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Abstract— We present an approach to quantifying the off-
axis stiffness properties of parallel compliant mechanisms
used in the design of mobile millirobots. By transforming
the stiffness of individual flexure elements and rigid links
comprising a compliant mechanism into a global coordinate
system, we enable the formulation of an equivalent mechanism
stiffness. Using that stiffness in concert with an energy-based
performance metric, we predict the performance of a compliant
mechanism subjected to a prescribed set of forces in the global
coordinate system. We analyze a flexure-based Sarrus linkage
and use the performance metric to improve the design by adding
topological redundancy. Finally, our approach is experimentally
validated by constructing and testing SCM Sarrus linkages
in a variety of geometries and topologies and demonstrating
agreement between the model and our experiments.

I. INTRODUCTION

Compliant mechanisms are a useful class of mechanisms
because they attain their mobility from the elastic deforma-
tion of compliant members. The term “compliant mecha-
nism” has been broadly used in the literature to describe both
continuum mechanisms in which large scale deformation can
be distributed throughout the body [21] [16] and so-called
discrete or lumped compliance models in which compliance
is concentrated at nodes which are connected using members
that are generally assumed to be rigid [13] [12]. Because
they have no moving parts, they are free from backlash and
friction, require no lubrication, and are suitable for use at
the microscale. These advantages have led to their adoption
in a variety of robotic applications from microscale silicon-
based robots [4] [9], to high resolution mesoscale precision
positioning devices [1] [3], to milliscale mobile robots with
microscale feature sizes [17] [11] as well as scaled prototypes
of such robots [10].

The most typical approach to design and modeling of
compliant mechanisms is the finite element method (FEM) in
which the body is subdivided into mesh elements and a large
system of equations relating the tractions to the displace-
ments for each elastic element are solved numerically. This
method can be very powerful for optimizing or predicting the
behavior of an existing topology [8], but its complexity and
lack of analytical predictive power make it a cumbersome
tool to apply during initial design or prototyping stages.
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By contrast, Howell’s pseudo-rigid-body model (PRBM)
[12] was developed in an effort to simplify the compliant
mechanism design process and bridge the gap between
rigid mechanism design and compliant mechanism design.
The PRBM models compliant mechanisms as rigid body
members connected by ideal pin joint hinges in paral-
lel with torsional springs. The resulting mechanisms have
force(moment)/displacement curves approximately equiva-
lent to their compliant analogs and enable accurate analysis
that includes large displacements. The primary limitation of
the PRBM is the ideal pin joint behavior assumption. The
idealization of simple flexures as pin joints with parallel
torsional springs reduces the analysis at each joint to a single
degree of freedom problem. In practice, flexures experience
loading and the consequent displacements in as many six
axes. For larger scale devices or mechanisms where the
applied and reaction loads are consistent and predictable this
limitation of the PRBM may not be significant. However,
for small scale mechanisms incorporated into millirobots
where actuation involves the amplification of very small
strains [19], the consideration of additional off-axis loads and
displacements becomes increasingly important for avoiding
the loss of actuator displacement to serial compliance in the
structure.

In cases where we are willing to assume small deflections,
we may explicitly incorporate these effects (in closed form)
into our model in order to better study the off-axis behavior
of a mechanism. In this work, we address the problem of
improving the design of a single degree of freedom (DOF)
compliant mechanism consisting of rigid links connected by
simple flat (or blade) flexure hinges experiencing small de-
flections. Specifically, we are interested in improving the var-
ious off-axis stiffnesses of such mechanisms while preserving
the output motion in the desired direction. Motivation for
studying this problem comes from our experience designing
and building millimeter scale robots (millirobots) using an
approach that integrates rigid composite fiber beams with
flat polymer flexure hinges [18]. The example mechanism to
which we apply our analysis here is the compliant version
of a simple 1 DOF exact straight line linkage known as the
Sarrus linkage after its inventor, French mathematician Pierre
Frédéric Sarrus.

We begin by reviewing the full 6x6 compliance matrix of a
simple flexure in a local coordinate system creating the basis
for analyzing more complex combinations of rigid links and
flexure hinges. Using the mechanism geometry, the compli-
ance of each individual flexure is transformed into a common
coordinate system following the method described in [6]



and [7]. This approach enables the closed form analysis of
an equivalent compliance/stiffness for the entire mechanism.
Following the exposition of the compliance transformation
technique, we propose the use of a strain energy-based
metric by which to judge the fitness of a design. Using that
metric, we explore and characterize different topologies and
geometries for the compliant Sarrus linkage. Finally, results
are validated with measurements of representative compliant
mechanisms.

II. MODELING MECHANISM STIFFNESS

The approach described below follows the generalized
flexure mechanism analysis outlined in [6]. Aside from the
linear elasticity assumptions made in formulating the com-
pliance for a single flexure, the primary underlying principle
is that a compliant mechanism comprised of flexures and
rigid bodies can be modeled as a network of springs. Each
flexure is modeled in a local coordinate system as a spring
with a 6x6 compliance matrix, C, the inverse of which is its
stiffness matrix, K. Then using the mechanism’s geometry
(eg. link lengths, angles, etc.) and topology (eg parallel or
serial chains, number of chains, etc) the individual compli-
ances can be transformed into a common coordinate system
and combined appropriately to yield an overall mechanisms
stiffness.

A. Compliance of a Simple Beam Flexure

In order to model the equivalent stiffness of a parallel
flexure mechanism, it’s necessary to formulate the compli-
ance matrix for a single flexure. The end of a single flexure
possesses six degrees of freedom with respect to the base -
three linear displacements and three angular displacements.
Thus, we can construct a matrix relating the displacements
at a given point along the length of the flexure to the
applied loads. If the generalized load is represented as a
six dimensional vector of three forces and three torques,
the six dimensional displacement vector will be represented
by three differential linear and three differential angular
displacements. The matrix that relates generalized forces (or
wrenches) to these displacements is called the compliance
matrix.

It has been demonstrated in [6] and [14] that it’s possi-
ble (and useful) to choose a local coordinate system that
diagonalizes the compliance matrix of a beam-type flexure.
In other words, a local coordinate system can be chosen so
that there is no coupling between any of the six degrees
of freedom of the flexure. Fig. 1 depicts such a coordinate
system located at the intersection of the principal axes of the
beam.

The 6x6 compliance matrix of the beam is given by the
following equations:
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Fig. 1. From [6]: A flat flexure depicting local coordinate systems before
(x,y, z) and after (x′,y′, z′) deformation. This choice of local coordinate
system diagonalizes the compliance matrix.
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(2) - (8) come from analysis of the standard, constant cross
section Euler-Bernoulli beam in which plane cross sections
of the beam remain plane and deformations are sufficiently
small to satisfy linear elasticity. These equations are very
similar to the equations established in [6], but we have
chosen to assume a plane stress condition for the flexure,
ignoring the (1 - ν2) stiffening factor due to the Poisson
effect. The full derivation of these equations is beyond the
scope of this work, but the interested reader is directed to
[6] and [22]. (4) and (6) include the effects due to the action
of an external axial force (in square brackets) on the flexure.
This power series approximation comes from the solution
for the axially loaded fixed-guided beam [22]. The force is
applied in the local coordinate system, meaning it’s line of



action is orthogonal to the end of the displaced beam. In
(4) a tensile axial force serves to stiffen the flexure in the
z direction, but increases the compliance about the y axis
in (6). One principle for designing compliant mechanisms
to perform well under compressive loads is inversion [5],
or designing a mechanism such that load-bearing flexures
are kept in tension. This compliance formulation enables the
designer to include the role of these externally applied axial
forces in the overall mechanism stiffness for a more accurate
description of mechanism behavior under prescribed loading
conditions.

B. Compliance Transformation

(1) - (8) describe the compliance properties of a single
flexure, but the mechanisms in which we are interested are
typically comprised of multiple flexures connecting sets of
rigid links in both serial and parallel configurations. In order
to analyze the stiffness properties of an entire mechanism, we
must combine the flexure compliance matrix with knowledge
of mechanism geometry to generate an equivalent mechanism
compliance. This is achieved by first transforming the flexure
compliance in the local coordinate frame into the output
coordinate frame of the mechanism.

In general, for any system of springs, elements in parallel
are those that experience the same displacement and their
stiffnesses can therefore be added to create an equivalent
stiffness. Elements in series experience the same load -
their compliances add to create a single equivalent compli-
ance. However, this combination is only possible when the
stiffnesses or compliances to be added are expressed in a
common coordinate system. Therefore, we require that the
compliance matrix in (1) for each flexure in the mechanism
be transformed to a common coordinate system.

This transformation refers the compliance of each flexure
joint to the base coordinate system (usually attached to the
output platform or link of a parallel mechanism), and, in
general, will depend on the position and orientation of each
flexure relative to the chosen base coordinate system. While
the compliance matrix of each flexure explicitly represents a
general six axis spring, the spatial transformation introduces
the mechanism geometry into the computation of the overall
compliance of the mechanism.

The 6x6 transformation of the flexure compliance into the
base coordinate system can be decomposed into a rotation
about the principal axes of the base coordinate system and
a translation expressed in the base coordinate system.

T0/i =
[

I 0
S(ci − c0) I

]
·
[
R0/i 0
0 R0/i

]
(9)

I is the 3x3 identity matrix, Ri is the orientation of the ith

flexure hinge with respect to the base coordinate system,
the vector ci − c0 is the vector from the origin of the
base coordinate system to the origin of the local flexure
coordinate system, and S(r) is the cross product matrix with
the following definition:

S(r) =

 0 −rz ry
rz 0 −rx
−ry rx 0

 (10)

For each flexure in a parallel flexure mechanism the ma-
trices S and R will be functions of the mechanism geometry.
(9) can then be combined with the following relations

fi = Kiδi (11)

f0 = K0δ0 (12)

δi = Cifi (13)
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to yield the result:
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The property that T−1
0/i = Ti/0 makes (15) and (16)

equivalent to the transformation equations in [6].

III. APPLICATION TO COMPLIANT MECHANISM DESIGN

The application of the above formulation to compliant par-
allel mechanisms is motivated by our research in designing
and building very small scale mobile robots, or millirobots.
The enabling technology for design and fabrication of mobile
millirobots like those in [17] and [11] is a design and fabri-
cation paradigm known as Smart Composite Microstructures
(SCM) [18]. The process integrates laser micromachined
long fiber composites, with compliant polymer hinges and
novel strain based actuators like piezoelectrics and shape
memory alloys to create integrated, multi-DOF, articulated
robotic structures. The SCM process for fabricating inte-
grated flexural joints and rigid composite links is depicted
in Fig. 2. From Fig. 2 we see that the SCM process is
capable of producing only flat, constant cross section flexure
hinges, thereby motivating our focus on this relatively simple
geometry.

In addition to the constraints imposed by the limits of the
SCM fabrication process, mobile millirobot design is highly
constrained by the size and mass of the electronics and power
source needed to power and control actuators. As such, past
robot designs [20] [11] have made extensive use of parallel
kinematics in order to appropriately couple and control the
desired degrees of freedom while minimizing the number of
required actuators.



Fig. 2. The progression of the fabrication process for integrated, articulated,
compliant microstructures. a) substrate of uncured pre-pregnated composite
b) laser micromachining of gaps c) lamination of a thin polymer film d)
curing of the composite layer bonds the polymer film e) alignment of the
cured layer w/ polymer to an uncured layer with mirror symmetry f) curing
of the entire structure bonds all layers g) compliant structure is released

A. A performance metric

With these considerations in mind, we aim to design a
compliant mechanism that exhibits maximal compliance in
the desired degrees of freedom and maximal stiffness in
the undesired degrees of freedom. In order to compare the
performance of different designs, it is therefore necessary to
adopt a metric by which to judge a mechanism. In this work,
we use the ratio of the so-called “mutual potential energy”
[15] (also sometimes referred to as “mutual strain energy”)
to the total strain energy of the mechanism:

f =
MPE
SE

(17)

The mutual potential energy is defined as:

MPE = vTKu (18)

where v is the displacement vector at the output when only a
unit dummy load is applied in the desired output direction, K
is the equivalent stiffness of the mechanism expressed in the
base or output coordinate system, and u is the displacement
vector when the entire input load is applied. Intuitively, we
can think of mutual potential energy as the amount of useful
work or displacement generated at the output port by an input
load. The strain energy of the mechanism is given by:

SE =
1
2
uTKu (19)

Thus, the performance metric given in (17) is a ratio of
the work output in the desired direction (the useful work) to
the work done in deforming the mechanism. The larger this
ratio, the more “efficient” the mechanism can be considered,
ie. the undesirable degrees of freedom remain stiff while the
desirable degrees of freedom are compliant.

Fig. 3. A hexapedal robot fabricated using the SCM process. The central
mechanism (hidden) connecting all six fourbar hips is a compliant Sarrus
linkage.

B. Design Evaluation and Analysis

The application of this stiffness formulation and perfor-
mance metric to compliant mechanisms fabricated using the
SCM process is motivated by our interest in building, small,
lightweight, mobile robots. These robots’ highly constrained
mechanical and kinematic requirements often lead to me-
chanically complex designs. For example, the hexapedal
running robot in Fig. 3 possesses two degrees of freedom
coupled through a single actuator as well as six unactuated
degrees of freedom in the form of compliant knee joints.
The mechanism kinematics and actuator configuration must
appropriately couple the two controlled degrees of freedom
to produce an alternating tripod gait.

As a simple example of the usefulness of modeling the full
compliance of these SCM structures, we focus on the design
of a mechanism that plays a prominent role in the robot
pictured in Fig. 3, the Sarrus linkage. Fig. 4 shows a model
of the robot in which a central Sarrus linkage (shown in blue)
can been seen connecting two sets of three hips such that
when it contracts the upper legs are adducted while the lower
legs are abducted. The Sarrus’ central role in this compliant
robotic structure and the complex loads that are applied at the
hips as a result of ground reaction forces transferred through
the legs make it an interesting case study.

The most common (and minimal) topology of the Sarrus
linkage (as pictured in Fig. 5) consists of two planar kine-
matic chains of 4 links connected by three hinges. The two
chains are rigidly connected at their base and outputs and
are oriented at an angle (usually 90◦) with respect to each
other such that the rotation axes of all the joints intersect.
Mobility of the chain as predicted by Grübler’s criterion is
zero, so it’s important that the rotation axes for the joints be
precisely aligned.



Fig. 4. A CAD model of a hexapedal crawler that uses a Sarrus linkage
to connect six fourbar hip joints.

Fig. 5. A compliant Sarrus linkage shown with its simplest topology and
configuration: Two 4 link kinematic chains rigidly joined at their base and
output links and oriented at φ = 90◦to each other.

Using conventional mechanical components, the Sarrus
linkage would typically be constructed with pin-type hinges,
which ideally provide infinite compliance in rotation about
the hinge axis and infinite stiffness in all other directions.
However, we are designing a compliant Sarrus linkage in
which each hinge has finite compliance/stiffness. Given that
fact, we are interested in the topologies and geometries of
the Sarrus linkage which, for a given set of forces applied
at the output, maximize the metric in (17).

The minimal topology for the compliant Sarrus consists
of two serial kinematic chains connected at some angle,
φ, with respect to each other. Conventional Sarrus linkage
designs typically set φ = 90◦. In fact, for conventional
designs with ideal hinges, any angle other than zero and 180◦

will provide equivalent exact straight line motion constraint.
However, for the compliant case, the angle between the
two kinematic chains becomes an important design variable
when considered in tandem with loading conditions at the
output frame. All cases considered below have the geometric

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

φ (radians)

M
P

E
/S

E

 

 

! = 0.5
! = 1
! = 2
! = 4

Fig. 6. Performance of a Sarrus linkage consisting of two kinematic chains
connected at an angle, φ. The parameter β is the ratio of the off-axis forces
to the force in the direction of highest compliance.

parameter θ (depicted in Fig. 5) set to 30◦. Additionally, the
loading condition considered is the simultaneous application
of forces (but no moments) in all three axes. The β parameter
represents the ratio of the magnitude of the two off-axis
forces to the magnitude of the applied force in the compliant
direction.

1) Case I: Two chain compliant Sarrus: This topology
is shown in Fig. 5. We are interested in the angle between
the two kinematic chains, φ that gives the best performance
in the sense of (17) for forces in the x0, y0, z0 coordinate
frame. Fig. 6 shows the performance of the two chain Sarrus
for the range φ ∈ [0, π] for four different loading conditions.
The parameter β represents the ratio of the magnitude of
the two off-axis forces (taken to be equal in these examples)
to the forces in the direction of highest compliance (the x0

direction, in this case).
From the figure, we see that as the off-axis forces become

large in comparison to the force in the compliant direction,
a clear optimal orientation angle for the kinematic chains
appears at approximately 0.85 radians.

2) Case II: Three chain compliant Sarrus: From a strictly
kinematic perspective, this redundancy is unnecessary for the
straight line constraint. However, from a compliance perspec-
tive, our design intuition is that redundancy should provide
an improvement in mechanism performance. Fig. 7 shows
that, in fact, we do see an improvement in performance. For
the case of relatively small off-axis forces (β=0.5) maximum
performance is unchanged. However, the mechanism shows
a reduced sensitivity to an increase in β at the optimal
orientation angle of φ = 0.85 radians. It’s important to note,
however, that this relative insensitivity to off-axis forces
only occurs at the optimal orientation angle. Away from
that angle, performance drops markedly with increased off-
axis loading. Additionally, the peak performance predicted
for this configuration occurs to the left of the φ = π

2 due
to the asymmetric loading configuration. When the force
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Fig. 7. Performance variation in a Sarrus linkage comprised of three
kinematic chains with two chains connected at angles of φ and -φ with
respect to the third. β is the ratio of off-axis forces to forces in the most
compliant direction.

in the y direction is removed, because of the symmetry
of the topology and geometry of the mechanism, the peak
performance occurs at the angle φ = π

2 .
3) Case III: Four chain compliant Sarrus: The geometry

of this case corresponds to a mirroring of the geometry in
case I about the plane z = y. Results from the analysis of
this topology are shown in Fig. 8.

This topology shows the best performance in two senses.
First, the maximal performance is relatively insensitive to
the orientation angle of the chains (away from the singular
φ = 0 and φ = π orientations). Secondly, the performance
of the mechanism is relatively insensitive to increases in the
off-axis loads over that range of φ.
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Fig. 8. Performance variation in a Sarrus linkage comprised of four
kinematic chains. This configuration shows the overall best performance
encapsulated by a lack of sensitivity to off-axis forces (β) as well as
orientation angle (φ).

IV. EXPERIMENTAL RESULTS

To test the predictions of model, we fabricated 5 different
geometric configurations of two topologies of the Sarrus
linkage - the two chain topology and the four chain topology.
The mechanisms were constructed using the folding process

a b
c d e f g

h
Fig. 9. Sarrus linkage topologies and configurations used to experimentally
verify the predictions of the model. a-e are the five configurations of the
two chain topology a, φ = 30◦ up to e, φ = 150◦. f-h represent the five
configurations for the four chain topology. For f, φ = 30◦(150◦), g, φ =
90◦, and h, φ=60◦(120◦). Only three linkage configurations are necessary
for the four chain topology because the 120◦ and 150◦ orientations are
reflections of the 60◦ and 30◦ orientations respectively.

Parameter Value
b 8mm
h 50µm
l 600µm

llink 20mm
θ 10◦

TABLE I
SARRUS LINKAGE GEOMETRIC PARAMETERS

described in [10]. Table I summarizes the common geometric
parameters for all linkages tested.

F = mg

63.5°
Sarrus linkage

Fig. 10. Experimental setup used to generate controlled off-axis loading
for testing compliant Sarrus linkage performance.

The base of each linkage was grounded and a load was
applied to the output link at the free end by a simple mass
as despicted in Fig. 10. The entire linkage was rotated
through several angles to create ratios of off-axis to on-axis
loading, β, of 0-2. The linear and angular displacements
in the XZ plane were measured optically, and the 3x3
stiffness matrix was estimated from the displacement data
using the procedure outlined in [2]. Results comparing the
performance of the two topologies are shown in Fig. 11.
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Fig. 11. Experimental measurement of the off-axis stiffness performance
of two and four chain topologies of the compliant Sarrus linkage. For each
topology 5 different configurations (orientation angles of the individual
chains) were subjected to an off-axis force in the Z direction and a negative
moment about the Y axis as well as an on-axis load in the negative X
direction. The 4 chain Sarrus is preferable to the two chain topology and
the peak performance, or maximal off-axis stiffness, for both occurs when
the chains are oriented at π

2
radians or 90◦ to each other.

V. CONCLUSIONS AND DISCUSSION

By transforming the stiffnesses of simple, constant cross
section, beam-like flexures into a common coordinate system
we can generate an expression for the generalized stiffness
of a compliant mechanism consisting of rigid links intercon-
nected by flat flexures. Using a strain energy-based metric,
we can analyze the performance of a given topology and
geometry subject to a prescribed set of loads at the output of
the mechanism. In this work, this approach has been applied
to understanding and improving the off-axis performance of
a compliant linkage commonly used in the design of our
millirobots - the exact straight line Sarrus linkage.

Using the tools described we demonstrated a quantifiable
improvement in the performance of the compliant Sarrus
linkage by adjusting only the linkage topology. However, we
have not optimized in any formal, global sense the topology
or geometry of the mechanism. Rather, we have applied a
straightforward closed form model to assist in understanding
mechanism behavior under general loading conditions. That
ability to quickly predict performance improvements of these
compliant linkages has the potential to provide additional
insights at the early stages of design and reduce the overall
design cycle time for SCM millirobots.

It is important to note, however, that the results of this
approach are dependent not only on the mechanism topology
and geometry, but also on the loading conditions imposed
at the output of the mechanism. This dependence of the
mechanism performance on the loading condition requires
the mechanism designer to understand the nature of the
output loads associated with the intended application. If those
loads are well understood, this approach provides a useful
tool for guiding the initial exploration of the design space.
Once a promising design has been identified, more intensive
approaches such as finite element modeling can be applied
to improve the precision or performance of the design.
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