ) )= (—20+82+a?~2 (246)
(1+5) (% — & log(B) + ( ( 2(1—|—oz22?)( )
(o e (g (14))
i 2u(146) '7_2 + 1+ats |

o, = (1 — oz2)2 (1 — n2) — (oz_zn + QQ&) (on” + QQ&)

7 (14 n) (2= 0+ F56 — §2 (1 —n)) 5L =n) (24 0+ B — B (14 n))
7 (14 n) (—n — 276 + B (—1 +n)) (=14 ) (n = F2G — (1 +n)
Ar) = Lyt (6(1 = 85 4 (—1 4 8%) (14 n)) Ly (5(1 = B2 4 (—1 4+ %) (1 - n))
Ly (6 (=14 B52) 4+ (=1 + 62 (1 + ) Ly (6(1— 72 4 (1 - B2) (1 - )
Lyt (L) (L= n b 64 B85 4 2 (<1 4n)) Ly (L= n) (—1+n+ 5+ B526 — B2(1 4 n))

11 1
L_§[1—1]




