
Sensing Capabilities of Linear Elastic Cylindrical Fingers �Edward J. Nicolson and Ronald S. FearingDepartment of EE&CSUniversity of CaliforniaBerkeley, CA 94720AbstractA linear elastic plane strain model for a cylindrical �nger with asolid core and elastic surface is developed. This model is used todetermine the subsurface strain impulse responses as well as pres-sure distributions in the contact region for indentation of the cylin-der by rigid objects with friction. Singular value decomposition isused to �nd a reduced basis in which to analyze the shape-from-strain inversion problem. This decomposition shows that sensordepth must be small to achieve good shape sensing. However, ifonly contact location and applied force magnitude and directionare required, deep sensors can quickly and easily provide this in-formation.1 IntroductionMethods for inversion of tactile sensor data have used the linearelastic half plane and half space models to determine subsurfacestrain �elds due to surface contacts. This paper develops a modelspeci�cally for cylindrical geometries and compares the predictedsubsurface strain response to that of the half space model.In [Fearing 85] it is shown how the linear elastic half spacemodel can be used to determine contact location, shape, and forcefrom subsurface normal strain data on a cylindrical �nger. Oneof the open questions was the e�ect of the cylindrical geometryon the subsurface strain. Most recently [Ellis 92] has used a �niteelement model to investigate the e�ect of a cylindrical geometryon subsurface strain data. Their conclusions, that shape interpre-tation is di�cult due to the high degree of similarity of subsurfacestrain pro�les, are supported by this paper.[Canepa et.al.] describe a neural net approach to invertingtactile sensor data. They discuss the low pass �ltering e�ect ofthe rubber and the resulting limitation on shape discrimination.They point out that the shapes recognized must be restricted tothose that are represented by low frequencies. This paper speci�-cally investigates the map from surface pressure to deformed shapeto determine the required frequency response for shape discrimi-nation.Previous work on modeling cylindrical elastic bodies[Bentall 67, Nowell 88, Poritsky 50] has focused on the surfaceloading and has not been concerned with the subsurface state ofstress and strain. In these cases the elastic half-space model isappropriate. In our case we must know both the state for thematerial in the contact region at the surface, as well as beneaththe surface, where sensors will be located. For subsurface strainmodeling, a cylindrical model is more appropriate.We proceed by �rst determining the solution to the boundaryvalue problem of an elastic cylinder with a rigid core given the so-lution to the linear elastic plane problem in polar coordinates This�This work was funded in part by: NSF PYI Grant IRI-9157051, A Na-tional Needs Fellowship, and NSF grant IRI-9114446.
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θFigure 1: Cylinder in Plane Strainmodel can be used to �nd the state of the body given the normaland tangential load in the contact region. Section 3 investigatesthe subsurface strain impulse response that follows directly fromthe model. In the next section we show how to determine theloading in the contact region given its size and the shape of theindenter in the region by solving the forward problem from inden-ter to state of the body. The following section investigates theproperties of the solution using singular value decomposition. Insection 6 we describe how sensor data may be inverted to providethe best estimate for contact location, size, load, and shape.2 Solution given surface tractions2.1 Problem statementWe assume that displacements are small and constant in timeand that the rubber is homogeneous and isotropic. Under theseassumptions we can use a linear elastostatic model. Additionallywe make the assumption that the displacement �eld is indepen-dent of the axial direction of the cylinder, that is:ur = ur(r; �) u� = u�(r; �) uz = 0where ur denotes radial displacement, u� denotes displacement inthe angular direction, and uz denotes axial displacement. Theseconstitute the plane strain assumption. By making these assump-tions we require the indentation to be along the length of a longcylinder.To solve the elasticity problem we �rst assume that the sur-face traction in the radial direction, p(�), and the tangential trac-tion, q(�), are known. In section 4 this assumption is removed.We also assume that the rubber layer is rigidly bonded to the solidcore in the center of the cylinder. We let ra be the radius of thecore and rb be the outer radius. The contact is centered at �c and



2has a total width, in radians, of �w. Referring to Figure 1, theboundary conditions may be stated as follows:C1 : �rr = p(�); �r� = q(�)C2 : �rr = p(�) = 0; �r� = q(�) = 0C3 : ur = 0; u� = 0where: q(�) = ( �fp(�) full sliding< �fp(�) adhesionWe have used C1 to indicate the contact region. In this re-gion non-zero tractions, both radial and tangential, are exertedby the indenter on the elastic surface. In C2, the region outsidethe contact on the surface, there are zero tractions. On C3 theelastic region is bonded to the rigid core. Note that the functionsp(�) and q(�) are assumed to be zero outside the contact region.With these mixed-mixed boundary conditions the problem is wellposed.2.2 Fourier series decompositionAs we are using linear elasticity to solve this problem we may usethe principle of superposition to sum independent partial solu-tions. The sum of these partial solutions gives the desired solution.Since all the partial solutions will be periodic in � with period 2�,a fourier series decomposition is natural. Using a trigonometricfourier series we can write the surface tractions as follows:�rr(rb; �) = p(�) = p0 + 1Xk=1 pck cos k� + 1Xk=1 psk sin k��r�(rb; �) = q(�) = q0 + 1Xk=1 qck cos k� + 1Xk=1 qsk sin k�We desire a solution of the form:�rr(r; �) = �rr0(r) + 1Xk=1 � crrk(r) cosk� + 1Xk=1 � srrk(r) sink��r�(r; �) = �r�0(r) + 1Xk=1 � cr�k(r) cosk� + 1Xk=1 � sr�k(r) sin k�ur(r; �) = ur0(r) + 1Xk=1 ucrk(r) cosk� + 1Xk=1 usrk(r) sink�u�(r; �) = u�0(r) + 1Xk=1 uc�k(r) cosk� + 1Xk=1 us�k(r) sink�By solving the elasticity problem for each k and summing wesolve the complete problem. In this paper we have also computedthe fourier series coe�cients for the normal strain, errn as err0, esrrnand ecrrn. In polar coordinates the shear strain can be computeddirectly from the shear stress with er�(r; �) = 12��r�(r; �).2.3 Plane-strain solutions for cylindrical co-ordinates using Airy functionsWe use an Airy function in polar coordinates to �nd the so-lution that satis�es the 3 basic equations of linear elastostat-ics: strain-displacement, stress-strain, and the stress equations

of equilibrium. The derivation of the following may be foundin [Sokolniko�]. [Timoshenko 70] provides an overview of two di-mensional problems in polar coordinates. Given a function �(r; �)satisfying: r4� = 0r2 = @2@r2 + 1r @@r + 1r2 @2@�2then � generates the plane strain solution:�rr = 1r @�@r + 1r2 @2�@�2�r� = 1r2 @�@� � 1r @2�@r@�L = r2�; f(z) = L + iM; z = rei�g(z) = l + im = Z f(�)d�2�ur = �@�@r + (1� �)(l cos � +m sin �) +ao1 cos � + ao2 sin �2�u� = �1r @�@� + (1� �)(�l sin � +m cos �)�ao1 sin � + ao2 cos � � worHere � is the shear modulus and � is Poisson's ratio. Theseparameters are related to the more well known Young's modulus,E, by E = 2�(1 + �). The function M is the conjugate harmonicto L. The details of the derivation l, m, and M can be found ina standard text covering complex analysis. The following set ofAiry functions, pointed out by [Bogy], will generate the requiredset of solutions.�0 = a0 ln r + b0r2 + c0��1 = (a1r + b1r3 + c1r ln r)( sin �cos � )+ d1r� ( cos �sin � )�n = (anrn + bnr�n + cnr2+n + dnr2�n)( sinn�cosn� )The above set of Airy functions can be shown to be a com-plete set of solutions. Given this set we now must solve for theconstants, an , bn, cn, dn, ao1, ao2, and wo given the boundary con-ditions. We do not give the explicit formulas for these constants,but instead give the equations for the fourier series coe�cientswhich are based on these constants.2.4 SolutionsBy substituting in the boundary conditions, the constant coe�-cients in the previous equations are solved for each n. It is usefulto de�ne the following:� = rarb ; � = rar ; 
 = rrb ; �̂ = 3� 4�Note that � ,�, and 
 are all less than 1.



32.4.1 n = 0For n = 0 the following solution is obtained.26666664 �rr0(r)�r�0(r)ur0(r)u�0(r)err0(r) 37777775 = 266666666664 2+�2(�1+�̂)2+�2(�1+�̂) 00 
�2
rb(�1+�̂)(1��2)2�(2+�2(�1+�̂)) 00 rb(1��2)2���(1+�2)(1��̂)2�(�2+�2(1��̂)) 0 377777777775 " p0q0 # (1)We should point out here that the shear stress and shearstrain at ra due to a constant shear load at rb increase as r2b . Thisis important to consider when designing rubber coated �ngers.Also we note that u�0(r) indicates how much rotation occurs aboutthe axis of the cylinder due to a tangential load. Finally we notethat for incompressible materials where � = 12 there is no radialdisplacement due to a constant load applied normally over thecomplete surface of the �nger.2.4.2 n = 1For n = 1 the solution is more involved, but simpli�es to thefollowing form (A1 and B1 are given in the Appendix):26666664 � srr1(r)� cr�1(r)usr1(r)uc�1(r)esrr1(r) 37777775 = B1(r)qc1 +A1(r) (ps1 + qc1)26666664 � crr1(r)�� sr�1(r)ucr1(r)�us�1(r)ecrr1(r) 37777775 = �B1(r)qs1 +A1(r) (pc1 � qs1) (2)2.4.3 n � 2For n � 2 the form of the solution is similar:26666664 � srrn(r)� cr�n(r)usrn(r)uc�n(r)esrrn(r) 37777775 = 1�nAn(r)BnL " psnqcn #26666664 � crrn(r)�� sr�n(r)ucrn(r)�us�n(r)ecrrn(r) 37777775 = 1�nAn(r)BnL " pcn�qsn # (3)A quick glance at the above solutions reveals that the sineterms for err, the normal strain, and the cosine terms for er�, theshear strain, depend only on the sine terms for the normal surfacepressures and the cosine terms for the tangential surface pressures.This is an important property which has implications for indentershape sensing.3 Impulse and frequency responseIf the cylinder is indented with a sharp edge, then the loadingwill be distributed over a very small area. In terms of the model
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Figure 2: Surface and subsurface displacements due to a concen-trated load applied at 45 degrees to the surface. It is assumed that�f � 1:0. The dashed lines are drawn between the undeformedand deformed positions. The units are meters. The center of thecylinder is located far o� to the left hand side of the page.parameters, �w will be very small. The fourier series coe�cientsfor such an impulsive load with pressure magnitude � Nm2 appliedat an angle � from the surface normal (assuming no slip) at contactlocation �c are: p0 = �2� cos �pck = �� cos(k�c) cos �psk = �� sin(k�c) cos �q0 = �2� sin�qck = �� cos(k�c) sin �qsk = �� sin(k�c) sin�To allow comparison with the cylindrical model to the halfplane used in [Fearing 90] we use the same parameters.� = 8:3 � 104 Nm2 � = 0:5ra = 8:9mm rb = 12:7mmAdditionally we assume that the sensors are located at radiusrs = ra + 0:5mm.Figure 2 shows the displacement �eld due to a knife edgeapplied at 45 degrees to the surface of the cylinder at �c = 0. Thesubsurface displacement �eld makes it immediately clear that alarge degree of spatial frequency �ltering is occurring. To geta better idea of the type of �ltering, Figure 3 shows the shearand normal strain coe�cients, errk and er�k , as they vary withthe index k. This plot is in e�ect the spatial frequency responsedue to the rubber layer. That is, since the frequency spectrum
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Figure 3: Subsurface strain frequency responses for the cylindricaland half plane models.

-3.1 -1.6 0.0 1.6 3.1
θ (radians)

-0.50

0.00

0.50

1.00

e rr
(r

s,θ
)

-0.50

0.00

0.50

1.00

e rr
(r

s,θ
)

-0.50

0.00

0.50

1.00

e rr
(r

s,θ
)

Half Plane Model
Cylindrical Model

Subsurface Normal

Strain due to Normal
Load

Subsurface Normal

Strain due to Tangential

Load

Subsurface Normal
Strain due to Combined

Normal and Tangential
LoadFigure 4: Subsurface normal strain impulse response.

0.70 0.80 0.90
ra/rb

0.0

50.0

100.0

150.0

F
ou

rie
r 

S
er

ie
s 

C
oe

ffi
ci

en
t a

t 1
0%

 o
f m

ax

errk
 cut off, normal load

errk
 cut off, tangential load

erθk
 cut off, normal load

erθk
 cut off, tangential load

0.0

2.0

4.0

6.0

T
an

ge
nt

ia
l L

oa
d 

In
flu

en
ce

Frequencies above these lines are

not seen by sensors at the

corresponding depth.

Ratio of max erθk
due to tangential load to the max erθk

due to normal load

Ratio of max errk
due to tangential load to the max errk

due to normal load

Figure 5: Variation in �lter cut-o� with � = rarb . Sensors arelocated at rs = ra + 0:5mm.of the loading was 
at, Figure 3 shows the relative e�ect of eachloading frequency component on the corresponding frequency ofthe subsurface strain. We note that errk and er�k drop o� to below10 percent of their maximumvalue by the 20th coe�cient. Due tothis high degree of low pass �ltering, the subsurface normal strain,as shown in Figure 4, does not change perceptibly with contactsthat vary in shape frequencies above the cut-o� frequency.Figures 3 and 4 also show the comparable frequency and im-pulse response for the plane strain half plane model [Johnson 85,Fearing 85]. The plots have been normalized to the peak value.In both �gures the response due to normal and tangential load-ing has been separated to show the relative e�ect of normal andtangential loads on the normal and shear strain. The half spacemodel shows a larger degree of �ltering from normal loads the nor-mal strain given the same rubber thickness as is apparent fromthe smaller side lobes in the impulse response and the smaller cut-o� frequency in the frequency response. In �gure 4 we see thatthe e�ect of tangential loading on normal strain is similar untilthe e�ect of the cylinder's curvature becomes apparent at � = :4radians .In Figure 3 we see the dominance at low frequencies of thetangential loading on the shear strain. Whereas the normal straindue to the normal and tangential loading are just a factor of 2in comparative magnitude and have a similarly shaped frequencyresponse, the shear strain is a�ected by a factor of 3 more by thetangential load than the normal load and the frequency responsedrops o� much more sharply.So far we have only discussed the �ltering e�ects for one set ofradii parameters. Figure 5 shows how the cut-o� frequencies andtangential load in
uence vary as � = rarb approaches 1.0. As youcan see, the cut-o� frequency increases exponentially. We note,however, that er� is �ltered to only 10 cycles per revolution when� is as large as 0.85. This indicates that shear strain sensing maybe used as a good indicator of tangential load, but not of contact



5shape in the presence of tangential loading.4 Determining p(�) and q(�)The model developed in the previous section assumed that thenormal and tangential surface stresses were known. If we were con-sidering only frictionless contacts then the standard Hertz contactmodel could be used to determine the parabolic pressure distri-bution. However if we wish to analyze the in
uence of a contactwith friction we must determine the combination of tangentialand normal loading that give the same shape of deformation inthe contact region as the indenter.Since we want to determine p(�) and q(�) given an indentershape, load, and location we need to invert the model derived insection 2. Unfortunately these equations do not adapt easily to theshape and load formulation, instead we will state the equivalentconstraints: indenter shape, location (�c), and the size of the areaof contact (�w) . The slope of the deformed surface is given by:s(�) = @ur@� �����(rb;�) (4)With the correct loading, s(�) will be the same as the slope of theindenter in the contact region.At this point we must resort to numerical techniques andtruncate the fourier series. If we wish nmax periods of the highestfrequency in the series in the contact region then we must computethe fourier series up to: n > 2�nmax�wSince our main concern is with sensor data inversion, we can besatis�ed with picking our n = nc = 300 so that for a 2 mm contactwe will have 7.6 periods of the highest frequency component in thecontact region. This will provide an adequate approximation ofthe contact shape while easily including all the frequencies thatwill be sensed below the surface.We start by computing the slope of the indenter at np >(2nc + 2) points in the contact region as:�i = �c � 2(i� np2 )�wnp (5)si = s(�i) (6)0 � i � npand let s be the vector corresponding to si.We next compute a np � (4nc + 2) real valued matrix whichmaps from the fourier series coe�cients of the normal and tan-gential tractions (truncated to the frequency nc�) to the displace-ment slope at each point in the contact region. To do this we�rst compute the fourier series coe�cients for surface normal andtangential displacements due to unit normal and tangential loadsat each frequency as:ûrr0 = 
rb (�1 + �̂) (1 � �2)2� (2 + �2 (�1 + �̂))ûr�0 = 0ûsrrj = ûcrrj = 1�nAn(rb)BnL " 10 #ûsr�j = 1�nAn(rb)BnL " 0�1 #ûcr�j = 1�nAn(rb)BnL " 01 # (7)

Coe�cients for j = 1 can be computed similarly. Now, for j 6= 1and j 6= 2nc + 2 , T is given by:Tij = 8>>><>>>: ûsrrkk cos(k�i) j odd j < 2nc + 2�ûcrrkk sin(k�i) j even j < 2nc + 2ûsr�kk cos(k�i) j odd j > 2nc + 2�ûcr�kk sin(k�i) j even j > 2nc + 2 (8)where k = int((j � 1)=2). The �rst and 2nc + 2 column of T aregiven by: Ti1 = ûrr0 (9)Ti(2nc+2) = ûr�0 (10)With T constructed as above, it may be applied to a vectorof fourier series coe�cients for normal and tangential tractions togive the slope in the contact region. Let s be the vector associatedwith si, p be the vector associated with pj , and q be the vectorassociated with qj. Then we have:s = T " pq # : (11)If we were simply to invert T to determine the fourier coef-�cients given the slope in the contact region then we would haveno guarantee that the pressures would be zero outside the con-tact region. To solve this problem we convolve the pk and qk withthe coe�cients for a Hanning window truncated to nc=2 beforemultiplying them by T. Call this convolution matrix C. C hasdimensions (4nc + 2) � (2nc + 2). We have:" pq # = C " ~p~q # (12)s = TC " ~p~q # (13)We have used the~symbol to note the fact that the coe�cients ~pand ~q will have non-zero pressure outside the contact region, butp and q will have minimal energy outside the contact region dueto the windowing.A straight inversion of T would be numerically unstable, thuswe have used singular value decomposition to compute its pseudo-inverse as: TC = UT�V (14)(TC)+ = VT��1U (15)where � is diagonal and U and V correspond to pure rotations.This decomposition provides valuable insight into the shape topressure map that will be discussed in the next section.We illustrate the use of the inverse with the following exam-ple. If we wish to model the frictionless contact of a 
at surfacewith the cylinder with a contact length of 2mm then we choose:�w = 2:0rbsi = rb�iand compute the surface tractions as:" pq # = CVT��1Us: (16)The resulting displacement �eld is shown in Figure 6 andthe resulting surface stress is shown in Figure 7. As would beexpected, the surface stress is the parabolic stress given by a Hertzcontact.
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Figure 9: Variation in number of singular values of TC with con-tact width5 Bandlimited shape interpretationThe magnitudes of the singular values and the rows of the matri-ces U and V can be used to determine the ability of subsurfacestrain sensors to discriminate di�erent shaped indenters on thesurface. With ra; rs; rb; and �w as before, the matrix TC has 11singular values with relative magnitude greater than 1=100 of themaximum singular value. Figure 8 shows the magnitudes.In fact there are only 8 singular values with magnitude greaterthan 1/10 of the maximum singular value. The singular valueswith smaller magnitude may be discarded since they will have lit-tle in
uence on the slope vector s. That is, pressure distributionswith coe�cients orthogonal to the rows of V corresponding to the8 most signi�cant singular values will have a very small e�ect onthe slope.The small number of singular values is not surprising as itcorresponds closely to the number of full periods of the highestfrequency that we modeled that can occur in the contact region (nc = 300, �w = 0:16, number of periods = 7.6). Figure 9 showshow the number of singular values varies with contact width fornc = 300.The singular value decomposition gives us more than justa reduction in the problem size, it also helps us understand theshape to pressure map. The rows of U and V give matched pairsof pressure coe�cients and shape in the contact region. Figure 10plots the �rst four rows of the matrices giving the most signi�cantdirections in the shape to pressure map. The following relation-ships are immediately clear:Odd Shape , Even Slope , Odd PressureEven Shape , Odd Slope , Even PressureWhat is most important is that the spectrum of the odd shapes isnear zero at the low frequencies. Given the sensor parameters of[Fearing 90] it would be very di�cult to sense the odd part of the
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k=0Figure 10: Basis functionsshape since, as Figure 3 shows, that information will be �lteredout. In e�ect the low frequency component of the odd part of theshape can not be sensed without putting the sensors closer to thesurface, with � > 0:85.6 Conclusions and future directionsWe have presented a linear elastic model for a cylindrical sensorand investigated the subsurface strain frequency responses to es-timate the sensor performance. We can conclude that localizationand force information is good and may be obtained with just afew data points. It does not appear that shear strain sensing willaid particularly in the inversion process as it will be dominatedat the low frequencies by the tangential loading. For good shapediscrimination the sensors must be put close to the surface, at� > 0:85, or the sensors must be highly noise free and accurate toat least 1 percent to detect the high frequency information.A sensor is being constructed based on the designof [Fearing 90] to test the validity of this model. We expect to�nd that localization and detection of force magnitude and direc-tion will be fast and well posed. The �rst sensor will have � = 0:7which will induce su�cient low pass �ltering that the subsurfacenormal strain will depend almost exclusively on the location of thecontact and the tangential load. Both of the impulse responses,as shown in �gure 4, will vary little with indenter shape, so bysimply scaling and shifting the two responses to �t the data thelocation and direction of force may be found from 3 data points.This will require a minimum of 16 sensors around the circum-ference. With this sensor our shape discrimination from singletouches will be limited. We will investigate other sensor designsthat will maximize shape information.
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87 Appendix: SolutionsB1(r) = 2666666666664 �(
+��3�̂)1+�4�̂(
+��3�̂)1+�4�̂rb(
2(2��̂)��2(2��2�̂))4�(1+�4�̂)rb(
2(2+�̂)��2(2+�2�̂))4�(1+�4�̂)
(2��̂��4�̂)2�(1+�4�̂) 3777777777775A1(r) = 26666666666666664 12
(1+�̂)�3 + �̂ + 2(��2+�2
2)+(�1+�̂)(
2+�2�2�̂)1+�4�̂ ��12
(1+�̂)�1 � �̂ + 2(��2+�2
2)+(�1+�̂)(
2+�2�2�̂)1+�4�̂ �rb2�(1+�̂)��12 � �̂ log(�) + 2�4+�2+�2
2(�2+�̂)+(�1+�̂)(�2�
2+ �̂2 (��2�2+
2))2(1+�4�̂) �rb2�(1+�̂)�12 � �̂ log(�) + (�1+�̂)(�2�
2� �̂2 (��2�2+
2))�(�2�4+�2+�2
2(2+�̂))2(1+�4�̂) �
2�(1+�̂) �̂
2 + ��2
2+�2(�2+�̂)+(�1+�̂)(�1+ �̂2 (1+�4))1+�4�̂ ! 37777777777777775�n = �1 � �2�2 �1 � n2�� ���2n + �2�̂� ��2n + �2�̂�Bn = " 1� �2 �1+�2�2n�̂1+n�1+�2+2n �̂1�n 1 � �2 #An(r) = 266666666666666664 
n (1 + n) (2� n+ �2+2n�̂ � �2 (1 � n)) 
�n(1� n) (2 + n+ �2�2n�̂ � �2 (1 + n))
n (1 + n) (�n� �2+2n�̂ + �2 (�1 + n)) 
�n(�1 + n) (n� �2�2n�̂ � �2 (1 + n))12�
nr (�̂ (1 � �2+2n) + (�1 + �2) (1 + n)) 12�
�nr (�̂ (1 � �2�2n) + (�1 + �2) (1� n))12�
nr (�̂ (�1 + �2+2n) + (�1 + �2) (1 + n)) 12�
�nr (�̂ (1 � �2�2n) + (1 � �2) (1� n))12�
n (1 + n) (�1� n+ �̂ + �2+2n�̂ + �2 (�1 + n)) 12�
�n(1� n) (�1 + n+ �̂ + �2�2n�̂ � �2 (1 + n))
377777777777777775L = 12 " 1 11 �1 #


