
E�ects of Shear Stress in Teletaction and Human Perception �G. Moy and R.S. FearingDepartment of EE&CSUniversity of CaliforniaBerkeley, CA 94720-1770AbstractIdeally, a tactile stimulator presents informationthrough control of surface normal stress and surfaceshear stresses. Psychophysical experiments measuredthe e�ect of shear stress information on perceptionof static stimuli. Wax gratings in two di�erent ori-entations and various spatial frequencies were usedas stimuli. Elastic layers, which represent the anti-aliasing �lter on a tactile display, were placed over thestimuli. Using an elastic layer which reduces shearstress information transmission did not degrade spa-tial resolution, but rather, improved perception. Spa-tial resolution di�erences due to di�erent elastic layersare explained by modulation indices determined fromthe predicted sub-surface strain using an elastic half-plane model.1 IntroductionInformation about texture, local compliance, orlocal shape is important in applications such astelesurgery or handling of fragile objects in teler-obotics. Fig. 1 shows a general con�guration of ateletaction system. One possible con�guration on arobotic laparoscopic telesurgery system. The tactilesensor is mounted on the end e�ector (the laparo-scopic instrument), and the tactile stimulator displayis mounted on the master manipulator (the user inter-face). The tactile stimulator would present informa-tion recorded by the tactile sensor to the user. Ideally,the patterns felt by the user would be indistinguish-able from direct contact with the environment. Thetactile stimulator needs to generate surface stressesthat realistically represent data collected by the tac-tile sensor. To fully control surface stress, the tactiledisplay system should be an array of 3 DOF actuators.Tactile displays can produce either displacements orforces. In a displacement display, an array of pins areshaped into a contour. In a force display, the pin arraywill produce a surface stress distribution representingthe data. In either case, we examine the e�ects of re-ducing the amount of shear stress information trans-mission. As seen in the Sensopad1, a device to aid inbreast self examinations, reduction of the shear stresscan enhance detection of embedded objects.�This work was funded in part by: NSF grant IRI-9531837.1Inventive Products, Inc.

Most tactile display systems use an array of ac-tuated 1 DOF pins to stimulate the slowly adaptinga�erent units. The density of the stimulator array islimited by actuator size. Currently, the spacing be-tween the centers of the pins is around 2 mm [Cohnet al 1992; Howe et al 1995]. The array is coveredby an elastic layer which functions as an anti-aliasing�lter. Without the anti-aliasing �lter, the user wouldfeel an array of pins instead of smooth continuous sur-faces. Until actuator technology advances to the pointwhere pin density equals mechanoreceptor density, ananti-aliasing �lter will still be needed. When actua-tor densities are high enough, an elastic layer will beneeded to protect users from the small pins stabbinginto the skin.Tactile display designs have used solenoids [Fischeret al, 1995], shape memory alloy [Howe et al 1995;Hasser and Daniels 1996], and pneumatics [Cohn etal 1992]. Electrocutaneous stimulation [Kaczmarek etal 1991] is mechanically quite simple; however, theperceptual e�ects are hard to analyze. Human tac-tile perception is not as well understood as the humanvision system. Some areas, such as human tactile sens-ing sensitivity, sensor density, and spatial and tempo-ral frequency response have been studied [Lederman1978; Phillips and Johnson 1981; Loomis and Leder-man 1986; Shimojo et al 1997; Tan 1995; Singh 1997].The teletaction problem can be split into threeparts, a sensor side, a stimulator side, and a com-munications channel (Figure 2). The communicationschannel is replaced with direct contact between thesensor and stimulator to avoid aliasing problems. Thesensor is represented by one elastic layer, and the dis-play is represented by another elastic layer. Withelastic layers between the stimuli and �ngertip, wetest two di�erent con�gurations of elastic layers tosee if transmission of shear stress a�ects the percep-tion of grating orientation. One of the elastic layersconsists of two 1mm thick pieces of silicone rubber(Dow Corning's HSII). This represents full normal andshear stress information transmission between the tac-tile sensor and display. The other elastic layer consistsof two 1mm thick pieces of HSII with a thin layer oflubricant between them. This represents full normaland reduced shear stress information transmission be-tween the tactile sensor and display. Testing humanperception of spatially varied stimuli will determine
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For a basic model of the sensor, stimulator, and �n-ger, we use the half-plane elastic analysis of Phillipsand Johnson [1981] as a starting point. The planestress assumption is used for our analysis since it cor-relates better with the response of mechanoreceptorsin the �ngers of macaque monkeys [Phillips and John-son 1981].The indentations presented to the �nger by thestimuli are represented as line loads applied to therubber layer. These line loads are constant along they-axis, but vary along the x-axis. For planar stressanalysis, we take a thin slice from the x-z plane, asshown in Figure 3b.Starting with the stresses in a slice for a normalline load applied at the surface [Johnson 1985] andfollowing the same analysis as [Fearing et al 1997], thenormal strain at depth z due to a line load with normalcomponent P and tangential component Q is:�z = �zp + �zq = 1E (�z � ��x) + 1E (�z � ��x)= �2Pz�Er4 (z2 � �x2) + �2Qxz�Er4 (z � �x)= �2z�Er4 (P (z2 � �x2) +Q(xz � �x2))This is not what the human measures, but is easilyto mathematically compute, and is a good �rst orderapproximation.We assume a normal frictionless indentation, so�xz(x) = 0 at the contact surface. The relations ofthe blocks from Figure 4 based on line load equationsfrom [Fearing, Moy, Tan] are as follows:hzz(x) = �2z3�r4 ;Hzz(s) = �2�ze�2�zs( 12�z + s);hxz(x) = �2x2z�r4 ;Hxz(s) = �2�ze�2�zs( 12�z � s);h�z(x) = �2xz2�r4 ;H�z(s) = j2�zse�2�zs;hz� (x) = �2xz2�r4 ;Hz� (s) = j2�zse�2�zs;hx� (x) = �2x2z�r4 ;Hx� (s) = j(2� 2�zs)e�2�zs;where z is the depth of interest, s is the spatialfrequency and is � 0, and r2 = x2 + z2.From the block diagrams and relations, transferfunctions are calculated for both systems. With nolubricant between the rubber layers (shear stress in-formation transmitted), the overall frequency responsefor the teletaction system is:Hs(s) = F [�z(x; z = d1 + d2)]F [�z(x; z = 0)]= 1Ee�2�(d1+d2)s(12 + 3�(d1 + d2)s)2
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ection pro�le corresponding to a 4.0mmperiod grating indenting 2.0 mm, as shown in Figure6a, we calculate a line load pro�le that would pro-duce this de
ection pro�le. Knowing that the normal
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Figure 5: Frequency responses when d1 = 1:0 mm andd2 = 1:7 mmstress should be zero where there is no contact withthe grating, and limiting our surface normal stress toonly have compressive components, we are left with asurface normal stress pro�le, �z(x), shown in Figure6b. The de
ection pro�le corresponding to �z(x) canbe found by convolving �z(x) and c(x), as de�ned inthe Appendix, and is shown in Figure 6c.From the surface normal stress, we can calculatethe normal strain pro�le, �z(s), for the two di�erentsystems shown in Figures 4. A modulation index iscalculated for each of the normal strain pro�les. Thenormal strain pro�le from -10 mm to 10 mm (to avoidthe edge e�ects) can be approximately represented as�z(x) � �(1 + �cos(!x))where � is a scaling constant, ! is the frequency of thegrating, and � is the modulation index. The two nor-mal strain pro�les are shown in Figure 7. As predictedby Figure 5, the modulation index when no shear in-formation is transmitted is higher than when shearinformation is transmitted. Figure 8 shows the mod-ulation indices as a function of the grating frequencyused as the input. We assume that each subject hasa threshold modulation index. Any grating that hasa higher modulation index will be perceived. Theo-retically, at a su�ciently high modulation index, allsubjects should be able to perfectly discriminate ori-entations. With lubricated elastic layers, we predictthat gratings of the same period will have a highermodulation index. If the increase in modulation in-dex crosses the subject's threshold, then orientationdiscrimination should be greater than chance. Thus,with lubricated elastic layers, higher frequency grat-ings should be detected.3
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Figure 9: Testing apparatus: a) Top view of overall setup,b) Front view of the tables, stimuli holder, and stimuli, c)Side view of the �nger rest3 Experimental MethodsTo test the thresholds of human tactile resolutionwith and without the transmission of shear stress in-formation, we built a system which presents stimuliwith di�erent spatial frequencies and orientations andprovides easy interchange for two di�erent rubber lay-ers. The system provided accurate position controlrepeatability.3.1 ApparatusWe developed a system that allows us to quicklypresent stimuli patterns to the subject in an accuratemanner. The motion control was provided by two mo-torized linear tables and one motorized rotary tablecon�gured in a x; y; and � orientation as shown inFigure 9a. The motorized tables were controlled bya Pentium based PC running Windows NT 4.0. Thecontrol program recorded the subjects' responses.Bolted onto the rotary table were two stimuli hold-ers allowed for 10 stimuli to be used in each experiment(Figure 9b). Wax blocks with horizontal or verticalgrating patterns were placed into the holders. Thegrating patterns had periods ranging from 2.4 mm to4.8 mm in 0.6 mm increments with a 50% duty cycle.This narrow range of periods was based on the results

of Tan [1995]. The rubber layer was either a solid2mm silicone rubber sheet or two 1 mm silicone rub-ber sheets with a thin layer of lubricant in between.We used a vegetable oil spray, PAM2, as the lubricantas other lubricants we tried either dried up too quicklyor reacted unfavorably with the silicone rubber. The2 mm thickness for the rubber layer was used basedon having an actuator array with 2 mm spacing be-tween the actuators. The 1:1 ratio of spacing and layerthickness gives good anti-aliasing characteristics andsignal to noise ratio.The subject's right index �nger was placed in a po-sition such that the presented stimuli would come intocontact normally with the �ngerpad. It was essentialthat no extraneous information was given to the sub-ject by having the stimuli contact obliquely and slideacross the �nger when coming to the �nal contact po-sition. Two safety devices were incorporated into thedesign of the system. An emergency stop button waslocated in an easily accessible place which would im-mediately stop all motion of the motor tables. Theother safety device was a magnetic breakaway locatedon the �nger rest.3.2 ProcedureOur goal was to measure change in tactile spatialsensitivity without the transmission of shear stress in-formation. Therefore, we designed experiments thatmeasured the threshold of orientation detection withand without the shear stress information.The experiment consisted of two trials. For theanti-aliasing spatial low-pass �lter, one used a solid2mm silicone rubber sheet and the other used two 1mm silicone rubber sheets with a thin layer of PAM inbetween. Which trial was completed �rst was decidedrandomly.In each of the trials, the subject extended theirright index �nger and placed it on the �nger rest (Fig-ure 9c). The �nger rest was adjusted to insure thatcontact with the stimuli would occur in the normaldirection of the �ngerpad. The control program thenallowed the subject to choose how much the stimuliwould indent into their �nger. The setup was cali-brated with a dial indicator to insure that each stim-uli would indent to the chosen distance (error of 25um). The control program then presented each of theten stimuli �fteen times in a random order. Of theten stimuli, there were 5 distinct frequencies testedin both orientations. This results in thirty points perfrequency tested with half of the points in each orien-tation. Thirty points per frequency was used becausethe normal distribution is a good approximation, re-gardless of the shape of the population, if the samplesize is greater than or equal to thirty [Walpole andMyers 1993].After the control program presents the stimuli, thesubject responds with a '0' or '1' corresponding to2American Home Products, Inc.5



Figure 10: Subjects' response for perceived orientationMaterials Friction Coe�.Rubber/wax 1.4Rubber/Rubber (no lubricant) 2.7Rubber/Rubber (lubricant) 0.1Table 1: Measured coe�cients of frictionwhich orientation was felt (Figure 10. The trial wasthen repeated with the other rubber layer. Each trialtook approximately 30 minutes and could be com-pleted on di�erent days, if necessary.3.3 Friction coe�cientsWe measured friction coe�cients between rubberand wax, and two sheets of rubber, with and withoutthe lubricant. A mass was placed on top of the ma-terials being tested. Measuring the horizontal forceneeded to move the rubber gives the friction coe�-cient. As shown in Table 1, there is a signi�cant de-crease in friction with the lubricant. The low fric-tion between the lubricated layers corresponds to areduction of �xz(x; z = d1) applied to the second elas-tic layer (Figure 4b). Only the normal stress pro�le,�z(x; z = d1) is transmitted to the second elastic layer.4 ResultsThe experiments were run on 4 human subjects (3male, 1 female). All subjects were volunteers, and onesubject was familiar with the experimental procedureand apparatus. The subjects' results are shown inTable 2. Graphs of the data are shown in Figure 11.We use 75% correct, the midpoint of chance (50%)and perfect discrimination (100%), as the threshold ofperception.In the shear case, subject 3 did not cross the 75%threshold, and subject 4 could not discriminate theorientation on the 4.8 mm period grating, but wasable to on the 4.2 mm grating. In the no shear case,all subjects' discrimination period either improved orstayed the same. The results show that reducing theshear stress information for a static normal stimulidoes not deteriorate the perception of orientations. Insome subjects, perception of orientations improved athigher frequencies.Looking at the average of all the subjects (Figure12), we see that at a 2.4 mm period grating, the per-centage correct is approximately chance. As the grat-ings get more coarse, the percentage correct tends to

ShearPeriod (mm) 2.4 3.0 3.6 4.2 4.8Subject 1 40 50 77 93 97Subject 2 67 53 53 73 87Subject 3 43 47 37 70 73Subject 4 57 50 57 77 40Average 51 49 55 78 73Reduced ShearPeriod (mm) 2.4 3.0 3.6 4.2 4.8Subject 1 40 70 80 87 100Subject 2 70 50 50 100 97Subject 3 67 57 50 100 93Subject 4 57 90 90 90 100Average 58 66 67 93 97Table 2: Raw data from experiments. Numbers are per-cent correct out of 30 trials per period per subjectincrease. In the case without shear information trans-mission, the percentage correct at 4.2 mm and 4.8 mmperiod gratings was much higher than the correspond-ing percentages with shear information.The experiments of [Tan 1995] studied the fre-quency at which subjects would perceive a grating.He presented 
at and grating patterns to determineat which frequency subjects could discriminate a 
atpattern from a grating pattern. The average thresh-old grating period was 4.0mm. This closely agreeswith our results (Figure 12).5 Discussion and ConclusionThe increase in spatial resolution can be best ex-plained by the increase in modulation index for thefrequencies of interest (Figure 8). The model pre-dicted an increase in modulation indices, and the ex-periments veri�ed that at the frequencies tested, thepercentage correct was always greater when there wasno shear stress information transmitted between theelastic layers.If we assume that each subject has a threshold pe-riod, then the tactile spatial resolution should be im-proved by reducing the shear stress information. Thisidea is put to practice in the Sensopad, a device whichaids in breast self examinations. It is constructedby placing silicone 
uid in between two layers of sil-icone rubber. Its claim of enhancing the perceptionof small embedded objects was qualitatively agreedupon, though no quantitative data was taken.In designing a teletaction system, it is importantto consider what type of contacts the sensor will en-counter. If the sensor operates in an environmentwhere contact is composed of mainly normal stresses,the reduction of shear stress information can be ben-e�cial by enhancing the higher frequency informationpresent in subsurface skin strain. An example of such6
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line load, the de
ection function, c(x), is space in-variant, and the overall de
ection pro�le is the su-perposition of de
ection pro�les from the individualline loads. Discretizing c(x), we can represent the dis-cretized de
ection pro�le d(xi) as:d(xi) = nXj=1 c(xi � xj)p(xj) (2)where p(xj) is the discretized line load pro�le, andn is the number of points representing the pro�les.Rewriting equation 2 least squares problem. Givena de
ection pro�le, d and the de
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