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Abstract— Model-free deep reinforcement learning algo-
rithms have been shown to be capable of learning a wide
range of robotic skills, but typically require a very large
number of samples to achieve good performance. Model-based
algorithms, in principle, can provide for much more efficient
learning, but have proven difficult to extend to expressive,
high-capacity models such as deep neural networks. In this
work, we demonstrate that neural network dynamics models
can in fact be combined with model predictive control (MPC)
to achieve excellent sample complexity in a model-based rein-
forcement learning algorithm, producing stable and plausible
gaits that accomplish various complex locomotion tasks. We
further propose using deep neural network dynamics models
to initialize a model-free learner, in order to combine the
sample efficiency of model-based approaches with the high task-
specific performance of model-free methods. We empirically
demonstrate on MuJoCo locomotion tasks that our pure model-
based approach trained on just random action data can follow
arbitrary trajectories with excellent sample efficiency, and that
our hybrid algorithm can accelerate model-free learning on
high-speed benchmark tasks, achieving sample efficiency gains
of 3−5× on swimmer, cheetah, hopper, and ant agents. Videos
can be found at https://sites.google.com/view/mbmf

I. INTRODUCTION

Model-free deep reinforcement learning algorithms have
been shown to be capable of learning a wide range of tasks,
ranging from playing video games from images [1], [2]
to learning complex locomotion skills [3]. However, such
methods suffer from very high sample complexity, often
requiring millions of samples to achieve good performance [3].
Model-based reinforcement learning algorithms are generally
regarded as being more efficient [4]. However, to achieve
good sample efficiency, these model-based algorithms have
conventionally used either simple function approximators [5]
or Bayesian models that resist overfitting [6] in order to
effectively learn the dynamics using few samples. This
makes them difficult to apply to a wide range of complex,
high-dimensional tasks. Although a number of prior works
have attempted to mitigate these shortcomings by using
large, expressive neural networks to model the complex
dynamical systems typically used in deep reinforcement
learning benchmarks [7], [8], such models often do not
perform well [9] and have been limited to relatively simple,
low-dimensional tasks [10].

In this work, we demonstrate that multi-layer neural net-
work models can in fact achieve excellent sample complexity
in a model-based reinforcement learning algorithm. The

Fig. 1: Our method can learn a dynamics model that enables a simulated
quadrupedal robot to autonomously follow user-defined waypoints. Training
for this task used 7e5 time steps (collected without any knowledge of the
test-time navigation task), and the learned model can be reused at test time
to follow arbitrary desired trajectories.

resulting models can then be used for model-based control,
which we perform using model predictive control (MPC)
with a simple random-sampling shooting method [11]. We
demonstrate that this method can acquire effective locomotion
gaits for a variety of MuJoCo benchmark systems [8],
including the swimmer, half-cheetah, hopper, and ant. Fig. 1
shows that these models can be used at run-time to execute
a variety of locomotion tasks such as trajectory following,
where the agent executes a path through a given set of sparse
waypoints that represent desired center-of-mass positions.
Additionally, each systems uses less than four hours worth
of data, indicating that the sample complexity of our model-
based approach is low enough to be applied in the real
world, and is dramatically lower than pure model-free learners.
In particular, when comparing our model-based approach’s
ability to follow arbitrary desired trajectories with a model-
free approach’s ability to learn just a competent moving
forward gait, our results show that the model-based method
uses only 3%, 10%, and 14% of the data that is used by
a model-free approach (for half-cheetah, swimmer, and ant,
respectively). Relatedly, our model-based method can achieve
qualitatively good moving forward gaits for the swimmer,
cheetah, hopper, and ant using 20− 80× fewer data points
than is required by a model-free approach.

Although such model-based methods are drastically more
sample efficient and more flexible than task-specific poli-
cies learned with model-free reinforcement learning, their
asymptotic performance is usually worse than model-free
learners due to model bias. Model-free algorithms are not
limited by the accuracy of the model, and therefore can
achieve better final performance, though at the expense of



much higher sample complexity [4], [12]. To address this
issue, we use our model-based algorithm, which can quickly
achieve moderately proficient behavior, to initialize a model-
free learner, which can slowly achieve near-optimal behavior.
The learned model-based controller provides good rollouts,
which enable supervised initialization of a policy that can
then be fine-tuned with model-free algorithms, such as policy
gradients. We empirically demonstrate that the resulting
hybrid model-based and model-free (Mb-Mf) algorithm can
accelerate model-free learning, achieving sample efficiency
gains of 3− 5× on the swimmer, half-cheetah, hopper, and
ant.

The primary contributions of our work are the following: (1)
we demonstrate effective model-based reinforcement learning
with neural network models for several contact-rich simulated
locomotion tasks from standard deep reinforcement learning
benchmarks, (2) we empirically evaluate a number of design
decisions for neural network dynamics model learning, and
(3) we show how a model-based learner can be used to
initialize a model-free learner to achieve high rewards while
significantly reducing sample complexity.

II. RELATED WORK

Deep reinforcement learning algorithms based on Q-
learning [13], [2], [9], actor-critic methods [14], [15], [16],
and policy gradients [3], [17] have been shown to learn very
complex skills in high-dimensional state spaces, including
simulated robotic locomotion, driving, video game playing,
and navigation. However, the high sample complexity of
purely model-free algorithms has made them difficult to use
for learning in the real world, where sample collection is
limited by the constraints of real-time operation. Model-based
algorithms are known in general to outperform model-free
learners in terms of sample complexity [4], and in practice
have been applied successfully to control both simulated
and real-world robotic systems, such as pendulums [6],
legged robots [18], swimmers [19], and manipulators [20].
However, the most efficient model-based algorithms have used
relatively simple function approximators, such as Gaussian
processes [6], [21], [22], time-varying linear models [5],
[23], [24], and mixtures of Gaussians [25]. PILCO [6], in
particular, is a model-based policy search method which
reports excellent sample efficiency by learning probabilistic
dynamics models and incorporating model uncertainty into
long-term planning. These methods have difficulties, however,
in high-dimensional spaces and with nonlinear dynamics. The
most high-dimensional task demonstrated with PILCO that we
could find has 11 dimensions [19], while the most complex
task in our work has 49 dimensions and features challenging
properties such as frictional contacts. To the best of our
knowledge, no prior model-based method utilizing Gaussian
processes has demonstrated successful learning for locomotion
tasks with complex contact physics, though several works
have proposed to learn the dynamics [26].

Although neural networks have been widely used in earlier
work to model plant dynamics [27], [28], more recent
model-based algorithms have achieved only limited success

in applying such models to the more complex benchmark
tasks that are commonly used in deep reinforcement learning.
Several works have proposed to use deep neural network
models for building predictive models of images [29], but
these methods have either required extremely large datasets
for training [29] or were applied to short-horizon control
tasks [30]. In contrast, we consider long-horizon simulated
locomotion tasks, where the high-dimensional systems and
contact-rich environment dynamics provide a considerable
modeling challenge. [10] proposed a relatively complex
time-convolutional model for dynamics prediction, but only
demonstrated results on low-dimensional (2D) manipulation
tasks. [31] extended PILCO [6] using Bayesian neural
networks, but only presented results on a low-dimensional
cart-pole swingup task, which does not include contacts.

Aside from training neural network dynamics models for
model-based reinforcement learning, we also explore how
such models can be used to accelerate a model-free learner.
Prior work on model-based acceleration has explored a variety
of avenues. The classic Dyna [32] algorithm proposed to use a
model to generate simulated experience that could be included
in a model-free algorithm. This method was extended [33],
[34] to work with deep neural network policies, but performed
best with models that were not neural networks [9]. Model
learning has also been used to accelerate model-free Bellman
backups [35], but the gains in performance from including the
model were relatively modest. Prior work has also used model-
based learners to guide policy optimization through supervised
learning [36], but the models that were used were typically
local linear models. In a similar way, we also use supervised
learning to initialize the policy, but we then fine-tune this
policy with model-free learning to achieve the highest returns.
Our model-based method is more flexible than local linear
models, and it does not require multiple samples from the
same initial state for local linearization.

III. PRELIMINARIES

The goal of reinforcement learning is to learn a policy
that maximizes the sum of future rewards. At each time
step t, the agent is in state st ∈ S, executes some action
at ∈ A, receives reward rt = r(st,at), and transitions to
the next state st+1 according to some unknown dynamics
function f : S × A → S. The goal at each time step is to
take the action that maximizes the discounted sum of future
rewards, given by

�∞
t�=t γ

t�−tr(st� ,at�), where γ ∈ [0, 1] is
a discount factor that prioritizes near-term rewards. Note that
performing this policy extraction requires either knowing the
underlying reward function r(st,at) or estimating the reward
function from samples [37]. In this work, we assume access
to the underlying reward function, which we use for planning
actions under the learned model.

In model-based reinforcement learning, a model of the
dynamics is used to make predictions, which are then used
for action selection. Let f̂θ(st,at) denote a learned discrete-
time dynamics function, parameterized by θ, that takes the
current state st and action at and outputs an estimate of the
next state at time t +Δt. This model can then be used to



predict the outcomes of various action sequences, and then
actions can be selected by choosing the sequence that results
in the highest predicted total reward. In practice, it is often
desirable to solve this optimization at each time step, execute
only the first action at from the sequence, and then replan
at the next time step with updated state information. Such
a control scheme is often referred to as model predictive
control (MPC), and it is known to compensate well for errors
in the model.

IV. MODEL-BASED DEEP REINFORCEMENT LEARNING

We now present our model-based deep reinforcement
learning algorithm. We detail our learned dynamics function
f̂θ(st,at) in Sec. IV-A, how to train the learned dynamics
function in Sec. IV-B, how to extract a policy using our
learned dynamics function in Sec. IV-C, and how to use rein-
forcement learning to further improve our learned dynamics
function in Sec. IV-D.

A. Neural Network Dynamics Function

We parameterize our learned dynamics function f̂θ(st,at)
as a deep neural network, where the parameter vector θ
represents the weights of the network. A straightforward
parameterization for f̂θ(st,at) would take as input the current
state st and action at, and output the predicted next state ŝt+1.
However, this function can be difficult to learn when the states
st and st+1 are too similar and the action has seemingly little
effect on the output; this difficulty becomes more pronounced
as the time between states Δt becomes smaller and the state
differences do not indicate the underlying dynamics well.

We overcome this issue by instead learning a dynamics
function that predicts the change in state st over the time step
duration of Δt. Thus, the predicted next state is as follows:
ŝt+1 = st+ f̂θ(st,at). Note that increasing this Δt increases
the information available from each data point, and can help
with not only dynamics learning but also with planning using
the learned dynamics model (Sec. IV-C). However, increasing
Δt also increases the discretization and complexity of the
underlying continuous-time dynamics, which can make the
learning process more difficult.

B. Training the Learned Dynamics Function

Collecting training data: We collect training data by
sampling starting configurations s0 ∼ p(s0), executing ran-
dom actions at each timestep, and recording the resulting
trajectories τ = (s0,a0, · · · , sT−2,aT−2, sT−1) of length T .
We note that these trajectories are very different from the
trajectories the agents will end up executing when planning
with this learned dynamics model and a given reward function
r(st,at) (Sec. IV-C), showing the ability of model-based
methods to learn from off-policy data.

Data preprocessing: We slice the trajectories {τ} into
training data inputs (st,at) and corresponding output labels
st+1−st. We then subtract the mean of the data and divide by
the standard deviation of the data to ensure the loss function
weights the different parts of the state (e.g., positions and
velocities) equally. We also add zero mean Gaussian noise

to the training data (inputs and outputs) to increase model
robustness. The training data is then stored in the dataset D.

Training the model: We train the dynamics model
f̂θ(st,at) by minimizing the error

E(θ) = 1

|D|
�

(st,at,st+1)∈D

1

2
�(st+1 − st)− f̂θ(st,at)�2 (1)

using stochastic gradient descent. While training on the
training dataset D, we also calculate the mean squared error
in Eqn. 1 on a validation set Dval, composed of trajectories
not stored in the training dataset.

Although this error provides an estimate of how well our
learned dynamics function is at predicting next state, we
would in fact like to know how well our model can predict
further into the future because we will ultimately use this
model for longer-horizon control (Sec. IV-C). We therefore
calculate H-step validation errors by propagating the learned
dynamics function forward H times to make multi-step open-
loop predictions. For each given sequence of true actions
(at, . . . at+H−1) from Dval, we compare the corresponding
ground-truth states (st+1, . . . st+H) to the dynamics model’s
multi-step state predictions (ŝt+1, . . . ŝt+H), calculated as

E(H)
val =

1

Dval

�

Dval

1

H

H�

h=1

1

2
�st+h − ŝt+h�2 :

ŝt+h =

�
st h = 0

ŝt+h−1 + f̂θ(ŝt+h−1,at+h−1) h > 0
(2)

This H-step validation is used to analyze our experimental
results, but otherwise not used during training.

C. Model-Based Control

In order to use the learned model f̂θ(st,at), together with
a reward function r(st,at) that encodes some task, we for-
mulate a model-based controller that is both computationally
tractable and robust to inaccuracies in the learned dynamics
model. Expanding on the discussion in Sec. III, we first
optimize the sequence of actions A

(H)
t = (at, · · · , at+H−1)

over a finite horizon H , using the learned dynamics model
to predict future states:

A
(H)
t = argmax

A
(H)
t

t+H−1�

t�=t

r(ŝt� ,at�) :

ŝt = st, ŝt�+1 = ŝt� + f̂θ(ŝt� ,at�). (3)

Calculating the exact optimum of Eqn. 3 is difficult due to
the dynamics and reward functions being nonlinear, but many
techniques exist for obtaining approximate solutions to finite-
horizon control problems that are sufficient for succeeding
at the desired task. In this work, we use a simple random-
sampling shooting method [38] in which K candidate action
sequences are randomly generated, the corresponding state
sequences are predicted using the learned dynamics model,
the rewards for all sequences are calculated, and the candidate
action sequence with the highest expected cumulative reward
is chosen. Rather than have the policy execute this action



Algorithm 1 Model-based Reinforcement Learning

1: gather dataset DRAND of random trajectories
2: initialize empty dataset DRL, and randomly initialize f̂θ
3: for iter=1 to max_iter do
4: train f̂θ(s, a) by performing gradient descent on Eqn. 1,

using DRAND and DRL

5: for t = 1 to T do
6: get agent’s current state st
7: use f̂θ to estimate optimal action sequence A

(H)
t

(Eqn. 3)
8: execute first action at from selected action sequence

A
(H)
t

9: add (st,at) to DRL

10: end for
11: end for

sequence in open-loop, we use model predictive control
(MPC): the policy executes only the first action at, receives
updated state information st+1, and recalculates the optimal
action sequence at the next time step. Note that for higher-
dimensional action spaces and longer horizons, random
sampling with MPC may be insufficient, and investigating
other methods [39] in future work could improve performance.

Note that this combination of predictive dynamics model
plus controller is beneficial in that the model is trained only
once, but by simply changing the reward function, we can
accomplish a variety of goals at run-time, without a need for
live task-specific retraining.

D. Improving Model-Based Control with Reinforcement
Learning

To improve the performance of our model-based learning
algorithm, we gather additional on-policy data by alternating
between gathering data with our current model and retraining
our model using the aggregated data. This on-policy data ag-
gregation (i.e., reinforcement learning) improves performance
by mitigating the mismatch between the data’s state-action
distribution and the model-based controller’s distribution [40].
Alg. 1 and Fig. 2 provide an overview of our model-based
reinforcement learning algorithm.

First, random trajectories are collected and added to dataset
DRAND, which is used to train f̂θ by performing gradient
descent on Eqn. 1. Then, the model-based MPC controller
(Sec. IV-C) gathers T new on-policy datapoints and adds
these datapoints to a separate dataset DRL. The dynamics
function f̂θ is then retrained using data from both DRAND and
DRL. Note that during retraining, the neural network dynamics
function’s weights are warm-started with the weights from
the previous iteration. The algorithm continues alternating
between training the model and gathering additional data
until a predefined maximum iteration is reached. We evaluate
design decisions related to data aggregation in our experiments
(Sec. VI-A).

Fig. 2: Illustration of Algorithm 1. On the first iteration, random actions
are performed and used to initialize DRAND. On all following iterations,
this iterative procedure is used to train the dynamics model, run the MPC
controller for action selection, aggregate data, and retrain the model.

V. MB-MF: MODEL-BASED INITIALIZATION OF
MODEL-FREE REINFORCEMENT LEARNING ALGORITHM

The model-based reinforcement learning algorithm de-
scribed above can learn complex gaits using very small
numbers of samples, when compared to purely model-free
learners. However, on benchmark tasks, its final performance
still lags behind purely model-free algorithms. To achieve the
best final results, we can combine the benefits of model-based
and model-free learning by using the model-based learner to
initialize a model-free learner. We propose a simple but highly
effective method for combining our model-based approach
with off-the-shelf, model-free methods by training a policy to
mimic our learned model-based controller, and then using the
resulting imitation policy as the initialization for a model-free
reinforcement learning algorithm.

A. Initializing the Model-Free Learner

We first gather example trajectories with the MPC controller
detailed in Sec. IV-C, which uses the learned dynamics
function f̂θ that was trained using our model-based re-
inforcement learning algorithm (Alg. 1). We collect the
trajectories into a dataset D∗, and we then train a neural
network policy πφ(a|s) to match these “expert” trajectories
in D∗. We parameterize πφ as a conditionally Gaussian
policy πφ(a|s) ∼ N (µφ(s),Σπφ

), in which the mean is
parameterized by a neural network µφ(s), and the covariance
Σπφ

is a fixed matrix. This policy’s parameters are trained
using the behavioral cloning objective

min
φ

1

2

�

(st,at)∈D∗

||at − µφ(st)||22, (4)

which we optimize using stochastic gradient descent. To
achieve desired performance and address the data distribution
problem, we applied DAGGER [40]: This consisted of
iterations of training the policy, performing on-policy rollouts,
querying the “expert” MPC controller for “true” action labels
for those visited states, and then retraining the policy.

B. Model-Free Reinforcement Learning

After initialization, we can use the policy πφ, which
was trained on data generated by our learned model-based
controller, as an initial policy for a model-free reinforcement
learning algorithm. Specifically, we use trust region policy



(a) Swimmer left turn (b) Swimmer right turn (c) Ant left turn (d) Ant right turn

Fig. 3: Trajectory following samples showing turns with swimmer and ant, with blue dots representing the center-of-mass positions that were specified as
the desired trajectory. For each agent, we train the dynamics model only once on random trajectories, but use it at run-time to execute various desired
trajectories.

optimization (TRPO) [3]; such policy gradient algorithms
are a good choice for model-free fine-tuning since they do
not require any critic or value function for initialization [41],
though our method could also be combined with other model-
free RL algorithms.

TRPO is also a common choice for the benchmark tasks
we consider, and it provides us with a natural way to
compare purely model-free learning with our model-based
pre-initialization approach. Initializing TRPO with our learned
expert policy πφ is as simple as using πφ as the initial policy
for TRPO, instead of a standard randomly initialized policy.
Although this approach of combining model-based and model-
free methods is extremely simple, we demonstrate the efficacy
of this approach in our experiments.

VI. EXPERIMENTAL RESULTS

We evaluated our model-based reinforcement learning
approach (Alg. 1) on agents in the MuJoCo [8] physics engine.
The agents we used were swimmer (S ∈ R16,A ∈ R2),
hopper (S ∈ R17,A ∈ R3), half-cheetah (S ∈ R23,A ∈ R6),
and ant (S ∈ R41,A ∈ R8). Relevant parameter values and
implementation details are listed in the Appendix, and videos
of all our experiments are provided online1.

(a) Swimmer (b) Cheetah (c) Ant (d) Hopper

Fig. 4: Benchmark systems used in this paper. Agents on which we efficiently
learn locomotion gaits, as well as combine our model-based approach with
a model-free one to demonstrate fine-tuning performance.

A. Evaluating Design Decisions for Model-Based Reinforce-
ment Learning

We first evaluate various design decisions for model-based
reinforcement learning with neural networks using empirical
evaluations with our model-based approach (Sec. IV). We
explored these design decisions for the task of running
forward as quickly as possible with the swimmer and half-
cheetah agents; the other agents exhibited similar trends, and
are therefore omitted for brevity. After each design decision
was evaluated, we used the best outcome of that evaluation
for the remainder of the evaluations.

(A) Training steps. Fig. 5a shows varying numbers of
gradient descent steps taken during the training of the learned

1https://sites.google.com/view/mbmf

dynamics function. As expected, training for too few epochs
negatively affects learning performance, with 20 epochs
causing swimmer to reach only half of the other experiments’
performance.

(B) Dataset aggregation. Fig. 5b shows varying amounts of
(initial) random data versus (aggregated) on-policy data used
within each mini-batch of stochastic gradient descent when
training the learned dynamics function. We see that training
with at least some aggregated on-policy rollouts significantly
improves performance, revealing the benefits of improving
learned models with reinforcement learning. However, our
method still works well with even just 30% of each mini-
batch coming from on-policy rollouts, showing the advantage
of model-based reinforcement learning being off-policy.

(C) Controller. Fig. 5c shows the effect of varying the
horizon H and the number of random samples K used at each
time step by the model-based controller. We see that too short
of a horizon is harmful for performance, perhaps due to greedy
behavior and entry into unrecoverable states. Additionally,
the model-based controller for half-cheetah shows worse
performance for longer horizons. This is further revealed
below in Fig. 6, which illustrates a single 100-step validation
rollout (as explained in Eqn. 2). We see here that the open-
loop predictions for certain state elements, such as the center
of mass x position, diverge from ground truth. Thus, a large H
leads to the use of an inaccurate model for making predictions,
which is detrimental to task performance. Finally, with regards
to the number of randomly sampled trajectories evaluated,
we expect this value needing to be higher for systems with
higher-dimensional action spaces.

(D) Number of initial random trajectories. Fig. 5d shows
varying numbers of random trajectories used to initialize our
model-based approach. We see that although a higher amount
of initial training data leads to higher initial performance,
data aggregation allows low-data initialization runs to reach
a high final performance level, highlighting how on-policy
data from reinforcement learning improves sample efficiency.

B. Trajectory Following with the Model-Based Controller

For the task of trajectory following, we evaluated our model-
based reinforcement learning approach on the swimmer, ant,
and half-cheetah environments (Fig. 3). Note that for these
tasks, the dynamics model was trained using only random
initial trajectories and was trained only once per agent, but
the learned model was then used at run-time to accomplish
different tasks. These results show that the models learned



Fig. 5: Analysis of design decisions for our model-based reinforcement learning approach. (a) Training steps, (b) dataset training split, (c) horizon and
number of actions sampled, (d) initial random trajectories. Training for more epochs, leveraging on-policy data, planning with medium-length horizons and
many action samples were the best design choices, while data aggregation caused the number of initial trajectories that have little effect.

using our method are general enough to accommodate new
tasks at test time, including tasks that are substantially more
complex than anything that the robot did during training, such
as following a curved path or making a U-turn. Furthermore,
we show that even with the use of such a naïve random-
sampling controller, the learned dynamics model is powerful
enough to perform a variety of tasks.

The reward function we use requires the robot to track the
desired x/y center of mass positions. This reward consists
of one term to penalize the perpendicular distance away
from the desired trajectory, and a second term to encourage
forward movement in the direction of the desired trajectory.
The reward function does not tell the robot anything about
how the limbs should be moved to accomplish the desired
center of mass trajectory. The model-based algorithm must
discover a suitable gait entirely on its own. Further details
about this reward are included in the appendix.

C. Mb-Mf Approach on Benchmark Tasks

We now compare our pure model-based approach with a
pure model-free method on standard benchmark locomotion
tasks, which require a simulated robot (swimmer, half-cheetah,
hopper, or ant) to learn the fastest forward-moving gait
possible. The model-free approach we compare with is the
rllab [42] implementation of trust region policy optimization
(TRPO) [3], which has obtained state-of-the-art results on
these tasks.

We note that due to short-horizon planning as well as
having finite sample sizes, this optimization for performing
action selection will be suboptimal even with a perfect
dynamics model. However, as shown in Fig. 5c, shorter

horizons tend to perform better with learned models, since
they minimize the ability of the optimizer to exploit an
imperfect learned model.

For our model-based approach, we used the OpenAI
gym [7] standard reward functions (described in the appendix)
for action selection in order to allow us to compare perfor-
mance to model-free benchmarks. These reward functions
primarily reward speed, and are especially difficult for our
model-based method due to the myopic nature of the short-
horizon MPC that we employ for action selection; therefore,
the results of our model-based algorithm on all following
plots are lower than would be if we designed our own reward
function (for instance, a straight-line trajectory-following
reward function).

Even with the extremely simplistic standard reward func-
tions, our method can very quickly learn a gait that makes
forward progress. The swimmer, for example, can quickly
achieve qualitatively good moving forward behavior at 20×
faster than the model-free method. However, the final achieved
reward attained by the pure model-based variant of our
approach does not match the final performance of state-
of-the-art model-free learners, due to an imperfect learned
model and the previously discussed sources of suboptimality.
When we integrate model-free finetuning (Fig. 7), however,
the asymptotic performance improves to the level of purely
model-free learning. In the case of the hopper, our pure
model-based approach learns to perform a double or triple
hop very quickly in 1× 104 steps, but performance plateaus
as the reward signal of just forward velocity is not enough
for the limited-horizon controller to keep the hopper upright
for longer periods of time. Our hybrid Mb-Mf approach



takes these quickly-learned gaits and performs model-free
fine-tuning in order to achieve high task rewards, achieving
3−5× sample efficiency gains over pure model-free methods
for all agents.

VII. DISCUSSION

We presented a model-based reinforcement learning algo-
rithm that is able to learn neural network dynamics functions
for complex simulated locomotion tasks using a small number
of samples. Although a number of prior works have explored
model-based learning with neural network dynamics models,
our method achieves excellent performance on a number of
challenging locomotion problems that exceed the complexity
demonstrated in prior methods.

We described a number of important design decisions for
effectively and efficiently training neural network dynamics
models, and we presented detailed experiments that evaluated
these design parameters. Our method quickly discovered a
dynamics model that led to an effective gait; that model could
be applied to different trajectory following tasks at run-time,
or the initial gait could then be fine-tuned with model-free
learning to achieve high task rewards on benchmark Mujoco
agents.

In addition to looking at the difference in sample com-
plexity between our hybrid Mb-Mf approach and a pure
model-free approach, there are also takeaways from the
model-based approach alone. Our model-based algorithm
cannot always reach extremely high rewards on its own,
but it offers practical use by allowing quick and successful
discovery of complex and realistic gaits. In general, our
model-based approach can very quickly become competent
at a task, whereas model-free approaches can very slowly
become experts. For example, when we have a small legged
robot with unknown dynamics and we want it to accomplish
tasks in the real-world (such as exploration, construction,
search and rescue, etc.), achieving reliable walking gaits that
can follow any desired trajectory is a superior skill to that of
just running straight forward as fast as possible. Additionally,
consider the ant: A model-free approach requires 5 × 106

points to achieve a steady walking forward gait, but using
just 14% of those data points, our model-based approach
can allow for travel in any direction and along arbitrary

Fig. 6: Given a fixed sequence of controls, we show the resulting true rollout
(solid line) vs. the multi-step prediction from the learned dynamics model
(dotted line) on the half-cheetah agent. Although we learn to predict certain
elements of the state space well, note the eventual divergence of the learned
model on some state elements when it is used to make multi-step open-loop
predictions. However, our MPC-based controller with a short horizon can
succeed in using the model to control an agent.

Fig. 7: Plots show the mean and standard deviation over multiple runs and
compare our model-based approach, a model-free approach (TRPO [3]), and
our hybrid model-based plus model-free approach. Our combined approach
shows a 3 − 5× improvement in sample efficiency for all shown agents.
Note that the x-axis uses a logarithmic scale.

desired trajectories. Training such a dynamics model only
once and applying it to various tasks is compelling; especially
when looking toward application to real robots, this sample
efficiency can bring these methods out of the simulation world
and into the realm of feasibility.

While the simplicity and effectiveness of our Mb-Mf
approach is enticing for ease of practical application, an
interesting avenue for future work is to integrate our model-
based approach more tightly and elegantly with model-free
learners (Q-learning, actor-critic methods), in order to provide
further sample efficiency gains. Another exciting direction for



future work is to deploy this method on real-world robotic
systems, where the improved sample efficiency would make
it practical to use even under the constraints of real-time
sample collection in the real world. In addition to taking
communication delays and computational limitations into
account, another line of future work includes improving
the MPC controller. In this paper, we chose to use a naïve
random-sampling controller to further emphasize the power
of the learned dynamics models; however, this may not be
feasible on real systems with limited computational power,
or on systems with high-dimensional actions spaces that
would require a large number of actions to sampled. Thus,
further development of a real-time controller via optimization
techniques is compelling future work.
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