
  

  

Abstract—Ribbon folding is a new approach to structure 
formation that forms higher dimensional structures using a 
lower dimensional primitive, namely a ribbon. In this paper, we 
present a novel algorithm to address path planning for ribbon 
folding of multi-link planar structures. We first represent the 
desired structure with a graph-based representation of edges 
and nodes. We then use graph theory to claim that for any object 
which is represented by a connected graph, there exists a 
continuous path which visits all of its edges. Finally, we develop 
a path planning algorithm that takes into account the physical 
constraints of the folding machine. The input is the desired 
planar structure, and the output is the optimal sequence of 
ribbon folds for creating that structure using the minimum 
number of folds. The results of this algorithm are successfully 
used to fold various planar structures. 

I.! INTRODUCTION 

Significant progress has been made in the area of additive 
structure formation. For instance, 3D printers have made a 
significant impact in rapid prototyping and manufacturing by 
laying down thin layers of material in succession to construct 
solid objects. Such 1-dimensional approaches to structure 
formation use string or fiber-like material as the building 
primitive. Having such a simple building primitive does not 
allow for more complex features, such as joints and moving 
parts for crawling robots or other structures. Furthermore, such 
methods require a lot of material and time, as well as a large 
and complex machine which is not useful for portable 
applications such as in-field repair. The 2-dimensional 
approach to structure formation looks at areas of sheet folding, 
where the building material can be of any specified length and 
width. Such folded structures (Figure 1) have the advantage of 
introducing less friction to systems, being lightweight, 
decreasing build time, and using less material than 
conventional additive techniques. However, sheet folding 
needs a larger area for manufacturing, entails dexterous 
manipulation, and requires either human assembly of 
separately constructed segments or extensive engineering to 
create the design for a single fully-connected object. Thus, it 

 
 

remains an open problem to develop a method of structure 
formation which allows for more complex structural features, 
while addressing concerns such as speed, choice of materials, 
generalizability, complexity, size, and portability of machine.  

Inspired by ribosomal assembly that occurs in biological 
systems, ribbon folding is a new method of manufacturing 
that forms higher dimensional structures using a lower 
dimensional primitive, namely a ribbon. Using ribbons, one 
could create shells, fill volumes, cover surfaces, and produce 
other outputs desired from a fabrication method. Additionally, 
the ribbon material itself is a more complex primitive than just 
a string or fiber, so it can be altered and chosen to allow 
flexibility, mobility at joints, or curvature. It further paves the 
path for more complex construction such as knots, holes, and 
empty spaces. Ribbon folding is considered to be a 1.5-
dimensional approach because the building material is of 
finite height and infinite length. In this paper, we focus on the 
planar case, which includes interesting structures (Figure 2). 
Planar kinematic structures, in particular, lend themselves 
well to ribbon folding. Of specific interest is the application 
of ribbon folding to areas of robotics, from rapid prototyping 
to robotic self-assembly or self-repair.  

Ribbon folding takes a passive approach: actuators are 
only used once to assemble the structure, instead of being in-
built at each joint to fold it all at once. While this serial 
building approach may take more time than a parallel 
approach, it allows a simpler and less expensive method, 
where the number of actuators are independent of the number 
of joints in the object. RATChET [1] follows a similar 
philosophy of using an external manipulator to fold a chain 
under the force of gravity, simplifying its design and 
eliminating the need for a motor at each joint. This serial 
approach also has a larger workspace than parallel self-folding 
approaches; larger structures can be created while at the same 
time using less building material.  

To perform the ribbon folding, we aim to use the simplest 
possible machine that allows construction of the largest range 
of structures. We designed a machine that folds the desired 
shape from one piece of ribbon (continuous), one fold at a time 
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Figure 2. Practical applications of ribbon folded robotic kinematic 
structures such as (a) a four-bar linkage [2], and structural designs 

such as (b) a truss [3] and (c) a honeycomb lattice [4] 

b) c) a) 

Figure 1. Folded robots like this OpenRoACH [5] contain planar 
components, such as 4-bar linkages and claws, that can readily be 

ribbon folded 



  

(serial), from one end to the other (sequential), and from only 
1 end (single-ended). Through the serial, sequential, and 
single-ended requirements, we eliminate the need for a 
dexterous manipulator with high degrees of freedom. The 
continuity requirement precludes the need for an additional 
mechanism to later reassemble the separate pieces that are 
created, or the need for a human assembly step. An additional 
benefit of continuity in the structure is that it forms a backbone 
for future additions, such as wiring and electrical connections 
throughout the structure. 

As explained above, our problem statement is to address 
sequential single-ended folding of a continuous ribbon into a 
multilink planar structure. In this paper, we begin by 
discussing related work in structure formation. We use graph 
theory to validate our claim that for any object which is 
represented by a connected graph, there exists a continuous 
path which visits all of its edges. Then, we show our proof-of-
concept ribbon folding machine and discuss the constraints 
that minimalistic machines impose on the algorithm. Next, we 
present a novel algorithm, which takes physical constraints 
into account, to generate the optimal folding sequence for 
creating planar structures. Finally, we employ this algorithm 
and discuss results, extensions, and future plans. 

II.! PRIOR WORK 

Previous research efforts have explored approaches such as 
programmable matter [6], tetrahedron shaped modules folded 
into arbitrary 3D shapes [1], and chain folding for filling in an 
object’s volume. For creating 3D objects, Cheung et al. [7] 
discretizes an object’s volume into voxels and then uses a 
universally foldable string to follow a Hamiltonian path 
through these voxels. A Hamiltonian path is one which visits 
each node of a graph, and this translates to physically filling 
in the object’s volume. Relatedly, ribbon folding creates 
objects by covering each edge with ribbon, and recent work 
[8] proposes a general workflow for robotic ribbon folding. 

Folded structures have been well studied through 
applications such as joints for insect-like robots [9], wings for 
flying robots [10], pop-up book MEMS with features on the 
micron scale [11], and shape-memory composites that fold 
themselves along embedded hinges to create self-folding 
machines [12]. However, automated folding for structure 
formation has not yet been thoroughly studied. Lu and Akella 
[13] apply robotic sheet folding to the automation of the 
packaging process. By representing the carton as a 
manipulator with revolute joints and links, they demonstrate 
a motion planning algorithm which generates a folding 
sequence for an industrial robot to fold a carton from a sheet. 

The area of robotic origami folding also involves the 
fabrication of 3D structures from planar material. It lends itself 
to automated assembly, self-assembly, and printable robotics 
[14]. Origami offers many challenges, such as modeling 
structures, planning folding sequences to achieve that model, 
and manipulating the actuators to create the object. Greenberg 
et al. [15] model kinetic origami behavior using pseudo-rigid-
body models because the origami is compliant. Greenberg [16] 
uses origami to better understand flat-folding mechanisms and 
lamina emergent mechanisms (LEMs) in general. Balkcom 
and Mason [17] create kinematic models by representing 
creases as revolute joints and uncreased paper as rigid.  

In the area of folded structures in robotics, Hoover and 
Fearing [18], Onal et al. [14], and Haldane et al. [5] make use 
of inexpensive materials to rapidly create fully functional 
prototypes of folded millirobots. The time saved from such 
folding processes allows for multiple improvement cycles and 
immediate discovery of design flaws. Carbon fiber 
components for milli-robot prototyping [19] are used to create 
links and flexure elements, since many basic robotic structures 
can be fabricated from simply these two elements. Micro 
assembly for the rapid prototyping of structures [20] uses a 
milli-robot to manipulate beams and attach them to polyester 
flexures, which serve to replace revolute joints. Similar to our 
algorithm’s search for folding angles, automation of this micro 
assembly process involves determining folding angles for 
bending stainless steel sheets into triangular configurations. 

Algorithmically, the problem of hyper-redundant serial 
chain manipulators [21], [22] is similar to ours. They have 
numerous actuators to allow many degrees of freedom, can 
avoid obstacles, and aim to achieve some goal configuration. 
Instead of manipulating a serial chain into a desired 
configuration, our problem has the additional variable of link 
lengths. We must create a serial chain out of the desired 
structure, so the chain itself is not known ahead of time.  

From Demaine’s work [23], [24], which includes paper 
folding and unfolding polyhedra, of particular interest is his 
work in the folding of planar linkages. Demaine states that in 
the context of not allowing linkages to cross (self-intersect), 
three general types of linkages are commonly studied: 
polygonal chains with a single path solution, closed polygonal 
chains with a single cycle solution, and polygonal trees with a 
single tree solution. He also states that other more general 
graphs, such as the ones discussed in this paper, have only been 
studied in the context of allowing the linkages to cross. In 
related work, Arkin et al. [25] study bending wires and sheet 
metal into a specified structure. They study a variation of the 
carpenter’s ruler problem where they must decide whether a 

(a) 

(b) 

(c) 

Figure 3. (a) The three linkages commonly studied in the context of 
non-crossing linkages [23], (b) Unfolding paperclip-like structures 

by unfolding one vertex at a time, but in any order [25], (c) 
Examples of the much larger subset of structures discussed in this 
paper, folded in a continuous, sequential, and single-ended manner  



  

non-self-intersecting wire structure can be straightened, but by 
modifying only one joint at a time. For a non-self-intersecting 
linkage, Connelly et al. [26] and Streinu [27] show that it can 
always be straightened by modifying one joint at a time. With 
even a single vertex degeneracy, Arkin et al. [25] show that it 
becomes NP hard to decide if the shape can be straightened 
one joint at a time. Folding a linkage is simply the reverse of 
unfolding it, but our problem setup is inherently different. We 
allow repeated edges, which differentiates it from simply 
reversing an unfolding. We also allow only sequential and 
single-ended folding. Furthermore, we demonstrate our 
algorithm on graphs with numerous vertex degeneracies. 

III.! UNDERLYING GRAPH THEORY SHOWS GENERALITY 

The goal of our algorithm is to take a structure and 
automatically generate an ordered list of link lengths (where 
to fold) and a sequence of folding angles (how to fold). Our 
approach is to first create a graph-based representation of the 
structure’s edges and corners (Figure 4), so the goal is 
reformulated as finding a continuous path through the graph 
that traverses all edges without crossing through an edge. 

For some graphs, there exists an Euler path, which is a path 
that traverses all edges exactly once. It is intuitive that in order 
to avoid repeating edges during a graph traversal, every edge 
that enters a node must also have a corresponding edge that 
exits the node. Hence, there are two cases in which a graph has 
an Euler path: There are 0 nodes of odd degree, so all nodes 
have an even number of edges, or there are 2 nodes of odd 
degree, where those 2 nodes serve as the starting and ending 
nodes of the traversal. Furthermore, if an Euler path does exist, 
there are already complete algorithms such as Fleury’s 
algorithm and Hierholzer’s algorithm [28] for finding it.  

Alternatively, for graphs that do not have an Euler path, it 
is possible to Eulerize the graph by doubling certain existing 
edges: Doubling a graph edge physically corresponds to 
retracing that edge with the ribbon. To show that repeating 
certain graph edges brings about the existence of an Euler path, 
we look at the worst case scenario of doubling every edge. 
Since every node in this resulting graph has even degree, the 
graph has an Euler path. This illustrates our claim that for any 
object represented by a connected graph, we can always find a 
path that visits all of its edges.  

IV.! CUSTOM RIBBON FOLDING MACHINE 

The ribbon that we use is shown below as part of Figure 6; 
slits in the ribbon are created through the Smart Composite 
Microstructures (SCM) process [29], and these slits serve as 
joints in the structure. Initially, the ribbon is coated in glue; 
therefore, we heat the joint before folding it and letting it cool. 
Alternatively, joints can be left flexible by simply making a 
slit in the ribbon but not applying any glue to it. Our proof-of-
concept ribbon folding machine consists of 3 motors: one 
feeds the ribbon into the machine and keeps it moving 
forward, one moves the end effector down and up to make 
contact with the ribbon, and one moves the end effector 
clockwise and counterclockwise to fold the ribbon. These 
motors, in combination with automated gluing and cooling, 
make up the overall folding sequence. 

V.! ALGORITHM 
Arising from both the nature of ribbon folding and the 

minimalistic design of the folding machine, our problem 
definition imposes constraints: using one continuous ribbon, 
folding only from one end, progressing sequentially, and 
preventing self-intersections. This makes the path planning 
problem more rigorous than simply finding an Euler path 
through the graph; we must find a path that satisfies constraints 
at all stages of the folding. A guess-and-check approach for 
selecting which edges to repeat in order to meet constraints 
leads to an infinitely large state space. Below, we present an 
algorithm for which the output is the optimal sequence of 
folding angles and link lengths to create the structure. 

A.! Variation of A* Search 
This algorithm formulates the task into a search problem 

where it creates a search tree in its attempt to find the optimal 
path. A* search is a path planning algorithm [30] that is 
commonly used in graph traversal. In our case, the start point 
is a state in which no edges have yet been traversed, and the 
end point is a state in which all edges have been traversed. 
Each node in this search tree is represented by a state, which 
holds information regarding the steps taken to get there, as 

Desired Structure Connections Graph Representation 
Representation 

Figure 4. Graph-based representation of planar multi-link structure 
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Figure 5. Euler paths traverse each edge exactly once. If a graph has 
either 0 or 2 nodes of odd degree, an Euler path exists. Otherwise, 

edges in the graph are repeated until an Euler path does exist. 

odd odd 

Figure 6. The ribbon folding machine!
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well as what remains. From the start node, we calculate the 
cost function for visiting each neighboring node and use that 
value to enter these nodes into the priority queue (our search 
tree). At each next step, we choose the node from the priority 
queue that has the least cost, and we take a step in that 
direction. Then, we add that node’s neighbors to the priority 
queue and continue until a goal state is reached. A notable 
feature of this formulation is that in order to incorporate 
physical constraints, we only add a node onto the priority 
queue if making that fold does not violate constraints. To this 
end, we need to verify if a given path satisfies constraints: 
This subtask is explained in detail in the next section. 

The cost function mentioned above is the sum of two 
values: distance travelled to get to the current node, which is 
the number of edges traversed thus far, and a heuristic 
estimate of the distance remaining to the goal, which is the 
number of unvisited edges. Since our heuristic function never 
overestimates the cost, this algorithm is guaranteed to return 
the optimal path. Note that we allow repeated edges in order 
to widen the subset of achievable structures. However, this 
algorithm inherently avoids meaningless loops because the 
cost function increases with the number of steps taken; edges 
are not repeated unless no better option exists. 

B.! Subtask: Constraint Violation 
Given a list of edges in the order that they are traversed, we 

must verify whether a path violates the physical constraint. To 
reiterate, we define a collision to be when the shape must go 
through the building ribbon (or itself) in order to finish its 
rotation, as shown in Figure 7. The algorithm’s input is each 
node’s absolute coordinates, as well as the path’s ordered 
edges. Algorithm 1 keeps track of a collection of (x, y) 
coordinates. One by one, it introduces each edge into the 
collection and calculates the angle it makes with the 
horizontal. By combining knowledge of the previous edge’s 
angle and the current edge’s angle, it finds the angle 
difference. Next, it simulates that fold by incrementally 
rotating all points while checking for collisions.  
 

Algorithm 1: Check Constraint Violation: Self-intersections 
Input:  

!, graph that lists the node connections  
", x and y locations of each node 
#, list of ordered edges in the path which needs verification 

Output:  
$%&' or ()*+', for “does” or “does not” satisfy constraints 

Do: For each ',-' in #: 
 Set ./,'1 = 2',-'[0] and ./,'2 = 2',-'[1] 
 Append node locations "[./,'1] and "[./,'2] to 7/8.9+ 
 .':_).-*' = angle that ',-' makes WRT horiz 
 /*,_).-*' = angle that 7%'<_',-' makes WRT horiz 
 ).-*'_,8=='%'.>'2 =2 /*,_).-*'2– .':_).-*' 
 =/*,8.-_).-*'2 = 180 – ).-*'_,8=='%'.>' 
 wrap =/*,8.-_).-*'2between -180 and 180 
 For each point in 7/8.9+: 

Calculate @ from each node’s (x,y) to the (0,0) pivot point 
Find the @ closest to the building ribbon (based on turn direction) 

 222222222@ABCC = angular distance between @ and the building ribbon 
If @ABCC < )E+(=/*,8.-_).-*'), return False 
 

**Note: tolerances and other small details omitted from this description 

C.!  End Search: Answer both “can do” and “cannot do” 
By following the procedure above of keeping nodes on a 

priority queue, tracking state costs, and monitoring edges, we 
can successfully find the optimal path for folding a ribbon into 
the desired shape. However, not every object contains a 
continuous and end-folded solution. If we work under the 
constraint of not wanting to repeat any edges, the search space 
is finite. In the general case, however, our current algorithm 
has an infinite search space, so if no valid path exists, there is 
no clear termination point for the search. Thus, we must find 
a condition that leads to the eventual end of the search, where 
no nodes remain on the search tree. 

An intuitive way to think about the physical constraints 
explained above is to realize that the folding should generally 
begin inside of a shape and work its way outward. Once a 
region is closed off, the ribbon would need to transect itself to 
reach anything inside. Thus, we gain more intuition about 
which types of objects are end-foldable. We formalize this as 
being unable to enter any convex hull that has already been 
created as part of the traversal. This newly phrased constraint 

Figure 7. Illustration of Algorithm 1, which checks whether or not a 
given path violates physical constraints. From top to bottom, we 

incrementally add each edge’s endpoints to the collection of points. 
After angle calculations, we rotate the points by the “folding angle.” In 

the bottom right image, the folded shape crosses over the building 
ribbon during the last rotation, so the physical constraint is violated. 

 

Constraint Violation 

Machine, feeds in the ribbon 

Building ribbon 

Folded ribbon 



  

helps greatly in the pruning of search trees by allowing the 
early termination of an entire branch, as shown below. 

The search trees are still endless because we allow 
repeated edges. Practically, the user would place a physical 
limit, stemming from weight or strength restrictions, on the 
number of repeats that are allowed for any given edge. 
Mathematically, however, we seek a logical bound on the 
number of repeats for any given edge; such a bound would 
eventually end the search by causing every branch of the tree 
to be terminated, even if no valid solution exists. 

Claim: For an optimal path under our problem definition of 
sequential and continuous folding, the number of repeats on 
any edge is less than or equal to the total number of edges. 

Proof: Consider a desired structure with N edges, where 'His 
the IJK edge and %His the total number of folds performed on 
'H. After exploring the graph’s first unexplored edge at the 
first time step, the max number of repeats on any edge is 1. 

At every following time step, there are 2 options. The first 
option is that there exists a valid unexplored edge, in which 
case it should be explored. Thus, %H for that edge is 1, and %H 
for all other edges remain the same. If that is not the case, then 
the second option is that there exists at least one valid 
explored edge. From this current LJ, the goal is to reach an 
unexplored edge &. Regardless of whether that path is short 
or long, each 'H is traversed once along the way. Note that 

traversing the same %H more than once while aiming for a 
certain goal makes all of the steps in between that repetition 
useless. Then, that path would not be optimal. However, if A* 
found this path, then no other more optimal path exists. Thus, 
in the quest for each unexplored edge u, no edge gains more 
than 1 additional repeat. Given that there are N total edges, 
then no edge should have more than N repeats at any point in 
time during the search. Therefore, the claim is true. 

 

Algorithm 2: Optimal Path for Ribbon Folding, using A* 

Input: 
2!2, graph that specifies the node connections 
 " , x and y locations of each node 
 M, starting state: as specified, or a variable to search over 
Output:  
 N, ordered list of link lengths in the optimal path 
2O, ordered list of folding angles for the optimal path 
Do:  
/7'._+'92= []  //unexplored states 
add M to /7'._+'9 
while /7'._+'9 isn’t empty: 
   >&%%'.9_+9)9' = state from /7'._+'9 w/ lowest cost 
   if >&%%'.9_+9)9'. &.'L7*/%',_',-'+ is empty: 
       print info  //found the optimal path from S to the goal 
    return L, A 
   remove >&%%'.9_+9)9'2from /7'._+'9 
   look at >&%%'.9_+9)9'. 7)9ℎ_ℎ8+9/%R for >&%%_./,' 
   for each .'8-ℎE/% of >&%%_./,':  
       ',-' = >&%%_./,' to .'8-ℎE/% 
       if (adding ',-' doesn’t violate constraints):  //use Algorithm 1 
           if (not too many repeats on any edge):  
             calculate convex hull of explored states 
             if (enough non-collinear points to calculate a convex hull): 
                   if (no unexplored nodes are inside the convex hull): 
                         remove edge from >&%%'.9_+9)9'. &.'L7*/%',_',-'+        
             22222222222222>&%%'.9_+9)9'. >/+92= # explored + # unexplored edges      
                         add >&%%'.9_+9)9' to /7'._+'9 
return   //no feasible path exists for the given structure 

VI.! RESULTS AND ANALYSIS 
Figures 9 and 10 show the resulting optimal folding 

sequence from our path planning algorithm for an envelope 
shape, a nontrivial geometric shape, and a truss. We have not 
optimized the algorithm for time because that was not a top 
priority in the exploration into ribbon folding; this can be a 
relatively straightforward future improvement. Even so, the 
time taken for the algorithm to output the path for the 
structures shown above are on the order of seconds on a 
standard laptop computer. As shown in Table 1, pruning the 
search tree based on the convex hull constraint leads to a 
significant reduction in the size of the search tree, or the 
number of nodes explored. Furthermore, for shapes that are 
impossible to be end-folded in a sequential and continuous 
manner, the bound on repeated edges makes it possible for the 
algorithm to terminate and relay this information. 

As is apparent when comparing the envelope structure (11 
nodes explored) with the truss structure, the number of nodes 
explored increases rapidly with the number of graph edges. 
Looking at the geometric shape vs. the truss shape, we see that 
when a shape requires more repeated edges, the number of 
explored nodes drastically increases: At each step, it must 

There exists an unexplored 
node inside the convex hull 
of explored nodes. This is 
unreachable, regardless of 
next steps. Terminate this 
branch of the search.  

Figure 8. Using the notion of convex hulls to prune the search tree!



  

explore all options of lower cost before allowing a repeated 
edge. Although this algorithm is only used on the planar 
subset of structures, it already surpasses human capability. 
Especially for objects with a nontrivial number of edges, it is 
intractable for a human to visualize thousands of rotations and 
manually navigate a rapidly expanding search space. 

 

b) Sequence of Folding Angles 

Figure 9. The output of the path planning algorithm for the envelope 
shape. The black edges in the visualization of folding angles represents 
the most recent edge, and each red circle indicates the axis of rotation 

between each step. 
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d) Resulting folded shape 
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Figure 11. Addition of flexible slits (yellow) to allow movement in the 
otherwise rigid four-bar linkage, while still allowing for rigid corners to 

keep the shape intact during folding. Note that joint placement is 
exaggerated here (placed far from rigid joints) for illustrative purposes.      

 

Figure 10. From top to bottom: Visualization of resulting folding angles, 
resulting list of ordered link lengths, and resulting folded shape. The 
geometric shape is on the left, and the truss structure is on the right. 
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TABLE I. ! IMPROVEMENT WITH PRUNING AND BOUNDING 

 
 

Before pruning & 
placing bound 

After pruning & 
placing bound 

Structure #Nodes 
Explored 

Path 
Found? 

#Nodes 
Explored 

Path 
Found? 

 757 Y 309 Y 

 

8832 Y 6476 Y 

 

∞ 
 
 

N/A 25 N 

 

∞ 
 

N/A 154 N 

 

∞ 
 

N/A 29 N 

a. The red dot indicates starting point for this data collection 

 

A.! Extensions to Movable Structures: Creating Free Joints 
As mentioned in the introduction, one benefit and 

interesting capability of ribbon folding is the ability to have 
flexible joints. Since each slit in the ribbon is coated with glue 
and then bent into the desired angle, the joints that we have 
seen thus far have been relatively rigid. Figures 11 and 12 
show examples of attaining free joints by using additional slits 
in the ribbon, which are not folded and therefore not coated in 
glue. These extra flexible slits are added adjacent to the rigid 
object corners. The fixed joints allow the structure to retain 
its shape during the folding, and the extra slits allow 
movement around the fixed joints to mimic free joints. 

While seemingly straightforward to add joints near existing 
ones, this technique becomes murky for complex shapes. We 
plan to formally explore this in the future, but we leave the 
reader with thoughts about decomposing structures into a 
representation of fixed and free joints. Note that in our case, 
free joints are approximated by straight flexures in the small 
angle approximation. Thus, having repeated edges near a free 
joint would result in a different type of behavior. To allow the 
creation of structures with free joints, we must add a layer 

onto our algorithm which intelligently decomposes the 
desired structure, separates rigid regions from non-rigid 
regions, and specifies which edges can or cannot be repeated. 

VII.! CONCLUSION 
We have presented a novel path planning algorithm for the 

ribbon folding of planar objects. By creating graph-based 
representations of structures, we use Euler paths to show that 
for any object represented by a connected graph, there exists 
a continuous path which visits all of its edges. The path 
planning algorithm considers the constraints imposed by our 
minimal folding machine, and it results in the optimal 
sequence of physically feasible ribbon folds for creating that 
structure. This folding technique provides the user a tool 
which is simple, but also uses continuity in the path planning 
to allow efficient structure creation, rather than simply 
constructing small components, which the user would then 
need to bring together in an additional assembly step. While 
this definitely provides benefits, note that at least some level 
of hierarchical decomposition has to occur in most tasks, i.e. 
the user would not print out an entire house at once. 

While this amalgamation of ideas for the development of a 
path planning algorithm for ribbon folding is novel, there are 
many improvements and further tasks that remain. In the 
worst case of an unbounded search space, such as ours, the 
complexity of A* is EA, where E is the branching factor that 
indicates the average number of successors per state (i.e. 
degree of the node), and , is the length of the shortest 
solution, which is unknown and potentially large in our case 
of allowing repeated edges. To improve the tractability and 
scalability of this algorithm for larger graphs, we must 
explore other search techniques that provide a tradeoff 
between efficiency and optimality. In the future, we also aim 
to find a tighter bound on the number of repeats allowed on 
any given edge. For instance, if we begin the path planning 
algorithm on the maze structure at the inner-most node, then 
64,341 nodes are visited before the search can end and report 
that it is not possible. Since the total number of edges in that 
object is 14, it is expected that such a high number of repeats 
per edge takes a long time to achieve; the search does not end  

TABLE II. ! RESULTS OF PATH PLANNING ALGORITHM 

Structure # Vertices #Repeated 
edges 

Avg. 
Degree 

Time 
taken 

 9 2 2.8 0.59 
sec 

 8 2 3.3 20 
sec 

 7 
 
 

2 3.1 1.3  
sec 

 
 
 

13 1 3 1.2 
sec 

 8 
 
 

1 3.3 1.6 
sec 

a. Runtime was not a high priority: Algorithm is not fully optimized for that yet. 
Figure 12. (a) The ribbon template for (b) the rigid four-bar structure, 

and (c) the ribbon template for (d) a four-bar structure with free joints 

(a) 

(b) 

(c) (d) 



  

quickly. Therefore, finding a lower bound on the number of 
repeats allowed per edge would achieve tremendous speed-up 
in run time. Furthermore, there still exist a number of areas 
that have not yet been addressed algorithmically, such as 
structures including curves, surfaces, and higher dimensions. 

As we head toward such a minimal universal fabricator, 
ribbon folding shows promise of novelty, generality, and 
applicability. Particularly in robotics, ribbon folding can serve 
as an alternative to current manually fabricated systems which 
takes several weeks or months of effort to create. This further 
suggests applications in robotic self-repair or shape 
adaptation. A robot with limited access to human intervention 
and assembly resources could use this on-demand fabrication 
to adapt body shape, create new parts, or change its end 
effectors as a function of the task and terrain. 

Other interesting future directions to explore include using 
different materials for the building primitive, incorporating 
curvature and additional types of joints, and combining 
analysis of object strength with the algorithm for the object 
creation. The user could, for example, deliberately request 
more repeated folds on certain edges for strength purposes. 
Products that display such diversity and utility, built from 
nothing more than a primitive material, could revolutionize 
on-demand manufacturing. Just as protein folding uses basic 
building blocks to construct a multitude of chemicals that 
form the basis of all organic life, ribbon folding aims to use 
ribbons to solve the structure formation problem. 
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