
The Reliability of Curvature Estimates fromLinear Elastic Tactile Sensors�Edward J. Nicolson and Ronald S. FearingDepartment of EE&CSUniversity of CaliforniaBerkeley, CA 94720AbstractThis papers analyzes the reliability of radius of cur-vature estimates from tactile sensor data. A linearelastic model is used to �t the indenter parameters,load, location, and curvature, to the sensor output.It was found that both contact models and calibra-tion techniques could dramatically e�ect the bias andvariance of the estimated indenter parameters. TheFourier series is found to be an appropriate basis inwhich to analyze both the calibration of tactile sensorsand the problem of bandlimited shape interpretation.1 IntroductionRecently it has been shown that the human tactilesensory system is capable of �ne shape discriminationfrom static touch [6]. Robotic tactile sensors havealso been shown to have the capability of providingcurvature information [5], however results using �nite-element models of tactile sensors indicate that reliableshape classi�cation is hard [3]. It is well known thatthe rubber layer on the �nger acts as a spatial lowpass �lter and that the frequency of the �lter cut-o� decreases as sensor depth increases [4, 11, 16], sowe expect that shape sensing capabilities will dependon sensor depth. Recent theoretical results indicatethat discrimination can be accomplished if the inden-ter class is known, however indenter classi�cation re-quires shallower sensors and hence a greater sensordensity than can currently be constructed in a cylin-drical geometry [10].Most robotic tactile sensors have not yet demon-strated as �ne a shape discrimination ability as hasbeen demonstrated in humans [6] despite having sim-ilar sensor densities. In many cases analysis of theirperformance has been limited to sensitivity of a sin-gle cell and their ability to produce \touch pictures"�This work was funded in part by: NSF Grant IRI-9114446,NSF-PYI grant IRI-9157051, and a National Needs Fellowship.

to be analyzed using machine vision techniques. Themain problem with using machine vision techniquesis that they are not well adapted to the low resolu-tion typically a�orded by tactile sensors. Another ap-proach is to develop tactile sensor data analysis tech-niques based on the mechanics of the rubber materialin which they are usually embedded. In [5] it is shownhow the linear elastic half space model can be usedto determine contact location, curvature, orientation,and force from low resolution subsurface normal straindata on a cylindrical �nger. It is the goal of this paperto extend [5] by addressing the reliability of curvatureestimates. During Fearing's experiments it was foundthat the sensor exhibited locations of improved shapesensing capability, or \sweet spots." This paper par-tially explains this phenomena by comparison of modelbased and empirical calibration techniques.We start by briey reviewing the linear elasticmodel introduced in [11] and then use it to calibratea tactile sensor and predict indenter parameters.2 Linear elastic tactile sensor modelUnder the assumptions of material linearity,isotropy, and homogeneity the problem of determin-ing indenter shape, location, and total load from sub-surface strain measurements on a tactile sensor maybe analyzed with linear elasticity. The sensor and in-denter geometry is shown in Figure 1. The cylindricalsensor has a solid core of radius ra. An annulus ofrubber is molded around the core with an outer ra-dius of rb. ns sensors are evenly placed within therubber at a radius rs, ra < rs < rb. An indenter of ra-dius rc touches the �nger at location �. The compositeradius, R, which can be interpreted as the equivalentradius of the indenter if the sensor were at, is de�nedas 1R = 1rb + 1rc :
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raFigure 1: Sensor radii parameters and indenter shapeas a function of �p and rc. In the contact region thedeformed pro�le of the sensor must match that of therigid indenter.
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Figure 2: Line load frequency response for normal sur-face displacement (dotted line) and subsurface strainat two di�erent depths (solid and dashed lines).2.1 Fourier series decompositionAs we are using linear elasticity to solve this prob-lem we may use the principle of superposition to sumindependent partial solutions. Since all the partial so-lutions will be periodic in � with period 2�, a Fourierseries decomposition is natural. We will denote nor-mal radial stress by �rr, radial displacement by ur,and radial normal strain by err. At rb, the normalsurface stress will be given by p(�). Using a trigono-metric Fourier series we can write the surface tractionsas follows�rr(rb; �) = p(�) = p0 + 1Xk=1 pck cos k� + 1Xk=1 psk sin k�The solution to this linear elastic problem for theboundary conditions of zero stress outside the con-tact region at rb and zero displacement at ra is givenin [11].The line-load normal-strain frequency response de-termines which spatial frequencies will be sensed bythe tactile sensor for a given set of radii: ra, rs, and rb.Figure 2 shows the strain and displacement frequencyresponses in a conventional Bode plot. Notice thatthe displacement frequency response decays very closeto that of a one pole low pass �lter at 20 dB/decadewhile the strain response decays much faster at more
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Figure 3: Comparison of normal pressure distributionfourier coe�cients for a �xed load (200 N/m) andvarying rc 2 0:5; 1:6; 3:9; 12:3; 25:3 mm. The largestradius has the least high frequency content.than 100 dB/decade. One pole low pass �lters arenot very good anti-aliasing �lters. Thus from a �l-ter design point of view, one would much rather usesubsurface strain measurements since the strain �eldhas a well de�ned frequency content whereas the fre-quency content of the displacement �eld is not clearlybandlimited.In Figure 2 the sub-surface normal strain frequencyresponse is shown for two di�erent sensor depths:deep, � = ra=rb = 0:70, and shallow, � = 0:90.As deep sensors have a -40 dB cut-o� at 4.5 cy-cles/radian and shallow sensors have their cut-o� at25 cycles/radian we expect that shallow sensors willprovide better estimation of high frequency shape in-formation.Holding the load constant at 200 N/m, we vary theradius of the round indenter to see whether di�erentradii indenters are distinguishable from low frequencyinformation only. The Bode plot of the pressure dis-tributions for 5 di�erent indenter radii is shown inFigure 3. At 3 cycles/radian the frequency responsesare clearly di�erent and should be distinguishable with� = 0:70 and a noise level at -40 dB.We can investigate the rc at which a round indentercan be distinguished from knife edge indenter by plot-ting the mean square error between the strain pro�lesat a constant load. If we assume that the sensor noiseis gaussian, then the round and edge indenters can bedistinguished at a 95 % level when the square root ofthe mean square error exceeds 2 standard deviationsof the noise. Figure 4 shows the error as a functionof rc=rb and � = ra=rb. A noise plane is also shownat 2 standard deviations of the typical noise for a tac-tile sensor. The intersection of the noise plane withthe error surface gives the boundary at which a roundindenter my be distinguished from a knife edge. Aswould be expected, shallower sensors allow smaller ra-dius indenters to be distinguished from a knife edge.For deep sensors with � = 0:70, at and edge inden-ters can be distinguished with noise levels as high as3.7 % of the peak strain. If the noise is as low as 1 %
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Figure 4: Standard error as a fraction of peak strainbetween subsurface normal strains of knife edge andround indenters as a function of indenter radius andsensor depth.of peak strain then deep sensors can distinguish anindenter with rc=rb = 0:16 from an edge indenter.2.2 The E and S mapsThe shape from strain problem can be character-ized by two linear maps. Letting the highest Fouriercoe�cient be nc, the �rst map is from surface pres-sure Fourier coe�cients, p 2 <2nc+1, to sampledsubsurface strain, � 2 <ns . We will call this mapE 2 <ns�(2nc+1). The second is from surface pressureFourier coe�cients, p, to indenter slope in the contactregion, s 2 <4nc+2, for a given contact area and con-tact location. This map is denoted by S. Analysis ofthe �rst map allows us to formulate sensor spacing re-quirements and sensing capabilities for a given depthof sensor as was done in [11]. The second map, fromindenter shape to surface pressure, provides a conve-nient way to determine a pressure distribution for anarbitrary indenter shape. In Figure 5 the relationshipbetween the various maps and contact models is shownwith the forward directions going from left to right.If we letp = 266666664 p0ps1pc1...psncpcnc
377777775 ; � = 264 err(rs; �s0)...err(rs; �s(ns�1)) 375 (1)where �s is the vector of sensor locations, then therelationship between p and � is� = Ep: (2)
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Figure 5: The S, C, and E maps. The forward, orwell-conditioned, direction for each map is from leftto right.
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Figure 6: Surface stress for at frictionless indenterswith 2 mm and 4 mm contact widths as given by aHertz model (dashed lines) and a model incorporatingthe rigid core (solid lines). The dotted vertical lines in-dicate the bounds of the contact region. Both pressuredistributions are divided by the peak pressure predictedby a Hertz model.To determine p from the indenter parameters ra-dius, rc, location, �c, and contact width, �w, one of twotechniques can be used. The �rst is the Hertz model,described in Appendix A. The second is based on sin-gular value decomposition and is described in [11]. InFigure 6 the normal pressure distribution predicted byeach contact model is shown. As was shown by Nowelland Hillis [12], the rigid core of the cylindrical �ngerresults in a smaller contact area than is predicted bythe Hertz model for a given radius indenter, rc, andtotal load, P .3 Calibration of tactile sensorsNumerous tactile sensors have been designed andconstructed [1, 7, 9, 15, 17, 18], unfortunately mostof those sensors can not be used on a round �ngerneeded for grasping and manipulation. Commercially
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θJoint space Probe coordinates(perspective view) (top view)Figure 8: Prober.available sensors that can be used on round �ngers donot provide the sensitivity required for shape discrimi-nation. For this reason the design of [4], Figure 7, wasadopted with a few changes. Sensor spacing aroundthe circumference was halved to reduce the aliasingthat was predicted by the frequency response. DowCorning silicone rubber was used instead of isoprenerubber as silicone rubber demonstrated reduced hys-teresis in preliminary experiments. A shield layer wasadded to reduce the proximity sensing e�ect that madethe original design di�cult to use during manipulationand wire connections were improved so that cable ex-ing did not a�ect the measured capacitance.An accurate positioning and force measuring de-vice, as shown in Figure 8, was required to deliverindenter touches at known locations and measure theapplied contact forces. Experiments were conductedwith a set of round probe tips made from machinablewax with rc varying from 1.59 mm to 25.25 mm. Inaddition a 90o corner and a at indenter were used.All indenters had a length of 4 mm and were applied sothat the 4 mm length was along the axis of the sensor.This length was chosen to correspond to the dimensionof the sense strip, attached to the core, along the axisof the sensor. Indenters were applied directly abovethe sense strip at 1o intervals with a load of 200 N/m.
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Figure 9: Model based calibration results with an edgecontact for the second sensor element . Solid line ismodel �t, dashed is experimental data, dotted is error.Both the tactile and force data were sampled 20 timesat each point.The contact force and location data were used togenerate the Fourier series coe�cients of the pressuredistribution for each contact. If we let the total num-ber of touches be nt, then the Fourier coe�cients foreach contact may be assigned to the columns of a ma-trix P 2 <(2nc+1)�nt . Similarly the averaged sensordata for each touch can be assigned to the columnsof the matrix D 2 <ns�nt where ns is the number ofsensors.We expect the relation between output and strain,�, to be given by a simple diagonal gain matrix, G 2<ns�ns � = GD: (3)Note that � is now a matrix. If the modeled strainsare given by �̂, �̂ = EP; (4)then we wish to minimize, for each sensor element i;Xj (�ij � �̂ij)2 = Xj  GiiDij �Xk (EikPkj)!2 :3.1 Model �tted EIn the case of the model-�tted map, E is a nonlin-ear function of the sensor location, �sj , radius, rs, andPoisson's ratio, �. For each sensor element, the non-linear Simplex method [14] was used to minimize thesquared strain error over these parameters. Figure 9shows an example of one set of �tted data.Table 1 gives summary statistics of the parameter�ts over 14 sensor elements. The noise level is given forunaveraged data in units of % peak strain, and variesdepending on the gain of each element. In comparingthe noise level and the �tting error we must include



Parameter Min Avg Max� 0.41 0.46 0.48rs (mm) 9.8 10.3 10.7Error (% Peak) 1.28 2.16 3.95Noise Level (% Peak) 0.95 1.72 2.87Table 1: Model based E �tting results. Minimum, av-erage, and maximum values are over the 16 elementsof the circumferential array.the noise from both the tactile sensor and the forcesensor. The force sensor has a noise level equivalentto 0.5 % peak strain. The averaged tactile sensor data,which is independent of the force data, has a standarddeviation of 0.4 % peak strain so we expect a �ttingerror of 0.9 % peak strain. Comparing this with theerrors in Table 1, we see that in the best case this limitis nearly achieved while on average the error is twicethe noise level indicating that model error does existand it is on the same order of magnitude as the noise.Calibration was also performed for both at andedge contacts. P was then constructed with both theFourier coe�cients for the edge data and for Hertzcontact models of the at contact data. In accor-dance with the earlier discussion that predicted nar-rower pressure distributions in the presence of a rigidbacking, it was found that the Hertz model predicteda wider strain response than was seen in the data. Useof a Hertz model resulted in an average error of 4.2 %strain while use of the frictionless contact model de-scribed in [11] resulted in an average error of 2.2 %strain. This suggests that a Hertz model can not beused to predict pressure distributions and subsurfacestrain on a rubber sensor with a rigid core.3.2 Direct identi�cationIf the sensor were constructed perfectly all the el-ements should have the same response, however witha manual construction method this is not always pos-sible. Typically the model errors are most signi�cantin the tails of the impulse response. For this reasonthe standard errors in the previous section were com-puted over a 50o range centered about the sensor. Inthis section we will see that direct identi�cation ofE, or so-called empirical calibration, does not su�erfrom this problem. By using direct identi�cation of Eone only assumes that the map from surface pressureto subsurface strain obeys linearity and superposition.It need not obey a linear elastostatic model which as-sumes a homogeneous and isotropic medium.Contact models are still used to generate the pres-
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Figure 10: Empirical calibration results for the thirdsensor element. Solid line is empirical �t, dashed isexperimental, dotted is errorMin Avg Max0.93 1.41 1.76Table 2: Standard errors as a % of peak strain forempirical �ts to edge contacts.sure distribution matrix, P, but E is treated as anunknown matrix that must be determined by solvingfor it in the equationEP =GD: (5)Using standard techniques from linearleast squares [19], the map E can be determined ifP is full rank. For P to be full rank 2nc + 1 impulsesmust be applied at equally spaced intervals all the wayaround the �nger.E is determined directly fromET = (PPT )+PDTGT : (6)The empirically derived E is much better at predictingthe tails of the sensor as can be seen by comparingFigures 10 and 9. The average error, now computedover touches over the full 180o; is now 1.41 % of thepeak strain, signi�cantly less than the 2.16 % for themodel-based �t.The disadvantage of the identi�cation technique isthat there are no �tted parameters which can be re-lated to the physical parameters of the sensor. Oneway of analyzing the linear least squares E, is to com-pare its SVD to that of the model �tted E. Since theyare both linear maps between the same spaces theyshould have similar characteristics. Both maps arewell-conditioned. The model �tted E has a conditionnumber of 2.7 and the empirical E has a conditionnumber of 3.3 . As would be expected by the line
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Figure 11: Outline of the �tting procedure.load frequency response, the well conditioned direc-tions in V column space, pressure Fourier coe�cients,have most of their energy in the center of the theoret-ical frequency response. The more poorly conditioneddirections have their energy concentrated in the verylow and high frequencies [10].4 Shape from strainIn Figure 5 the relationship between the variousmaps and contact models is shown with the forwarddirections going from left to right. It is clear that if weuse a Hertz model there is an easy forward path fromcontact parameters to sensor values. Using the Sim-plex algorithm and E, contact parameters were �ttedto the sensor data, as is shown in Figure 11. The typ-ical execution time of 0.1 second on a Sparc 20 couldbe reduced to 0.04 second when total load informationfrom a force sensor was used. In the discussion of theparameter �ts to experimental data we will investigatethree di�erent phenomena that a�ect the indenter ra-dius estimation errors: noise, the E matrix, and thecontact model.As might have been predicted by the �tting resultsin Section 3.1, it was found that use of a Hertz con-tact model to predict subsurface strains resulted in abiased estimate of the indenter radius. Table 3 givesthe mean estimate of rc over 40 degrees for 9 di�er-ent indenters. Concentrating for now on the resultsfor the Hertz model, it was found that rc was consis-tently underestimated when using both the empiricaland model-based calibration. Since the other contactmodel that has been discussed, the frictionless contactmodel, requires the inversion of a large matrix to de-

Actual Hertz contact Approximate frictionlessrc model contact modelModel Empirical Model Empiricalcalibration calibration calibration calibration0.50 0.41 0.52 0.95 0.991.59 1.34 1.77 2.39 2.533.90 2.09 2.46 3.37 3.336.01 3.71 4.28 5.84 6.017.55 5.22 5.58 8.17 7.929.30 5.85 6.23 9.41 9.0312.30 7.60 7.81 12.94 11.8918.71 8.58 8.64 15.51 13.7725.25 9.90 9.91 19.36 16.50Table 3: Mean rc estimates using the Hertz and theapproximate frictionless model.�c P R(degrees) (N / m) (mm)Model Total 0.24 13.1 1.26based Location 0.20 9.1 1.00Noise 0.14 9.6 0.79Empirical Total 0.24 11.7 0.96based Location 0.19 6.4 0.60Noise 0.14 9.8 0.77Table 4: Standard deviation of errors in parameters�tted for 40 touches at 1 degree intervals of 6 di�erentindenter radii ranging from edge to at contact.termine the pressure distribution, it was approximatedby squeezing and stretching a Hertz model. We callthis new contact model the \approximate frictionlesscontact model." In Table 3, we see that this modelis much better at giving an unbiased estimate of rcfor indenters of radius 13 mm and less. All the re-sults in the following sections were obtained using theapproximate frictionless contact model.If the only source of variance in the data were ran-dom, uncorrelated, and stationary noise and time re-sponse were not a consideration then estimation errorscould be reduced by averaging the data over an ade-quate number of samples. Unfortunately we will seethat the parameter estimate depends, in a consistentmanner, on where the probe touches the sensor.This e�ect became apparent when comparing sum-mary statistics for averaged and raw data. Table 4gives the standard deviations of the errors in the �ttedcontact parameters. The rows labeled \Total" are thestandard deviations computed over 20 samples eachof 40 touches using 6 di�erent indenter radii. Therows labeled \Location" are the standard deviationsof the errors in parameters �tted to 20 times averageddata. These rows indicate the variance due to location.The rows labeled \Noise" are the standard deviationsof the errors in parameters �tted to raw data after



10 15 20 25 30 35 40 45
5

10

15

20

25

30

Probe position (degrees)

E
st

. r
c 

(m
m

)

10 15 20 25 30 35 40 45
5

10

15

20

25

30

Probe position (degrees)

E
st

. r
c 

(m
m

)

Figure 12: Estimates of rc for a 12.3 mm radius in-denter. The top plot uses a model based E while thebottom plot uses an empirical E. In both cases the dot-ted line is the actual rc, the solid line is the �tted rcto 20 times averaged data, and the error bars indicatethe mean plus and minus one standard deviation for�ts to the raw data.subtraction of the estimate to the averaged data ateach location. These rows indicate the variance dueto noise.Contact location estimation error is very small,125 th of the sensor spacing. If we include only thesensor noise than the standard deviation is halved.As might be expected from our frequency domain andSVD analysis of E, total load estimates are noisy, witha standard deviation of 5 % of the applied load.Table 4 gives the standard deviation of the radiusestimate in terms of R. This is necessary when dis-cussing at contacts since one would expect the stan-dard deviation of rc in that case to be in�nite. Forsmall radius contacts the standard deviation in R andrc will be approximately the same. For rc = rb thestandard deviation in rc will be twice that for R.The standard deviation in R due to noise is 0.77 mm,meaning that for small rc indenters, radii di�erencesof 1.5 mm should be distinguishable at a 95 % level ata �xed location. Figure 12 shows estimates for rc foraveraged and raw data. We see that the standard de-viation of the estimate at a particular location is oftenless than the bias due to location. It is also apparentthat the standard deviation due to noise also dependson location. In other words, in addition to the sys-tematic bias, some locations provide more consistentestimates than other locations.It is interesting to see that the location dependent
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Figure 13: Estimate of rc using model-based (top)and empirical (bottom) calibration on 20 times av-eraged data. From lower to upper trace rc =f0:5; 3:90; 6:01; 9:30; 12:30gmm.bias in the estimate of rc is consistent across indenters.Figure 13 shows rc estimates for 5 di�erent indentersas a function of location. For both calibrations theestimate of rc is monotonic at each location, althoughthe bias might be considerable. This indicates thatthe information about curvature is contained in thedata, however the model used to estimate curvature isnot quite correct.5 ConclusionsThis paper has discussed the ability of linear elasticmodels and general linear models to predict subsurfacestrains in a tactile sensor. There are two linear elas-tic models of concern here, one is a linear map fromsurface pressure to subsurface strain, the E map, theother is a nonlinear map from indenter shape to sur-face pressure, S. We have seen that E can predictstrains to a precision commensurate with signal noisefor a well constructed sensor; however if there are in-homogeneous artifacts in the sensor response due toconstruction, the linear least squares approach willproduce a better result. One may conclude that a sen-sor can be constructed that will result in an impulseresponse like that predicted by a linear elastic model.However, when it comes to using a hand-made sensor,it is apparent that an empirical technique can providea more consistent prediction of sensor responses.The parameter �tting results showed that contactlocation can be estimated to a precision of 125 th ofthe sensor spacing. Estimates of R and rc were seento be sensitive to the calibration technique. Resultsusing the model based calibration indicate that cur-
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