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ABSTRACT 

 

Elastic rod theory and principles of contact mechanics motivate the development 

of a novel, shear-activated, microfiber array adhesive.  Unlike with conventional Pressure 

Sensitive Adhesives (PSAs), the microfiber array and backing are composed entirely of a 

stiff, glassy polymer (polypropylene, elastic modulus E = 1 GPa) and an externally 

applied shear load is required to achieve contact with a substrate.  Results from a Shear 

Power Test on glass indicate an interfacial shear strength of 5 kPa over 4 cm2, consistent 

with the theoretical prediction and a factor of 1000 greater than a smooth polypropylene 

sheet of similar thickness. 

 

INTRODUCTION 

 

Motivated by principles of rod theory and contact mechanics, scientists and 

engineers are developing a new class of microfiber array adhesives [1].  Still in its early 

stages, this emerging field aims to introduce adhesives that are pressure-sensitive, 

directional, reusable, biocompatible, temperature resistance, and self-cleaning.  An 

example of adhesion with a microfiber array is presented in Figure 1.  Unlike a 

conventional Pressure Sensitive Adhesive (PSA), this adhesive is composed entirely of a 

stiff, glassy polymer (polypropylene, elastic modulus E = 1 GPa).  High elastic modulus 

correlates with high wear resistance and low tack and so may be essential for reusability 

and self-cleaning.   

The polypropylene fibers shown in Figure 1 have a radius R = 0.3 m, length L = 

20 m, and density D = 42x106 fibers/cm2 and are on a 35 m polypropylene backing.  

Unlike the ultrahigh friction arrays presented in [2], these samples have a naturally planar 

backing.  Hence, intimate contact is possible without needing to press the sample into a 

glass substrate [3].  However, such contact does require an applied shear load.  Once this 

shear load is removed, the sample spontaneously delaminates from the substrate and can 

be easily removed. 

This unique shear-activated adhesion property follows from elastic rod theory and 

contact mechanics.  Here, a model is derived that predicts shear strength based on the 

mechanics and geometry of the microfibers and the interfacial properties between the 

microfiber tip and substrate.  Design criteria are presented to determine the appropriate 

microfiber geometry for shear-activated adhesion with any selected material.  

 



MODEL 

 

The remarkable adhesion demonstrated in Figure 1 is explained by a shear-

activated adhesion model similar to that used by setal arrays in a natural gecko adhesive 

[4].  In their undeformed configuration, the vertically aligned microfibers exhibit 

considerable compliance in compression (by buckling, see [5]) but are stiff in tension.  

While compressive compliance is sufficient for ultrahigh friction [2], pure shear adhesion 

also requires tensile compliance particularly in the presence of interfacial gaps, which 

may result from substrate roughness, fiber length variation, backing curvature, or 

misalignment.   

 

 
 

Figure 1  2cm x 2cm array of vertically aligned polypropylene 

microfibers supporting 200 grams in pure shear;  (inset) SEM image of 

microfibers (bar = 20 m) 

 

 

 

 

 

 

 

 

Figure 2  (a) Microfiber array and rough substrate with no external load;  

(b) external shear load Vt ;  (c)  free body diagram of array. 

 

As illustrated in Figure 2(a), contact between the array and substrate is generally 

poor in the absence of externally applied forces.  For simplicity, it is assumed that the 

fibers have equal length and a planar backing and that the interfacial gaps are due to 

substrate roughness alone.  For stiff materials (E  1 GPa) like polypropylene, the fibers 
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are virtually inextensible and so overcoming the interfacial gaps and achieving complete 

contact requires the fibers to bend, as illustrated in Figure 2(b).  A free body diagram of 

the complete system is presented in Figure 2(c).  Here, each contacting fiber is subject to 

an interfacial shear force V and normal force F.  For some fibers, F is tensile (i.e. F > 0) 

while for others it is compressive (F < 0) or equal to zero.  Under a pure shear load Vt, 

the net normal force is zero (i.e. F = 0) and the net shear force acting on the fiber tips is 

V = Vt.   

During sliding, V is approximately equal to 

 

 V =  Ar (1) 

 

where  is the interfacial shear strength per unit area of contact and Ar is the real area of 

contact between the fiber tip and substrate.  Assuming a rounded tip, Ar is obtained from 

Johnson-Kendall-Roberts (JKR) theory: 
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where  is Poisson’s ratio, Rt is the tip radius of curvature, and Wad is the work of 

adhesion per unit area of contact [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Free body diagram of an individual fiber of length L. 

 

 As illustrated in Figure 3, it is assumed for simplicity that the deformed fiber 

follows a circular arc of radius .  The total potential energy of the fiber is thus 
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where L is the fiber length, I = R4/4 is the area moment of inertia, and R is the cross-

sectional radius of the fiber.  For a prescribed value of F, dU/d = 0 at equilibrium.  

Noting that 
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the fiber curvature at equilibrium is approximately 
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The corresponding height of the fiber tip is 
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The maximum height of a sheared fiber corresponds to x evaluated when F = F0, where 

F0 is the maximum tensile load that the substrate can transfer to the fiber tip before the tip 

spontaneously detaches.  According to JKR theory [6], 

 

 F0 = 1.5  Wad Rt . (7) 

 

The largest interfacial gap that the fiber tip can cross is thus on the order of 
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DESIGN CRITERIA 

 

Substituting equations (2) and (5 – 7) into (8) yields  
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That is, for all the fibers to make contact under a pure shear load, the amplitude of the 

substrate roughness (or fiber length variation, backing waviness, etc.) must be less than or 

equal to .  As shown in equation (9),  is a function of fiber length L, radius R, tip 

curvature Rt, elastic modulus E, interfacial work of adhesion Wad and interfacial shear 

strength .  Alternatively, (9) may be used to select the appropriate microfiber geometry 

for a prescribed substrate roughness and material. 

 Approximating the average sliding resistance of each contact as V =  (Ar)F=0, the 

total interfacial shear strength will be 

 

 
( )

3/2
2

tad

2

E

RW1
D36.18S







 −
= , (10) 



 

where D is the fiber density.  Previously, it had been shown that fibers have a propensity 

to adhere to one another if spaced too closely together.  In order to avoid fiber clumping, 

the density cannot exceed the critical value [7] 
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 Consider, for example, the polypropylene microfiber array presented in Figure 1.   

For polypropylene, E = 1 GPa and   = 0.4, and on glass,  = 10 MPa and Wad = 30 

mJ/m2 [8].  For simplicity, it is assumed that the fiber tips are hemispherical, such that Rt 

= R.  For maximum density without clumping, S is calculated for D = Dcr using equations 

(10) and (11).  These results are plotted in Figure 4 for fibers of radius R  1 m and 

length L  40 m.  Figure 4 also shows the corresponding critical roughness amplitude .  

 

0.
00

1

0.
00

1

0.
00

1

0.
01

0.
01

0.
01

0.1

0.1

0.1

0.
1

1

1

1

1

10

10

10

10

0.1

0.1
0.1

1

1

1

1

5

5

5

5

10

10

10

10
20

20

20

20

40

40

40F
ib

e
r 

R
a
d

iu
s,

 R
 (

m
)

Fiber Length, L (m)

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

 
 

Figure 4  (black) Estimated shear strength S (kPa) of fiber array in 

complete contact with a substrate (density D = Dcr);  (gray)  maximum 

allowable amplitude  (m) of interfacial roughness for complete contact 

between fiber array and substrate during sliding. 

 

 It is apparent from Figure 4 that fiber geometries with greater shear strength 

correlate with a lower tolerance for interfacial roughness.  For example, lower aspect 

ratio fibers allow greater packing density and hence exhibit S > 10 kPa.  However, such 

fibers also exhibit less compliance during sliding on account of their large bending 

stiffness and thus cannot conform to surfaces with roughness  > 100 nm.   

For L = 20 m and R = 0.3 m, the estimated shear strength is close to S = 5 kPa 

and the allowed interfacial roughness for complete contact is approximately  = 1 m.  

Interestingly, this is consistent with the experimental result presented in Figure 1, where 



the arrays support a 5 kPa shear load with a fiber length variation on the order of 1 m.  It 

should be noted that the experimentally tested fibers have a density of D = 42x106 cm-2, 

well above the critical density of Dcr = 7.7x106 cm-2, which explains the mild amount of 

clumping observed under SEM.  Moreover, the fiber tips are toroidal rather than 

hemispherical and so JKR theory may not be applicable. 

 

CONCLUSION 

 

A mathematical model is introduced that explains the shear-activated adhesion of 

vertically aligned microfiber arrays.  The model is based on elastic rod theory and JKR 

contact mechanics.  Three important design criteria (9 – 11) are presented that relate 

microfiber geometry (R, L, Rt, D), mechanical properties (E, ), and interfacial properties 

(Wad, ) with total interfacial shear strength (S) and the maximum allowable amplitude 

() of substrate roughness, array backing waviness, or fiber length variation.    
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