

Abstract—Ribbon folding is a new approach to structure
formation that forms higher dimensional structures using a
lower dimensional primitive, namely a ribbon. In this paper, we
present a novel algorithm to address path planning for ribbon
folding of multi-link planar structures. We first represent the
desired structure with a graph-based representation of edges
and nodes. We then use graph theory to claim that for any object
which is represented by a connected graph, there exists a
continuous path which visits all of its edges. Finally, we develop
a path planning algorithm that takes into account the physical
constraints of the folding machine. The input is the desired
planar structure, and the output is the optimal sequence of
ribbon folds for creating that structure using the minimum
number of folds. The results of this algorithm are successfully
used to fold various planar structures.

I.! INTRODUCTION

Significant progress has been made in the area of additive
structure formation. For instance, 3D printers have made a
significant impact in rapid prototyping and manufacturing by
laying down thin layers of material in succession to construct
solid objects. Such 1-dimensional approaches to structure
formation use string or fiber-like material as the building
primitive. Having such a simple building primitive does not
allow for more complex features, such as joints and moving
parts for crawling robots or other structures. Furthermore, such
methods require a lot of material and time, as well as a large
and complex machine which is not useful for portable
applications such as in-field repair. The 2-dimensional
approach to structure formation looks at areas of sheet folding,
where the building material can be of any specified length and
width. Such folded structures (Figure 1) have the advantage of
introducing less friction to systems, being lightweight,
decreasing build time, and using less material than
conventional additive techniques. However, sheet folding
needs a larger area for manufacturing, entails dexterous
manipulation, and requires either human assembly of
separately constructed segments or extensive engineering to
create the design for a single fully-connected object. Thus, it

remains an open problem to develop a method of structure
formation which allows for more complex structural features,
while addressing concerns such as speed, choice of materials,
generalizability, complexity, size, and portability of machine.

Inspired by ribosomal assembly that occurs in biological
systems, ribbon folding is a new method of manufacturing
that forms higher dimensional structures using a lower
dimensional primitive, namely a ribbon. Using ribbons, one
could create shells, fill volumes, cover surfaces, and produce
other outputs desired from a fabrication method. Additionally,
the ribbon material itself is a more complex primitive than just
a string or fiber, so it can be altered and chosen to allow
flexibility, mobility at joints, or curvature. It further paves the
path for more complex construction such as knots, holes, and
empty spaces. Ribbon folding is considered to be a 1.5-
dimensional approach because the building material is of
finite height and infinite length. In this paper, we focus on the
planar case, which includes interesting structures (Figure 2).
Planar kinematic structures, in particular, lend themselves
well to ribbon folding. Of specific interest is the application
of ribbon folding to areas of robotics, from rapid prototyping
to robotic self-assembly or self-repair.

Ribbon folding takes a passive approach: actuators are
only used once to assemble the structure, instead of being in-
built at each joint to fold it all at once. While this serial
building approach may take more time than a parallel
approach, it allows a simpler and less expensive method,
where the number of actuators are independent of the number
of joints in the object. RATChET [1] follows a similar
philosophy of using an external manipulator to fold a chain
under the force of gravity, simplifying its design and
eliminating the need for a motor at each joint. This serial
approach also has a larger workspace than parallel self-folding
approaches; larger structures can be created while at the same
time using less building material.

To perform the ribbon folding, we aim to use the simplest
possible machine that allows construction of the largest range
of structures. We designed a machine that folds the desired
shape from one piece of ribbon (continuous), one fold at a time

A Path Planning Algorithm for Single-Ended Continuous Planar
Robotic Ribbon Folding

Anusha Nagabandi, Liyu Wang, and Ronald S. Fearing

Figure 2. Practical applications of ribbon folded robotic kinematic
structures such as (a) a four-bar linkage [2], and structural designs

such as (b) a truss [3] and (c) a honeycomb lattice [4]

b) c) a)

Figure 1. Folded robots like this OpenRoACH [5] contain planar
components, such as 4-bar linkages and claws, that can readily be

ribbon folded

(serial), from one end to the other (sequential), and from only
1 end (single-ended). Through the serial, sequential, and
single-ended requirements, we eliminate the need for a
dexterous manipulator with high degrees of freedom. The
continuity requirement precludes the need for an additional
mechanism to later reassemble the separate pieces that are
created, or the need for a human assembly step. An additional
benefit of continuity in the structure is that it forms a backbone
for future additions, such as wiring and electrical connections
throughout the structure.

As explained above, our problem statement is to address
sequential single-ended folding of a continuous ribbon into a
multilink planar structure. In this paper, we begin by
discussing related work in structure formation. We use graph
theory to validate our claim that for any object which is
represented by a connected graph, there exists a continuous
path which visits all of its edges. Then, we show our proof-of-
concept ribbon folding machine and discuss the constraints
that minimalistic machines impose on the algorithm. Next, we
present a novel algorithm, which takes physical constraints
into account, to generate the optimal folding sequence for
creating planar structures. Finally, we employ this algorithm
and discuss results, extensions, and future plans.

II.! PRIOR WORK

Previous research efforts have explored approaches such as
programmable matter [6], tetrahedron shaped modules folded
into arbitrary 3D shapes [1], and chain folding for filling in an
object’s volume. For creating 3D objects, Cheung et al. [7]
discretizes an object’s volume into voxels and then uses a
universally foldable string to follow a Hamiltonian path
through these voxels. A Hamiltonian path is one which visits
each node of a graph, and this translates to physically filling
in the object’s volume. Relatedly, ribbon folding creates
objects by covering each edge with ribbon, and recent work
[8] proposes a general workflow for robotic ribbon folding.

Folded structures have been well studied through
applications such as joints for insect-like robots [9], wings for
flying robots [10], pop-up book MEMS with features on the
micron scale [11], and shape-memory composites that fold
themselves along embedded hinges to create self-folding
machines [12]. However, automated folding for structure
formation has not yet been thoroughly studied. Lu and Akella
[13] apply robotic sheet folding to the automation of the
packaging process. By representing the carton as a
manipulator with revolute joints and links, they demonstrate
a motion planning algorithm which generates a folding
sequence for an industrial robot to fold a carton from a sheet.

The area of robotic origami folding also involves the
fabrication of 3D structures from planar material. It lends itself
to automated assembly, self-assembly, and printable robotics
[14]. Origami offers many challenges, such as modeling
structures, planning folding sequences to achieve that model,
and manipulating the actuators to create the object. Greenberg
et al. [15] model kinetic origami behavior using pseudo-rigid-
body models because the origami is compliant. Greenberg [16]
uses origami to better understand flat-folding mechanisms and
lamina emergent mechanisms (LEMs) in general. Balkcom
and Mason [17] create kinematic models by representing
creases as revolute joints and uncreased paper as rigid.

In the area of folded structures in robotics, Hoover and
Fearing [18], Onal et al. [14], and Haldane et al. [5] make use
of inexpensive materials to rapidly create fully functional
prototypes of folded millirobots. The time saved from such
folding processes allows for multiple improvement cycles and
immediate discovery of design flaws. Carbon fiber
components for milli-robot prototyping [19] are used to create
links and flexure elements, since many basic robotic structures
can be fabricated from simply these two elements. Micro
assembly for the rapid prototyping of structures [20] uses a
milli-robot to manipulate beams and attach them to polyester
flexures, which serve to replace revolute joints. Similar to our
algorithm’s search for folding angles, automation of this micro
assembly process involves determining folding angles for
bending stainless steel sheets into triangular configurations.

Algorithmically, the problem of hyper-redundant serial
chain manipulators [21], [22] is similar to ours. They have
numerous actuators to allow many degrees of freedom, can
avoid obstacles, and aim to achieve some goal configuration.
Instead of manipulating a serial chain into a desired
configuration, our problem has the additional variable of link
lengths. We must create a serial chain out of the desired
structure, so the chain itself is not known ahead of time.

From Demaine’s work [23], [24], which includes paper
folding and unfolding polyhedra, of particular interest is his
work in the folding of planar linkages. Demaine states that in
the context of not allowing linkages to cross (self-intersect),
three general types of linkages are commonly studied:
polygonal chains with a single path solution, closed polygonal
chains with a single cycle solution, and polygonal trees with a
single tree solution. He also states that other more general
graphs, such as the ones discussed in this paper, have only been
studied in the context of allowing the linkages to cross. In
related work, Arkin et al. [25] study bending wires and sheet
metal into a specified structure. They study a variation of the
carpenter’s ruler problem where they must decide whether a

(a)

(b)

(c)

Figure 3. (a) The three linkages commonly studied in the context of
non-crossing linkages [23], (b) Unfolding paperclip-like structures

by unfolding one vertex at a time, but in any order [25], (c)
Examples of the much larger subset of structures discussed in this
paper, folded in a continuous, sequential, and single-ended manner

non-self-intersecting wire structure can be straightened, but by
modifying only one joint at a time. For a non-self-intersecting
linkage, Connelly et al. [26] and Streinu [27] show that it can
always be straightened by modifying one joint at a time. With
even a single vertex degeneracy, Arkin et al. [25] show that it
becomes NP hard to decide if the shape can be straightened
one joint at a time. Folding a linkage is simply the reverse of
unfolding it, but our problem setup is inherently different. We
allow repeated edges, which differentiates it from simply
reversing an unfolding. We also allow only sequential and
single-ended folding. Furthermore, we demonstrate our
algorithm on graphs with numerous vertex degeneracies.

III.! UNDERLYING GRAPH THEORY SHOWS GENERALITY

The goal of our algorithm is to take a structure and
automatically generate an ordered list of link lengths (where
to fold) and a sequence of folding angles (how to fold). Our
approach is to first create a graph-based representation of the
structure’s edges and corners (Figure 4), so the goal is
reformulated as finding a continuous path through the graph
that traverses all edges without crossing through an edge.

For some graphs, there exists an Euler path, which is a path
that traverses all edges exactly once. It is intuitive that in order
to avoid repeating edges during a graph traversal, every edge
that enters a node must also have a corresponding edge that
exits the node. Hence, there are two cases in which a graph has
an Euler path: There are 0 nodes of odd degree, so all nodes
have an even number of edges, or there are 2 nodes of odd
degree, where those 2 nodes serve as the starting and ending
nodes of the traversal. Furthermore, if an Euler path does exist,
there are already complete algorithms such as Fleury’s
algorithm and Hierholzer’s algorithm [28] for finding it.

Alternatively, for graphs that do not have an Euler path, it
is possible to Eulerize the graph by doubling certain existing
edges: Doubling a graph edge physically corresponds to
retracing that edge with the ribbon. To show that repeating
certain graph edges brings about the existence of an Euler path,
we look at the worst case scenario of doubling every edge.
Since every node in this resulting graph has even degree, the
graph has an Euler path. This illustrates our claim that for any
object represented by a connected graph, we can always find a
path that visits all of its edges.

IV.! CUSTOM RIBBON FOLDING MACHINE

The ribbon that we use is shown below as part of Figure 6;
slits in the ribbon are created through the Smart Composite
Microstructures (SCM) process [29], and these slits serve as
joints in the structure. Initially, the ribbon is coated in glue;
therefore, we heat the joint before folding it and letting it cool.
Alternatively, joints can be left flexible by simply making a
slit in the ribbon but not applying any glue to it. Our proof-of-
concept ribbon folding machine consists of 3 motors: one
feeds the ribbon into the machine and keeps it moving
forward, one moves the end effector down and up to make
contact with the ribbon, and one moves the end effector
clockwise and counterclockwise to fold the ribbon. These
motors, in combination with automated gluing and cooling,
make up the overall folding sequence.

V.! ALGORITHM
Arising from both the nature of ribbon folding and the

minimalistic design of the folding machine, our problem
definition imposes constraints: using one continuous ribbon,
folding only from one end, progressing sequentially, and
preventing self-intersections. This makes the path planning
problem more rigorous than simply finding an Euler path
through the graph; we must find a path that satisfies constraints
at all stages of the folding. A guess-and-check approach for
selecting which edges to repeat in order to meet constraints
leads to an infinitely large state space. Below, we present an
algorithm for which the output is the optimal sequence of
folding angles and link lengths to create the structure.

A.! Variation of A* Search
This algorithm formulates the task into a search problem

where it creates a search tree in its attempt to find the optimal
path. A* search is a path planning algorithm [30] that is
commonly used in graph traversal. In our case, the start point
is a state in which no edges have yet been traversed, and the
end point is a state in which all edges have been traversed.
Each node in this search tree is represented by a state, which
holds information regarding the steps taken to get there, as

Desired Structure Connections Graph Representation
Representation

Figure 4. Graph-based representation of planar multi-link structure

Check for Euler Path Eulerize, if needed Path

odd odd

odd

 odd
odd

 odd

Figure 5. Euler paths traverse each edge exactly once. If a graph has
either 0 or 2 nodes of odd degree, an Euler path exists. Otherwise,

edges in the graph are repeated until an Euler path does exist.

odd odd

Figure 6. The ribbon folding machine!

Feeding
motor

Ribbon Heating
unit

End effector
for folding

well as what remains. From the start node, we calculate the
cost function for visiting each neighboring node and use that
value to enter these nodes into the priority queue (our search
tree). At each next step, we choose the node from the priority
queue that has the least cost, and we take a step in that
direction. Then, we add that node’s neighbors to the priority
queue and continue until a goal state is reached. A notable
feature of this formulation is that in order to incorporate
physical constraints, we only add a node onto the priority
queue if making that fold does not violate constraints. To this
end, we need to verify if a given path satisfies constraints:
This subtask is explained in detail in the next section.

The cost function mentioned above is the sum of two
values: distance travelled to get to the current node, which is
the number of edges traversed thus far, and a heuristic
estimate of the distance remaining to the goal, which is the
number of unvisited edges. Since our heuristic function never
overestimates the cost, this algorithm is guaranteed to return
the optimal path. Note that we allow repeated edges in order
to widen the subset of achievable structures. However, this
algorithm inherently avoids meaningless loops because the
cost function increases with the number of steps taken; edges
are not repeated unless no better option exists.

B.! Subtask: Constraint Violation
Given a list of edges in the order that they are traversed, we

must verify whether a path violates the physical constraint. To
reiterate, we define a collision to be when the shape must go
through the building ribbon (or itself) in order to finish its
rotation, as shown in Figure 7. The algorithm’s input is each
node’s absolute coordinates, as well as the path’s ordered
edges. Algorithm 1 keeps track of a collection of (x, y)
coordinates. One by one, it introduces each edge into the
collection and calculates the angle it makes with the
horizontal. By combining knowledge of the previous edge’s
angle and the current edge’s angle, it finds the angle
difference. Next, it simulates that fold by incrementally
rotating all points while checking for collisions.

Algorithm 1: Check Constraint Violation: Self-intersections
Input:

!, graph that lists the node connections
", x and y locations of each node
#, list of ordered edges in the path which needs verification

Output:
$%&' or ()*+', for “does” or “does not” satisfy constraints

Do: For each ',-' in #:
 Set ./,'1 = 2',-'[0] and ./,'2 = 2',-'[1]
 Append node locations "[./,'1] and "[./,'2] to 7/8.9+
 .':_).-*' = angle that ',-' makes WRT horiz
 /*,_).-*' = angle that 7%'<_',-' makes WRT horiz
).-*'_,8=='%'.>'2 =2 /*,_).-*'2– .':_).-*'
 =/*,8.-_).-*'2 = 180 –).-*'_,8=='%'.>'
 wrap =/*,8.-_).-*'2between -180 and 180
 For each point in 7/8.9+:

Calculate @ from each node’s (x,y) to the (0,0) pivot point
Find the @ closest to the building ribbon (based on turn direction)

 222222222@ABCC = angular distance between @ and the building ribbon
If @ABCC <)E+(=/*,8.-_).-*'), return False

**Note: tolerances and other small details omitted from this description

C.! End Search: Answer both “can do” and “cannot do”
By following the procedure above of keeping nodes on a

priority queue, tracking state costs, and monitoring edges, we
can successfully find the optimal path for folding a ribbon into
the desired shape. However, not every object contains a
continuous and end-folded solution. If we work under the
constraint of not wanting to repeat any edges, the search space
is finite. In the general case, however, our current algorithm
has an infinite search space, so if no valid path exists, there is
no clear termination point for the search. Thus, we must find
a condition that leads to the eventual end of the search, where
no nodes remain on the search tree.

An intuitive way to think about the physical constraints
explained above is to realize that the folding should generally
begin inside of a shape and work its way outward. Once a
region is closed off, the ribbon would need to transect itself to
reach anything inside. Thus, we gain more intuition about
which types of objects are end-foldable. We formalize this as
being unable to enter any convex hull that has already been
created as part of the traversal. This newly phrased constraint

Figure 7. Illustration of Algorithm 1, which checks whether or not a
given path violates physical constraints. From top to bottom, we

incrementally add each edge’s endpoints to the collection of points.
After angle calculations, we rotate the points by the “folding angle.” In

the bottom right image, the folded shape crosses over the building
ribbon during the last rotation, so the physical constraint is violated.

Constraint Violation

Machine, feeds in the ribbon

Building ribbon

Folded ribbon

helps greatly in the pruning of search trees by allowing the
early termination of an entire branch, as shown below.

The search trees are still endless because we allow
repeated edges. Practically, the user would place a physical
limit, stemming from weight or strength restrictions, on the
number of repeats that are allowed for any given edge.
Mathematically, however, we seek a logical bound on the
number of repeats for any given edge; such a bound would
eventually end the search by causing every branch of the tree
to be terminated, even if no valid solution exists.

Claim: For an optimal path under our problem definition of
sequential and continuous folding, the number of repeats on
any edge is less than or equal to the total number of edges.

Proof: Consider a desired structure with N edges, where 'His
the IJK edge and %His the total number of folds performed on
'H. After exploring the graph’s first unexplored edge at the
first time step, the max number of repeats on any edge is 1.

At every following time step, there are 2 options. The first
option is that there exists a valid unexplored edge, in which
case it should be explored. Thus, %H for that edge is 1, and %H
for all other edges remain the same. If that is not the case, then
the second option is that there exists at least one valid
explored edge. From this current LJ, the goal is to reach an
unexplored edge &. Regardless of whether that path is short
or long, each 'H is traversed once along the way. Note that

traversing the same %H more than once while aiming for a
certain goal makes all of the steps in between that repetition
useless. Then, that path would not be optimal. However, if A*
found this path, then no other more optimal path exists. Thus,
in the quest for each unexplored edge u, no edge gains more
than 1 additional repeat. Given that there are N total edges,
then no edge should have more than N repeats at any point in
time during the search. Therefore, the claim is true.

Algorithm 2: Optimal Path for Ribbon Folding, using A*

Input:
2!2, graph that specifies the node connections
 " , x and y locations of each node
 M, starting state: as specified, or a variable to search over
Output:
 N, ordered list of link lengths in the optimal path
2O, ordered list of folding angles for the optimal path
Do:
/7'._+'92= [] //unexplored states
add M to /7'._+'9
while /7'._+'9 isn’t empty:
 >&%%'.9_+9)9' = state from /7'._+'9 w/ lowest cost
 if >&%%'.9_+9)9'. &.'L7*/%',_',-'+ is empty:
 print info //found the optimal path from S to the goal
 return L, A
 remove >&%%'.9_+9)9'2from /7'._+'9
 look at >&%%'.9_+9)9'. 7)9ℎ_ℎ8+9/%R for >&%%_./,'
 for each .'8-ℎE/% of >&%%_./,':
 ',-' = >&%%_./,' to .'8-ℎE/%
 if (adding ',-' doesn’t violate constraints): //use Algorithm 1
 if (not too many repeats on any edge):
 calculate convex hull of explored states
 if (enough non-collinear points to calculate a convex hull):
 if (no unexplored nodes are inside the convex hull):
 remove edge from >&%%'.9_+9)9'. &.'L7*/%',_',-'+
 22222222222222>&%%'.9_+9)9'. >/+92= # explored + # unexplored edges
 add >&%%'.9_+9)9' to /7'._+'9
return //no feasible path exists for the given structure

VI.! RESULTS AND ANALYSIS
Figures 9 and 10 show the resulting optimal folding

sequence from our path planning algorithm for an envelope
shape, a nontrivial geometric shape, and a truss. We have not
optimized the algorithm for time because that was not a top
priority in the exploration into ribbon folding; this can be a
relatively straightforward future improvement. Even so, the
time taken for the algorithm to output the path for the
structures shown above are on the order of seconds on a
standard laptop computer. As shown in Table 1, pruning the
search tree based on the convex hull constraint leads to a
significant reduction in the size of the search tree, or the
number of nodes explored. Furthermore, for shapes that are
impossible to be end-folded in a sequential and continuous
manner, the bound on repeated edges makes it possible for the
algorithm to terminate and relay this information.

As is apparent when comparing the envelope structure (11
nodes explored) with the truss structure, the number of nodes
explored increases rapidly with the number of graph edges.
Looking at the geometric shape vs. the truss shape, we see that
when a shape requires more repeated edges, the number of
explored nodes drastically increases: At each step, it must

There exists an unexplored
node inside the convex hull
of explored nodes. This is
unreachable, regardless of
next steps. Terminate this
branch of the search.

Figure 8. Using the notion of convex hulls to prune the search tree!

explore all options of lower cost before allowing a repeated
edge. Although this algorithm is only used on the planar
subset of structures, it already surpasses human capability.
Especially for objects with a nontrivial number of edges, it is
intractable for a human to visualize thousands of rotations and
manually navigate a rapidly expanding search space.

b) Sequence of Folding Angles

Figure 9. The output of the path planning algorithm for the envelope
shape. The black edges in the visualization of folding angles represents
the most recent edge, and each red circle indicates the axis of rotation

between each step.

a) Resulting Path

c) Ordered Link
Lengths

5

 5

8

5
5

6

5

5

6

8

d) Resulting folded shape

1

2

3

4

5

6

7

8

9

10

Figure 11. Addition of flexible slits (yellow) to allow movement in the
otherwise rigid four-bar linkage, while still allowing for rigid corners to

keep the shape intact during folding. Note that joint placement is
exaggerated here (placed far from rigid joints) for illustrative purposes.

Figure 10. From top to bottom: Visualization of resulting folding angles,
resulting list of ordered link lengths, and resulting folded shape. The
geometric shape is on the left, and the truss structure is on the right.

Links: 7.5, 4.24, 4.24, 6.4, 12,
4.5, 7.5, 6.4, 4.5, 4.5, 8.5, 8.5,
6, 6

Links: 5.7, 4, 4, 5.7, 4, 4, 5.7,
4, 4, 4, 4, 5.7, 4, 4, 4

135°

90°

135°

135°

135°

90°

45°

90°

180°

135°

135°

135°
180°

135°

90°

135°

135°

90°

45°

90°

135°

90°

TABLE I. ! IMPROVEMENT WITH PRUNING AND BOUNDING

Before pruning &
placing bound

After pruning &
placing bound

Structure #Nodes
Explored

Path
Found?

#Nodes
Explored

Path
Found?

 757 Y 309 Y

8832 Y 6476 Y

∞

N/A 25 N

∞

N/A 154 N

∞

N/A 29 N

a. The red dot indicates starting point for this data collection

A.! Extensions to Movable Structures: Creating Free Joints
As mentioned in the introduction, one benefit and

interesting capability of ribbon folding is the ability to have
flexible joints. Since each slit in the ribbon is coated with glue
and then bent into the desired angle, the joints that we have
seen thus far have been relatively rigid. Figures 11 and 12
show examples of attaining free joints by using additional slits
in the ribbon, which are not folded and therefore not coated in
glue. These extra flexible slits are added adjacent to the rigid
object corners. The fixed joints allow the structure to retain
its shape during the folding, and the extra slits allow
movement around the fixed joints to mimic free joints.

While seemingly straightforward to add joints near existing
ones, this technique becomes murky for complex shapes. We
plan to formally explore this in the future, but we leave the
reader with thoughts about decomposing structures into a
representation of fixed and free joints. Note that in our case,
free joints are approximated by straight flexures in the small
angle approximation. Thus, having repeated edges near a free
joint would result in a different type of behavior. To allow the
creation of structures with free joints, we must add a layer

onto our algorithm which intelligently decomposes the
desired structure, separates rigid regions from non-rigid
regions, and specifies which edges can or cannot be repeated.

VII.! CONCLUSION
We have presented a novel path planning algorithm for the

ribbon folding of planar objects. By creating graph-based
representations of structures, we use Euler paths to show that
for any object represented by a connected graph, there exists
a continuous path which visits all of its edges. The path
planning algorithm considers the constraints imposed by our
minimal folding machine, and it results in the optimal
sequence of physically feasible ribbon folds for creating that
structure. This folding technique provides the user a tool
which is simple, but also uses continuity in the path planning
to allow efficient structure creation, rather than simply
constructing small components, which the user would then
need to bring together in an additional assembly step. While
this definitely provides benefits, note that at least some level
of hierarchical decomposition has to occur in most tasks, i.e.
the user would not print out an entire house at once.

While this amalgamation of ideas for the development of a
path planning algorithm for ribbon folding is novel, there are
many improvements and further tasks that remain. In the
worst case of an unbounded search space, such as ours, the
complexity of A* is EA, where E is the branching factor that
indicates the average number of successors per state (i.e.
degree of the node), and , is the length of the shortest
solution, which is unknown and potentially large in our case
of allowing repeated edges. To improve the tractability and
scalability of this algorithm for larger graphs, we must
explore other search techniques that provide a tradeoff
between efficiency and optimality. In the future, we also aim
to find a tighter bound on the number of repeats allowed on
any given edge. For instance, if we begin the path planning
algorithm on the maze structure at the inner-most node, then
64,341 nodes are visited before the search can end and report
that it is not possible. Since the total number of edges in that
object is 14, it is expected that such a high number of repeats
per edge takes a long time to achieve; the search does not end

TABLE II. ! RESULTS OF PATH PLANNING ALGORITHM

Structure # Vertices #Repeated
edges

Avg.
Degree

Time
taken

 9 2 2.8 0.59
sec

 8 2 3.3 20
sec

 7

2 3.1 1.3
sec

13 1 3 1.2
sec

 8

1 3.3 1.6
sec

a. Runtime was not a high priority: Algorithm is not fully optimized for that yet.
Figure 12. (a) The ribbon template for (b) the rigid four-bar structure,

and (c) the ribbon template for (d) a four-bar structure with free joints

(a)

(b)

(c) (d)

quickly. Therefore, finding a lower bound on the number of
repeats allowed per edge would achieve tremendous speed-up
in run time. Furthermore, there still exist a number of areas
that have not yet been addressed algorithmically, such as
structures including curves, surfaces, and higher dimensions.

As we head toward such a minimal universal fabricator,
ribbon folding shows promise of novelty, generality, and
applicability. Particularly in robotics, ribbon folding can serve
as an alternative to current manually fabricated systems which
takes several weeks or months of effort to create. This further
suggests applications in robotic self-repair or shape
adaptation. A robot with limited access to human intervention
and assembly resources could use this on-demand fabrication
to adapt body shape, create new parts, or change its end
effectors as a function of the task and terrain.

Other interesting future directions to explore include using
different materials for the building primitive, incorporating
curvature and additional types of joints, and combining
analysis of object strength with the algorithm for the object
creation. The user could, for example, deliberately request
more repeated folds on certain edges for strength purposes.
Products that display such diversity and utility, built from
nothing more than a primitive material, could revolutionize
on-demand manufacturing. Just as protein folding uses basic
building blocks to construct a multitude of chemicals that
form the basis of all organic life, ribbon folding aims to use
ribbons to solve the structure formation problem.

ACKNOWLEDGMENT
The authors would like to thank David Fridovich-Keil for
insightful discussions.

REFERENCES
[1]! P.J. White, C.E. Thorne, and M. Yim. "Right angle tetrahedron chain

externally-actuated testbed (RATChET): A shape-changing system."
Proceedings of IDETC/CIE. 2009.

[2]! "StateMaster - Encyclopedia: Linkage (mechanical)." RSS Stats. Nation
Master. 27 Jan. 2016.

[3]! "Plane Trusses." Linear Analysis of Skeletal Structures (2004): Auburn
University College of Engineering. 27 Jan. 2016.

[4]! "Honeycomb Core for Lighting." Honeycomb Core for Lighting, 2016.
[5]! D. Haldane, C. Casarez, J. Karras, J. Lee, C. Li, A. Pullin, E. Schaler,

D. Yun, H. Ota, A. Javey, R.S. Fearing. "Integrated Manufacture of
Exoskeletons and Sensing Structures for Folded Millirobots." Journal
of Mechanisms and Robotics 7.2 (2015): 021011.

[6]! S.C. Goldstein and T. Mowry. Claytronics: A scalable basis for future
robots. Robosphere, November 2004.

[7]! K.C. Cheung, E.D. Demaine, J.R. Bachrach, and S. Griffith.
Programmable assembly with universally foldable strings (moteins).
Robotics, IEEE Transactions on, 27 (4): 718 –729, Aug. 2011.

[8]! L. Wang, M. Plecnik, R.S. Fearing. “Robotic folding of 2D and 3D
structures from a linear ribbon.” IEEE Int. Conf. Robotics and
Automation (ICRA), 2016

[9]! K. Suzuki, I. Shimoyama, H. Miura, and Y. Ezura. “Creation of an
insect-based microrobot with an external skeleton and elastic joints,” in
Proc. 1992 IEEE Micro Electro Mechanical Systems. An Investigation
of Micro Structures, Sensors, Actuators, Machines and Robots,
Travemunde, pp. 190-195.

[10]! E. Shimada, J. A. Thompson, J. Yan, R. Wood, and R. S. Fearing.
“Prototyping millirobots using dextrous microassembly and folding,”
in Proc. 2000 ASME Int. Mechanical Engineering Congr. Expo.,
Orlando, pp. 933-940.

[11]! J.P. Whitney, P.S. Sreetharan, K.Y. Ma, and R.J. Wood. 2011, “Pop-
Up Book MEMS,” J. Micromech. Microeng., 21(11), p. 115021.

[12]! S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood. 2014, “A
Method for Building Self-Folding Machines,” Science, 345(6197), pp.
644–646.

[13]! L. Lu, and S. Akella. 1999. Folding cartons with fixtures: A motion
planning approach. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
1570–1576.

[14]! C.D. Onal, R.J. Wood, and D. Rus. "Towards printable robotics:
Origami-inspired planar fabrication of three-dimensional
mechanisms." Robotics and Automation (ICRA), IEEE 2011.

[15]! H.C. Greenberg, M.L. Gong, S.P. Magleby, and L.L. Howell.
"Identifying links between origami and compliant mechanisms." Mech.
Sci 2.2 (2011): 217-225.

[16]! H.C. Greenberg. "The Application of Origami to the Design of Lamina
Emergent Mechanisms (LEMs) with Extensions to Collapsible,
Compliant and Flat-Folding Mechanisms." 2012. All Theses and
Dissertations. Paper 3210.

[17]! D.J. Balkcom, and M.T. Mason. "Robotic origami folding." The
International Journal of Robotics Research 27.5 (2008): 613-627.

[18]! A. Hoover, and R.S. Fearing. “Fast scale prototyping for folded
millirobots,” IEEE Int. Conf. on Robotics and Automation, pp. 886–
892, May 2008.

[19]! R. Sahai, E. Steltz, and R.S. Fearing. "Carbon fiber components with
integrated wiring for millirobot prototyping." Robotics and Automation,
IEEE Int. Conf. IEEE, 2005.

[20]! R. Sahai, J. Lee, and R.S. Fearing. "Semi-automated micro assembly
for rapid prototyping of a one dof surgical wrist." IEEE/RSJ Int. Conf.
on Intell. Robots and Systems, 2003.

[21]! G.S. Chirikjian, and J.W. Burdick. "A hyper-redundant
manipulator." IEEE Robotics and Automation Magazine 1.4 (1994): 22-
29.

[22]! N.G. Cheng, M.B. Lobovsky, S.J. Keating, A.M. Setapen, K.I. Gero,
A.E. Hosoi, K.D. Lagnemma. "Design and analysis of a robust, low-
cost, highly articulated manipulator enabled by jamming of granular
media." Robotics and Automation IEEE Int. Conf. 2012.

[23]! E.D. Demaine. Folding and unfolding. Diss. University of Waterloo,
2001.

[24]! E.D. Demaine. "Folding and unfolding linkages, paper, and
polyhedra."Discrete and Computational Geometry. Springer Berlin
Heidelberg, 2000. 113-124.

[25]! E.M. Arkin, S.P. Fekete, and J. Mitchell. "An algorithmic study of
manufacturing paperclips and other folded structures."Computational
Geometry 25.1 (2003): 117-138.

[26]! R. Connelly, E.D. Demaine, G. Rote. Every polygon can be untangled,
in: Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., 2000, pp.
432–442.

[27]! I. Streinu. A combinatorial approach to planar non-colliding robot
arm motion planning, in: Proc. 41st Annu. IEEE Sympos. Found.
Comput. Sci., 2000, pp. 443–453.

[28]! L. Lesniak, and O.R. Oellermann. "An eulerian exposition." Journal of
Graph Theory 10.3 (1986): 277-297.

[29]! R.J. Wood, S. Avadhanula, R. Sahai, E. Steltz, and R.S. Fearing.
"Microrobot Design Using Fiber Reinforced Composites." Journal of
Mechanical Design, 2008

[30]! P.E. Hart, N.J. Nilsson, and B. Raphael. "A formal basis for the
heuristic determination of minimum cost paths." Systems Science and
Cybernetics, IEEE Transactions on 4.2 (1968): 100-107.

