
150

example of a more fine-grained analysis approach is Experiscope [97], a tool for analyzing user

tests of mouse- or stylus-based interaction techniques. Experiscope can both visualize input

event data well as produce aggregate reports of event frequency and duration. As an initial

step into this direction, d.tools visualizes how many times a transition was taken by changing

transition line thickness in the diagram. However, it is not currently possible to extract the

precise number of times the transition was taken, or to derive a similar figure for the number

of times a state was active during a test.

6.1.4.2 Limited Visibility of Application Behavior During Test

d.tools video records a single stream of live video from a digital camera. Recording how a

device was handled is especially important for devices with new form factors, as ergonomics

and questions about device control layout may be part of the test. This focus on embodied use

of a device during a test comes at a price: it is not always possible to see what happened on

the screen(s) of the tested prototypes in live video. Linking the video to the state diagram

enables the tester to see which state the device was in at any given time. However, states

present only a static view of the application. Dynamic animations scripted in d.tools are not

visible — reviewing these may be important as well. One possible solution suggested by

commercial GUI testing applications such as Silverback [4] is to record multiple video

streams of both live video and screen output and to then composite those streams into a

single video feed.

6.1.4.3 Cannot Compare Multiple Prototypes in Analysis Mode

The video spreadsheet view enables comparison of multiple test sessions by multiple users,

but only for a single prototype. As the previous chapter has argued, exploration of design

alternatives is an important practice and should therefore be supported in analysis tools as

well. We see two separate opportunities for further research: 1) enabling comparative testing

of multiple, simultaneously developed alternatives; 2) supporting comparison of prototypes

across different design iterations.

Tohidi and Buxton [243] note that testing multiple prototypes is preferable to testing a

single prototype, since users will feel less pressured to be ―nice‖ to experimenters and can

draw comparisons between prototypes. In addition, if prototypes are more refined and the

designer has concrete hypotheses in mind, formal comparative testing is required to support

or reject these hypotheses. For traditional GUI interactions, tools that support such

comparative analysis of alternatives exist. Experiscope [97] enables testers to visually

151

compare event traces of multiple treatment conditions side-by-side. However, existing tools

such as Experiscope do not link the recorded trace back to the source of the application being

tested. It is an open question how tools can show video, event traces, and software models for

multiple alternative designs simultaneously without overwhelming the designer with

complexity.

A separate question is how one might support the comparison of different iterations of a

given project over time. In the iterative design-test-analyze paradigm, subsequent iterations

are informed by what was learned before. Testing tools should offer support for checking

whether the feedback collected during prior iterations was properly acted on in later

iterations and if identified issues were in fact resolved.

6.1.4.4 Limited Query Language

An additional limitation of d.tools video analysis is that the query language over states and

events is rather primitive at the present time. The queries that can be executed select

segments from single video files based on states or input events. A natural extension would be

to enable testers to specify more complex, and thus more useful, queries. Badre suggests using

regular expressions to filter user events [39]. We are skeptical whether regular expressions

are accessible to our target audience. An alternative approach would be to use a textual query

language, such as SQL, and then building GUI tools for specifying queries in that language.

Interactive query builders are common for expressing SQL queries in database applications.

6.1.4.5 Interaction Techniques Have Not Been Formally Evaluated

The introduced interactions have not been evaluated in a formal user study. Their efficacy in

real design contexts has not been established, although the rapid video query techniques have

received positive comments from professional designers in informal conversations and at

presentations to professional design conference attendees.

152

6.2 CAPTURING FEEDBACK FROM OTHER DESIGNERS: D.NOTE

Interaction design in teams oscillates between individual work and team reviews and

discussions. Team reviews of user interface prototypes provide valuable critique and suggest

avenues forward [189:pp. 374-5]. However, changes proposed by others can rarely be realized

immediately: often the proposer lacks the implementation knowledge, the changes are too

complex, or the ideas are not sufficiently resolved.

In many areas of design, annotations layered on top of existing drawings and images, or

―sketches on top of sketches‖ [55], are the preferred way of capturing proposed changes. They

are rapid to construct, they enable designers to handle different levels of abstraction and

ambiguity simultaneously [66], and they serve as common ground for members with different

expertise and toolsets [205]. Individual designers later incorporate the proposed changes into

the next prototype. This annotate-review-incorporate cycle is similar to revising and

commenting on drafts of written documents [198]. While word processors offer specialized

revision tools for these tasks, such tools don‘t yet exist for the domain of interaction design.

This section demonstrates how three primary text revision techniques can be applied to

interaction design: commenting, tracking changes, and visualizing those changes. It also

Figure 6.9: d.note enables interaction designers to revise

and test functional prototypes of information appliances using

a stylus-driven interface to d.tools.

153

introduces revision tools unique to interaction design: immediate testing of revisions and

proposing alternatives. The novel revision techniques are embodied in d.note (Figure 6.9), an

extension to d.tools. The d.note notation supports modification, commenting, and proposal of

alternatives (see Section 5.7, p. 140) for both appearance and behavior of information

appliance prototypes. Concrete modifications to behavior can be tested while a prototype is

running. Such modifications can exist alongside more abstract, high-level comments and

annotations.

This section also contributes a characterization of the benefits and tradeoffs of digital

revision tools such as d.note through two user studies. We show that the choice of revision

tool affects both what kind of revisions are expressed, as well as the ability of others to interpret

those revisions later on. Participants who used d.note to express revisions focused more on

the interaction architecture of the design, marked more elements for deletion, and wrote

fewer text comments than participants without d.note. Participants who interpreted d.note

diagrams asked for fewer clarifications than participants that interpreted freeform

annotations, but had more trouble discerning the reviser‘s intent.

In the remainder of this section, we first describe revision principles from related

domains. Current practices of UI designers were described in Section 3.1.2.2. We then

introduce d.note and its implementation. We present results from two studies of revision

expression and interpretation, and conclude by discussing the design space of revision tools.

6.2.1 REVISION PRACTICES IN OTHER DOMAINS

Interaction designers are concerned with both look and feel of applications [189]. Absent a

current, complete solution for both aspects, we can draw on important insights from revising

textual documents, source code, and movie production.

Figure 6.10: Interlinear revision tracking and comment

visualization in word processing.

154

TEXT DOCUMENTS

The fundamental actions in written document revision are history-preserving modification

(insertion, deletion) and commenting. Each operation has two components: visual syntax and

semantics. For example, in word processing, a common interlinear syntax to express deletion

is striking through the deleted text (Figure 6.10); the semantics are to remove the stricken

text from the next version of the document, should the revision be accepted. Original and

modification are visible simultaneously, to communicate the nature of a change. Furthermore,

edits are visually distinguished from the base version so the recipient can rapidly identify

them. When editing documents collaboratively, different social roles of co-author,

commenter, and reader exist [198]. Offering ways to modify the underlying text as well as

adding meta-content that suggests further modification serves these different roles.

SOURCE CODE DOCUMENTS

Source code revision tools, such as visual difference editors, enable users to compare two

versions of source files side-by-side [115] (Figure 6.11). In contrast to document revision tools,

changes are generally not tracked incrementally, but computed and visualized after the fact.

Comments in source code differ from comments in text documents as they are part of the

Figure 6.11: Source code comparison tools show two versions

of a file side-by-side.

Figure 6.12: Video game designers draw annotations directly

on rendered still images (from [55:p. 179]).

155

source document itself. Meta comments (comments about changes) are generally only

available for an entire set of changes.

VISUAL MEDIA

WYSIWYG document editors do not distinguish between source and final document;

authors revise a single, shared representation. For program source code, there is no way to

comment directly on the output of the program, only the source. In contrast, movie producers

and video game developers convey revisions by drawing directly on output, i.e., rendered

video frames (Figure 6.12). Because the revisions address changes in appearance, sketching is

the preferred method of expression. Working in the output domain is a compelling approach,

but has thus far been limited to static content [55].

DESIGN PRINCIPLES

Comparing these three existing domains leads to the formulation of four design principles. UI

revision tools should support the following workflows:

1) History-preserving incremental modification of the source representation

2) Commenting outside the underlying source language

3) Sketching as an input modality for graphical content

4) Revising the output, i.e., the resulting user interface screens, not just the source.

6.2.2 A VISUAL LANGUAGE FOR REVISING INTERACTIONS

Guided by our assessment of current practice and tools available in other domains, we

developed d.note, a revision notation for user interface prototypes. d.note extends the d.tools

authoring environment. In text, the atomic unit of modification is a character. Because visual

program diagrams have a larger set of primitives, the set of possible revision actions is more

complex as well. In d.tools, the primitives are states, transitions, the device definition, and

graphical screens. With each primitive, d.note defines both syntax and semantics of

modification. This section will provide an overview of each modification operation. Concrete

examples of these operations in d.note are provided in Figure 6.13 – Figure 6.17.

6.2.2.1 Revising Behavior

d.note uses color to distinguish base content from elements added and removed during

revision. In d.note and in the following diagrams, states and transitions rendered with a black

outline are elements existing in the base version; added elements are shown with a blue

outline; deleted elements in red.

156

In revision mode, users can add states and transitions as they normally would; these states

and transitions are rendered in blue to indicate their addition (Figure 6.13, Figure 6.14).

Semantically, these states and transitions behave like their regular counterparts.

When users remove states from the base version, the state is rendered as inactive in red.

To visually communicate that a state can no longer be entered or exited, all incoming and

outgoing transitions are rendered as inactive with dashed lines (Figure 6.15). At runtime,

incoming transitions to such states are not taken, making the states unreachable. Individual

transitions can also be directly selected and deleted. Deleted transitions are shown with a

dashed red line as well as a red cross, to distinguish them from transitions that are inactive as

a result of a state deletion (Figure 6.16). As with many source code and word processing tools,

deleting states or transitions that were added in revision mode completely removes the

objects from the diagram.

Figure 6.13: States added

during revision are

rendered in blue.

Figure 6.14: New screen

graphics can be sketched in

states.

Figure 6.15: State

deletions are rendered in

red. Connections are

marked as inactive.

Figure 6.16: Transition

deletions are marked with

a red cross and dashed

red lines.

Figure 6.17: Comments can

be attached to any state.

Figure 6.18: Alternative

containers express

different options for a

state.

157

6.2.2.2 Revising Appearance

Designers can modify graphics by sketching directly on top of them with a pen tool within

the d.tools graphics editor (Figure 6.19). Sketched changes are then rendered on top of the

existing graphics in a state at runtime. In addition to sketching changes to appearance, users

may also rearrange or otherwise modify the different graphical components that make up the

screen output of a state. d.note indicates the presence of such changes by rendering the screen

outline in the state editor in a different color, as showing modification side-by-side with the

original graphics would interfere with the intended layout. The changes are thus not

visualized on the level of an individual graphical widget, but in aggregate.

6.2.2.3 Revising Device Definition

Thus far, we have described changes to the information architecture and graphic output of

prototypes. When prototyping products with custom form factors such as medical devices,

Figure 6.19: Sketched updates to screen content are

immediately visible on attached hardware.

Figure 6.20: Changes to the device configuration are

propagated to all states. Here, one button was deleted while

two others were sketched in.

158

the set of I/O components used on the device may also be subject to change and discussion.

When revising designs in d.note, users can introduce new input elements by sketching them

in the device editor (Figure 6.20). Prior to binding the new component to an actual piece of

hardware, designers can simulate its input during testing using the d.tools simulation tool

(see Section 4.1.3). Currently, the d.note implementation does not support adding output

devices through sketching; we believe adding output within this paradigm would be fairly

straightforward.

6.2.2.4 Commenting

In addition to functional revision commands, users can sketch comments on the canvas of

device, graphics, and storyboard editors (Figure 6.17). Any stroke that is not recognized as a

revision command is rendered as ink. This allows tentative or ambiguous change proposals to

coexist with concrete changes. Inked comments are bound to the closest state so they

automatically move with that state when the user rearranges the diagram.

6.2.2.5 Proposing Alternatives

As covered in Section 5.7 (p. 140), users can introduce alternatives for appearance and

application logic. We summarize the functionality of alternative containers again briefly:

d.tools represents the alternative by duplicating the original state and visually encapsulating

both original and alternative (Figure 6.18). The original state‘s incoming connections are

rerouted to point to the encapsulating container. Each state maintains its own set of outgoing

transitions. To define which of the alternative states should become active when control

transfers to an alternative set, the set container shows radio buttons, one above each

contained state. To reduce visual clutter, only outgoing transitions of the active alternative

are shown; other outgoing transitions are hidden until that alternative is activated.

6.2.3 SCENARIO

The following scenario summarizes the benefits d.note provides to interaction design teams.

Adam is designing a user interface for a new digital camera with on-camera image editing

functions. To get feedback, he drops his latest prototype off in Betty‘s office. Betty picks up

the camera prototype, and tries to crop, pan and color balance one of the pictures that Adam

preloaded on the prototype. She notices that exiting to the top level menu is handled

inconsistently in different screens. She opens up the d.tools diagram for the prototype and,

with d.note enabled, changes the transitions from those screens to the menu state. She next

159

notices that the image delete functionality is lacking a confirmation screen – images are

deleted right away. To highlight this omission, Betty creates a new state and sketches a

rudimentary confirmation dialog, which she connects to the rest of the diagram with new

transitions so she can immediately test the new control flow. Betty is not convinced that the

mapping of available buttons to crop an image region is optimal. She selects the crop state and

creates an alternative for it. In the alternative, she redirects button input and adds a comment

for Adam to compare the two implementations. She also thinks that the current interface for

balancing colors via RGB sliders is cumbersome. Since she does not have time to change the

implementation, she circles the corresponding states and leaves a note to consider using an

alternative color space instead.

6.2.4 THE D.NOTE JAVA IMPLEMENTATION

d.note was implemented as an extension to d.tools. As such, it was written in Java 5 and

makes use of the Eclipse platform, specifically the Graphical Editing Framework (GEF) [24].

d.note runs on both Windows and Mac OS X operating systems.

6.2.4.1 Specifying Actions Through Stylus Input

Because much of early design relies on sketches as a visual communication medium [55],

d.note‘s revision interface can be either operated through mouse and keyboard commands, or

it can be entirely stylus-driven. Stylus input allows for free mixing of commands and non-

command sketches. When using the stylus, strokes are sent through a recognizer (the Paper

Toolkit [258] implementation of Wobbrock et al.‘s $1 recognizer [253]) to check if they

represent a command. Command gestures to create states and alternatives use a pigtail

delimiter [120], to reduce the chance of misinterpretation of other rectangular strokes (Figure

6.21). Gesture recognition takes into account what existing diagram element (if any) a gesture

was executed above. The gesture set contains commands to delete the graphical element

Figure 6.21: The d.note gesture set for stylus operation. Any

stroke not interpreted as one of the first four actions is

treated as a comment.

160

underneath the gesture, and to create new states, transitions and alternatives. All other

strokes are interpreted as comments. In addition to providing drawing and gesture

recognition, d.note extends the d.tools runtime system to correctly handle the interaction

logic semantics of its notation, e.g., ignore states marked for deletion.

6.2.5 EVALUATION: COMPARING INTERACTIVE & STATIC REVISIONS

To understand the user experience of the interactive revision techniques manifest in d.note,

we conducted two studies: the first compared authoring of revisions with and without d.note;

the second compared interpretation of revisions with and without d.note. We recruited

product design and HCI students at our university. Because the required expertise in creating

UIs limited recruitment, we opted for a within-subjects design, with counterbalancing and

randomization where appropriate.

6.2.5.1 Study 1: Authoring Revisions

In the domain of word processing, Wojahn [254] found that the functionality provided by a

revision interface influenced the number and type of problems discussed. Do users revise

interaction designs differently with a structured, interactive tool than by making freeform,

static annotations on a diagram?

METHOD

We recruited twelve participants. Participants each completed two revision tasks: one

without d.note and one with. The non-d.note condition was always assigned first to prevent

exposure to d.note notation from influencing freeform annotation patterns. Each revision task

asked participants to critique one of two information appliance prototypes, one for a

keychain photo viewer, and one for the navigation and management of images on a digital still

camera (Figure 6.22). The tasks were inspired by student exercises in Sharp et al.‘s

interaction design textbook [226]. We counterbalanced task assignment to the conditions.

Participants were seated in front of a Mac OS X workstation with an interactive 21‖,

1600×1200 pixel tablet display (Figure 6.23). Participants could control this workstation with

stylus as well as keyboard and mouse. We first demonstrated d.tools to participants and had

them complete a warm-up menu navigation design (taken from the d.tools evaluation in

Section 4.1.5.1) to become familiar with the visual authoring language. In the condition with

d.note, students were given a demonstration of its revision features, and five minutes to

become familiar with the commands using the warm-up project they completed earlier.

161

Participants were then given a working prototype, run by d.tools and d.note, and were asked

to take 15 minutes to revise the prototype directly in the application using d.note‘s

commenting and revision features.

In the non-d.note condition, participants were given a working prototype along with a

static image of the d.tools state diagram for the prototype. The image was loaded in Alias

Sketchbook Pro [30], a tablet PC drawing application, and participants were given 15 minutes

to draw modifications and comments on top of that image.

The caveat of our design is that ordering of conditions may have affected usage. For

example, participants may have become more comfortable, or more fatigued, for the second

condition. However, we judged this risk to be lower than the potential learning effect of

becoming familiar with the d.note annotation language and then applying it in the non-d.note

Figure 6.22: Participants were given a prototype device with a

color display and button input. They were asked to revise

designs for a keychain display and a digital camera, both

running on the provided device.

Figure 6.23: Participants in study 1 revised d.tools designs on

a large tablet display.

162

condition. After the design reviews, participants completed a survey that elicited high-level

summative feedback in free response format.

RESULTS

We categorized all marks participants made; Table 6.1 summarizes the results. Figure 6.24

shows four examples of diagrams; two for each condition. Most notably, participants wrote

significantly more text comments without d.note than with it. In contrast, deletions were rare

without d.note (4 occurrences); but common with d.note (34 occurrences; 8 out of 12

participants). Finally, revisions with d.note focused on changes to the information

Table 6.1: Content analysis of d.tools diagrams reveals

different revision patterns: with d.note, participants wrote less

and deleted more.

Table 6.2: Most frequently mentioned advantages and

disadvantages of using d.note to express revisions.

163

architecture, while freeform revisions often critiqued the prototype on a more abstract level.

Our results thus corroborate Wojahn‘s finding that the choice of revision tool affects the

number and type of revision actions [254].

The post-test survey asked participants to compare the relative merits of Sketchbook

and d.note. We categorized their freeform written answers (Table 6.2). The two most

frequently cited advantages of d.note were the ability to make functional changes (6 of 12

participants), and to then test proposed changes right away (7 of 12 participants). Three

participants suggested that commenting was more difficult with d.note; two wrote that the

tool had a steeper learning curve. Two participants with a product design background wrote

that using d.note led them to focus too much on the details of the design. In their view, the

lack of functionality in the Sketchbook condition encouraged more holistic thinking.

DISCUSSION

Why did participants write less with d.note? One possibility is that that users wrote more with

Sketchbook because it was easier to do so (Sketchbook is a polished product, d.note a

research prototype). To the extent this is true, it provides impetus to refine the d.note

Figure 6.24: Two pairs of revision diagrams produced by our study participants. Diagrams

produced with Sketchbook Pro in the control condition are shown on the left; diagrams

produced with d.note are shown on the right.

164

implementation, but tells us little about the relative efficacy of a static and dynamic approach

to design revision.

More fundamentally, d.note may enable users to capture intended changes in a more

succinct form than text comments. Four participants explicitly wrote that d.note reduced the

need for long, explanatory text comments in their survey responses: ―[with d.note] making a

new state is a lot shorter than writing a comment explaining a new state‖; ―[without d.note] I

felt I had to explain my sketches.‖ d.note‘s rich semantics enable a user‘s input to be more

economical: an added or deleted transition is unambiguously visualized as such. In d.note,

users can implement concrete changes interactively; only abstract or complex changes require

comments. Without d.note, both these functions have to be performed through the same

notation (drawing), and participants explained their graphic marks with additional text

because of the ambiguity. In our data, inked transition arrows drawn without d.note (44

drawn transitions) were replaced with functional transitions with d.note (78 functional

transitions added; only 3 drawn as comments).

Though participants could have disregarded the revision tools and only commented with

ink, the mere option of having functional revision tools available had an effect on their

activity. This tendency has been noted in other work [55,156] as well.

Why did participants delete more with d.note? While participants created new states and

transitions in both conditions, deletions were rare without d.note. Deletions may have been

implied, e.g., drawing a new transition to replace a previously existing one, but these

substitutions were rarely noted explicitly. We suggest that deletions with d.note were

encouraged by the ability to immediately test concrete changes. Quick revise-test cycles

exposed areas in which diagrams had ambiguous control structure (more than one transition

exiting a state on the same event).

Why were more changes to information architecture made with d.note? The majority of revision

actions with d.note concerned the flow of control: adding and deleting transitions and states.

In the Sketchbook condition, participants also revised the information architecture, but

frequently focused on more abstract changes (Example comment: ―Make [feedback] messages

more apparent‖). The scarcity of such comments with d.note is somewhat surprising, as

freeform commenting was equally available. One possible explanation is that participants

focused on revising information architecture because more powerful techniques were at hand

to do so. Each tool embodies a preferred method of use; even if other styles of work remain

possible, users are driven to favor the style for which the tool offers the most leverage.

165

6.2.5.2 Study 2: Interpreting Revisions

The first study uncovered differences in expressing revisions. Are there similar characteristic

differences in interpreting revisions created with the two tools?

METHOD

Eight (different) participants interpreted the revisions created by participants of the first

study. After a demonstration and warm-up task (as in study 1), participants were shown the

two working prototypes (camera and key chain) and given time to explore. Next, participants

were shown screenshots of annotated diagrams from the first study (Figure 6.24) on a second

display. Participants were asked to prepare two lists in a word processor: one that

enumerated all revision suggestions that were clear and understandable to them; and a second

list with questions for clarification about suggestions they did not understand. Participants

completed this task four times: one d.note and one freeform diagram were chosen at random

for each of the two prototypes.

RESULTS

The cumulative count of clear and unclear revision suggestions for all participants are shown

in Table 6.3. Participants, on average, requested 1.3 fewer clarifications on revisions when

using d.note than when sketching on static images (two-sample t(29)=1.90, p=0.03).

The post-test survey asked participants to compare the relative merits of interpreting

diagrams revised with d.note and Sketchbook. The most frequently mentioned benefits arose

from having a notation with specified semantics (Table 6.4): revisions were more concrete,

specific, and actionable. Frequently mentioned drawbacks were visual complexity and

problems discerning high-level motivation in d.note diagrams.

DISCUSSION

Why did participants ask for fewer clarifications with d.note? When interpreting revised diagrams,

participants are faced with three questions: First, what is the proposed change? Second, why

was this change proposed? Third, how would I realize that change? The structure of the

second user study asked participants to explicitly answer the first question by transcribing

all proposed changes. We suggest that the formal notation in d.note decreased the need for

clarification for two reasons. First, the presence of a formal notation resulted in a smaller

number of handwritten comments, and hence fewer problems with legibility (Example

without d.note: ―Change 6 — unreadable‖). Second, because of the ad-hoc nature of

handwritten annotation schemes in absence of a formal system, even if comments were

166

legible, participants frequently had trouble tying the comments to concrete items in the

interface (Example: ―I have no idea what it means to ‗make it clear that there is a manual

mode from the hierarchy‘. What particular hierarchy are we talking about?‖)

In the survey, participants commented on the remaining questions of why changes were

proposed and how one might implement those changes. We next discuss mitigation

strategies for managing visual complexity and the reported problems discerning high-level

motivation in d.note diagrams.

Visual complexity of annotated diagrams: Visual programs become harder to read as the node

& link density increases. Showing added and deleted states and transitions simultaneously in

the diagram sometimes yielded ―visual spaghetti‖: a high density of transition lines made

Table 6.3: How well could study 2 participants

interpret the revisions created by others? Each

vertical bar is one instance.

Table 6.4: Perceived advantages and disadvantages

of using d.note to interpret revisions as reported by

study participants.

167

distinguishing and following individual lines hard. The connection density problem becomes

worse when state alternatives are introduced because each alternative for a state has an

independent set of outbound transitions.

In response, we already modified the drawing algorithm for state alternatives to only

show outgoing connections for the currently active alternative within an alternative

container. Additional simplification techniques are needed though. One option to selectively

lower transition density in the diagram while preserving relevant context would be to only

render direct incoming and outgoing transitions for a highlighted state and hide all other

transitions on demand.

Capturing the motivation for changes: While many handwritten comments focused on high-

level goals without specifying implementations, tracked changes make the opposite tradeoff:

the implementation is obvious since it is already specified, but the motivation behind the

change can remain opaque. We see two possible avenues to address this challenge. First,

when using change tracking, multiple individual changes may be semantically related. For

example, deleting one state and adding a new state in its stead are two actions that express a

desired single intent of replacement. The authoring tool should detect such related actions

automatically or at least enable users to specify groups of related changes manually. Second,

even though freeform commenting was available in d.note, it was not used frequently.

Therefore, techniques that proactively encourage users to capture the rationale for changes

may be useful.

6.2.6 LIMITATIONS & EXTENSIONS

The d.note project introduced a notation and interaction techniques for managing revisions of

user interface designs expressed as state diagrams. Diagrams can be modified and annotated.

The particular implementation of revision techniques in d.note represents only one point

solution in a larger design space of possible user interface revision tools. The main salient

dimensions we considered during our work are summarized in Figure 6.25. This table reveals

limitations and additional areas of exploration we have not touched upon so far.

168

6.2.6.1 Cannot Comment on Dynamic Behavior

The stylus-driven annotation makes it easy to add comments to both layout and information

architecture. It is not feasible to efficiently comment on dynamic behaviors, as there is no

visual record of these behaviors in the interaction diagram. Recording and annotating video of

an application‘s runtime output is one promising avenue to enable comments on behavior.

d.tools can already record live video of interaction with a built prototype. If this video capture

were augmented with a second stream of screen captures, then designers could sketch

directly onto those video frames. To make such sketches useful for others, they have to be

retrievable from the editing environment. Future work should examine how to associate such

video annotations with the state diagrams and other static source views.

6.2.6.2 Cannot Revise Dynamic Behavior

d.note currently enables designers to express functional changes to the information

architecture of the user interface, and to the screen content of a given state within that larger

architecture. However, changes to scripts are not well supported in that there are no

visualizations to show in detail what has changed, and no interaction techniques to accept or

undo such changes.

Figure 6.25: A design space of user interface revision tools.

The sub-space d.note explored is highlighted in green.

169

6.2.6.3 How To Support Identified Revision Principles for Source Code?

The presented design space finally raises the question how one might offer the benefits of a

revision tool such as d.note for user interfaces specified entirely in source code. The particular

revision techniques of d.note are based on a visual language that shows both user interface

content and information architecture in the same environment. The techniques should

therefore transfer to other visual control-flow tools such as DENIM [171] or SUEDE [148]. But

what about user interfaces that are not programmed visually? Existing source revision

techniques for non-visual programs do not permit designers to comment or revise the output

of their application. Future research should investigate if sketch-based input and annotation

in the output domain of a program can be transferred to such applications.

170

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

This dissertation has shown how to support creation, exploration, and iteration of user

interface prototypes for ubiquitous computing applications. This final chapter recapitulates

the contributions made by the presented systems, and concludes with an outlook on future

work.

7.1 RESTATEMENT OF CONTRIBUTIONS

We introduced principles and systems for prototyping user interfaces that span physical and

digital interactions. Three areas of technical contributions can be distinguished:

1) Techniques for authoring user interfaces with non-traditional input/output

configurations. This dissertation contributed:

a. Rapid authoring of interaction logic through a novel combination of storyboard

diagrams for information architecture with imperative programming for interactive

behaviors.

b. Demonstration-based definition of discrete input events from continuous sensor data

streams enabled by a combination of pattern recognition with a direct

manipulation interface for the generalization criteria of the recognition

algorithms.

c. Management of input/output component configurations for interface prototypes through

an editable virtual representation of the physical device being built. This

representation reduces cognitive friction by collapsing levels of abstraction; it

is enabled by a custom hardware interface with a plug-and-play component

architecture.

2) Principles and techniques for exploring multiple user interface alternatives. The

dissertation contributed:

a. Techniques for efficiently defining and managing multiple alternatives of user interfaces in

procedural source code and visual control flow diagrams.

b. User-directed generation of control interfaces to modify relevant variables of user

interfaces at runtime.

171

c. Support for sequential and parallel comparison of user interface alternatives through

parallel execution, selectively parallel user input, and management of

parameter configurations across executions.

d. Implementations of the runtime techniques for three different platforms: desktop PCs,

mobile phones, and microcontrollers.

3) Techniques for capturing feedback from users and design team members on user

interface prototypes, and integrating that feedback into the design environment. The

dissertation contributed:

a. Timestamp correlation between live video, software states, and input events during a

usability test of a prototype to enable rapid semantic access of video during

later analysis.

b. Novel video query techniques: query by state selection where users access video

segments by selecting states in a visual storyboard; and query by input

demonstration where sections of usability video are retrieved through

demonstrating, on a physical device prototype, the kind of input that should

occur in the video.

c. A visual notation and stylus-controlled gestural command set for revising user interfaces

expressed as control flow diagrams.

The dissertation also provided evidence, through laboratory studies and class deployments,

that the introduced techniques are successful. In particular, the dissertation contributed:

1) Evidence that the introduced authoring methods for sensor-based interaction are

accessible and expressive through two laboratory evaluations and two class

deployments.

2) Evidence from a laboratory study that the techniques for managing interface alternatives

enable designers to explore a wider range of design options, faster.

3) Evidence from two laboratory studies that an interactive revision notation for interfaces

leads to more concrete and actionable revisions.

7.2 FUTURE WORK

Future work in the space of design tools outlined by this dissertation falls into two general

categories. First, additional research can extend the introduced systems and techniques, to

overcome present limitations or to take logical next steps that enhance expressivity and

utility. Second, reconsidering the assumptions underlying the systems described in this thesis

172

yields additional opportunities for different types of tools that can support a broader range of

authoring tasks. Important limitations and possible extensions were discussed at the

conclusion of each preceding chapter, in Sections 4.1.7 (d.tools, p. 92), 4.2.6 (Exemplar, p.

116), 5.6 (Juxtapose, p. 136), 6.1.4 (d.tools video analysis, p. 149), and 6.2.6 (d.note, p. 167). This

chapter briefly discusses some larger future research directions.

In retrospect, most of the work presented in this dissertation implicitly shares a set of

assumptions: that an individual designer creates one or more alternative designs for a single device,

starting from scratch, through a desktop-based graphical user interface tool. Changing any of these

four core assumptions yields areas of future work that suggest different types of design tools.

We review each of these four areas in turn.

7.2.1 DESIGN TOOLS THAT SUPPORT COLLABORATION

Most existing authoring tools for user interfaces, the ones proposed in this dissertation

included, focus on the work of a single creative individual. Future research should broaden

this scope to integrate support for collaboration and sharing directly into authoring

environments. Two reasons for making such a shift are the predominance of team-based

design in industry, and the rise of open, amateur design communities online.

PROFESSIONAL DESIGN TAKES PLACE IN TEAMS

Professional work on complex user interfaces takes place in design teams; and an increasing

number of such teams are geographically distributed. Office suite applications such as word

processors and spreadsheets now routinely offer support for asynchronous review and

annotation; some web-based applications also support synchronous collaborative editing.

Outside the realm of office applications, support for distributed work is still lacking. In this

dissertation, the d.note project for revising interaction design diagrams considered the

importance of asynchronous communication about such diagrams between team members.

But the presented work has not yet addressed synchronous collaboration. How can

technology help teams jointly construct, discuss, and test user interface prototypes? In this

chapter, Section 7.2.3.1 proposes a concrete project to redesign the interaction design studio

itself to better support team activities.

SUPPORTING AMATEUR DESIGN COMMUNITIES

Beyond the professional, corporate context, social production of both information and

software is becoming increasingly important. Successful online environments for

collaborative information production (e.g., Wikipedia, ‗view source‘ on Web 1.0 HTML

173

pages) are built around open access to modify, copy, and reuse content. For interaction design

beyond HTML pages, and programming in general, most social exchanges today happen

outside the authoring environments, through plain text in online forums and blogs. We

believe that there is significant additional latent value in integrating collaborative aspects of

design and development directly into our authoring tools, where richer ways for collecting,

presenting, and interacting with authored media are available.

As a first step, some programming IDEs have begun to integrate support for publishing

projects online. Scratch [13], the multimedia programming environment for children

developed at the MIT Media Lab, has a function to share one‘s program on the Scratch

website. Resnick recently reported that 30% of projects on the Scratch website are based on

other projects; and that some projects have been ―remixed‖ (copied, modified, and shared

again) up to 29 different times [76]. We believe that sharing the authoring process in addition

to the end result can significantly aid designers and developers in gaining expertise,

integrating pre-existing pieces of functionality into their project, and understanding and

correcting problems. The following section on authoring by example modification introduces

some concrete research projects along these lines.

7.2.2 AUTHORING BY EXAMPLE MODIFICATION

Most existing authoring tools implicitly assume that creators start with a clean slate, and

then create their design, e.g., a user interface, a layout of a brochure, or a personal website,

from scratch. However, less design happens tabula rasa than one might surmise. In practice,

much creative work starts with finding relevant existing examples and modifying those to fit

a new context.

Examples play at least two fundamental roles in the design and programming of user

interfaces: they can provide inspiration by providing anchors for analogical thinking [85], and

they can provide concrete functionality that can shortcut the time required for implementation.

For inspiration, designers like to immerse themselves in the domain of their current project by

collecting a large and diverse set of examples [118]. These examples can be competing

products, swatches of materials, color schemes (e.g., ‗mood boards‘), or clever mechanisms

(e.g., the IDEO Tech Box [141:pp. 143-145]). In fact, ―shopping for functionality‖ was reported

as an important early design activity in our study of interaction, web, and hardware designers

[108]. Examples provide an experiential feel for the space of existing solutions and allow

identification of desirable traits, both concrete (―knob should be self-centering with detents‖)

174

and abstract (―product should feel warm and welcoming‖). These traits are then transferred

to the product being designed by analogy.

Many designers and programmers also rely on examples to provide working

implementations of desired functionality. Integrating existing examples may be faster, more

economical, or may enable designers to leverage functionality they could not create

themselves. In the software domain, programming by example modification [196] is especially

useful for learning how to integrate existing libraries into one‘s own project. Brandt et al.

found programming by example modification to be pervasive [50]. In a lab study where

subjects had to implement a chat room application, all participants extensively copied code

found on web sites: 1/3 of the final code in participants‘ projects came from pre-existing

examples..

If use of examples is pervasive in design and programming, what are the implications for

future design tools? We see four aspects deserving of future work: New tools can help users

find relevant examples, synthesize new examples if none exist, extract examples from larger

projects, and facilitate integration of found examples into projects. The following sections

review three of these areas in some additional detail.

7.2.2.1 Finding Examples

For programmers, code search engines like Assieme [122] and Mica [235] provide support for

finding relevant source examples. Brandt‘s Blueprint system integrates search for example

code snippets directly into the Adobe Flex development environment [49]. Going beyond

source code, it is not immediately clear how searches for examples should be specified. For

visual material, hierarchical browsing interfaces [181], faceted metadata browsing [257], and

image search by sketching [223] have been proposed, but we are not aware of studies about

the efficacy of such techniques for design. It is even less clear how designers might search for

interactive behaviors.

7.2.2.2 Synthesizing Examples

Our d.mix project [113] explored how to automatically synthesize new examples of web

service API calls by enabling developers to point to elements on web pages that they would

like to access programmatically. The Design Galleries system [181] generates a space-spanning

set of examples based on algorithms evaluating alternatives. For any system that

automatically generates examples, designers somehow have to steer and control the synthesis

175

process. Whether the right interfaces for doing so can be general or have to be domain-

specific remains to be determined.

7.2.2.3 Extracting Examples

Useful examples for programmers are short, minimal, self-sufficient, and have explanatory

documentation. These attributes are entirely different from the characteristic of source code

found in open repositories, where projects are large, complex, and rife with

interdependencies. One possible area of future research is therefore how to give developers

the right tools to make it easier (or automatic) to publish relevant, small examples from their

larger codebases.

Our recently started HelpMeOut project [110] suggests that IDE instrumentation can be

used to automatically collect histories of problems and problem fixes during programming

sessions. A database of such fixes can then be used as a source of examples for other

programmers who are experiencing similar problems (Figure 7.1).

7.2.2.4 Integrating Examples

Once relevant examples have been found, how can designers integrate parts of those examples

into their projects? The Adaptive iDEAS project [158] introduced limited support for copying

font and color attributes of web pages these exemplars into one‘s own page designs. Kumar

and Kim [152] are expanding on the motivation of this work by enabling designers to reuse

the layout structure of existing web pages, but substitute one‘s own content.

Figure 7.1: HelpMeOut offers asynchronous collaboration to

suggest corrections to programming errors. 1: IDE

instrumentation extracts bug fixes from programming

sessions to a remote database. 2: Other programmers query

the database when they encounter errors. 3: Suggested fixes

are shown inside their IDE.

A top of page text box for a figure or table

176

Kelleher‘s Looking Glass project [138] aims to enable users of the Alice virtual world

authoring system to ―steal‖ behaviors from other users. Since these behaviors are represented

in code in a structured editor, key challenges are how to find the right scope of code to copy,

and how to adapt the found code to fit, e.g., by remapping object identifiers. How to aid

similar integration for arbitrary code remains an open question. It would also be valuable to

have a more concrete understanding which kind of examples are most frequently consulted

and appropriated for different kinds of design projects by studying example use in real-world

scenarios.

7.2.3 AUTHORING OFF THE DESKTOP

The tools introduced in this dissertation focused predominantly on prototyping user

interfaces that aim beyond the standard desktop paradigm. However, the tools proposed for

doing so were desktop applications themselves. What benefits can be realized by moving the

authoring environment off the desktop? We propose two possible research directions: going

large to create new design studio spaces, and going small by researching authoring tools for

mobile computing devices.

7.2.3.1 Going Large: New Studio Spaces for Interaction Design

As noted in section 7.2.1, professional design is a team activity. Creative work alternates

between phases of individual production and team discussion, ideation, and review. Based on

insight into design team work patterns, what should the computing infrastructure in the

interaction design studio of the future look like? To what extent can designers benefit from

interactive spaces that are tailored to their design process, as opposed to generic meeting

support? Three different ―form factors‖ have been proposed in prior work to support team

collaboration: large interactive wall displays, interactive tables, and entire augmented rooms

that combine interactive walls, tables, and other computing devices.

WALLS

A number of prior systems have focused on supporting design teams with interactive display

walls. Notable systems include PostBrainstorm [98], a large high-resolution projected mural

for enhancing and capturing brainstorming sessions, TEAM STORM [101] a brainstorm

support system that uses individual tablet displays and a shared wall display; and the

Designers‘ Outpost [147], a wall display that integrates digital capture and projection, and

physical post-it notes to create information architecture diagrams for web sites. While wall

177

displays offer the benefit of a shared focal point, arm fatigue limits their use for extended

work sessions [95:p. 1322].

TABLES

Interactive tables have unique benefits that may make them suitable for interaction design

and product design. Discussion in these domains is almost always tied to concrete artifacts:

designers use sketches, photographs, physical prototypes, and other products to structure

conversation and creativity. As a result, design meetings, whether they focus on planning,

brainstorming, or reviewing, draw on a wide variety of ―stuff.‖ Creative thought moves freely

across digital and physical boundaries. We hypothesize that interactive tables are particularly

suited to support and enhance group design work when they enable co-habitation of digital

and physical artifacts on the table surface. In our own recent work, we have developed

Pictionaire (Figure 7.2), a large, multi-user, standing height interactive table that supports

physical to digital transition techniques through overhead image capture [111]. Pictionaire

was expressly created for team meetings of user interface designers; its software supports the

creation of linear interface walkthroughs from sketches and photographs. The next logical

step is to move beyond sketching straightforward walkthroughs into higher-fidelity

prototyping of interfaces on the table.

There are additional reasons for moving away from desktop UIs, even for individual

design work: in the domain of 3D modeling and animation, repetitive strain injuries (RSI) are

a serious problem for professional artists. Research on leveraging multi-touch authoring

techniques for animation professionals, e.g., at Pixar, is ongoing [142]. Large interactive tables

Figure 7.2: The Pictionaire table supports co-located design

team work through multi-touch, multi-device input and

overhead image capture.

178

that offer high-resolution pen-input for digital drawing are also an active area of research

[102].

To truly gauge the potential of table form factors and to find the right fit with

professional practice, longer deployments outside research labs are needed. It would therefore

be valuable to study use of a large interactive table such as our Pictionaire system with a local

professional design company.

ROOMWARE

Streitz‘ iLand [234] and the Stanford iRoom [134] investigated how collections of many

different computing form factors can support team work in a single room. The results, at least

for the Stanford iRoom, have been mixed. Distinct benefits of a room-scale infrastructure

include the ability to migrate applications between multiple displays and retarget interaction

based on the best available input device at the time. However, the complexity of room-scale

systems also creates maintenance and challenges that may outweigh the offered benefits. It is

telling that one particular interactive wall display was replaced with a traditional, non-

interactive whiteboard after it fell into disuse. The experience with roomware then should

serve as reminder not to blindly accept a vision of an all-digital future. More realistically,

future research will have to find solutions that tread a careful line between keeping

appropriate physical processes physical while adding digital flexibility where it is beneficial.

7.2.3.2 Going Small: Authoring on Handheld Devices

As a counterpoint to large, complex team design environments, we may also ask what kind of

authoring is possible on very small devices such as smart phones or PDAs. This question is

reasonable to consider because of two trends:

1) At the cutting edge of technology, smart phones today offer the processing power found

on desktop computers only a few years ago. Video and still image capture, location

sensing, and 3D graphics acceleration are becoming common place. The latest version for

Apple‘s iPhone now includes an application for video cutting and editing on the phone.

2) On the other end of the spectrum, for the majority of the world‘s population, access to

computation happens through cheap, low-powered cell phones. The mobile phone may

be the only computing device millions of people will ever have access to.

These two trends raise the following research questions: Fundamentally, what kind of

content will users want to author on mobile devices in the future? What kind of content can be

authored on such devices? The technical challenges are plentiful. The limited input/output

179

affordances of mobile devices are an immediate, obvious hurdle. While mobile authoring is

unlikely to replace the desktop paradigm, these questions are deserving of future study.

7.2.4 DESIGNING DEVICE ECOLOGIES

d.tools, Exemplar, and Juxtapose all assumed that a single, standalone device or software

interface was being designed. Increasingly, this assumption is no longer sufficient, as a

growing number of smart products offer their value through device or application ecologies

with multiple, connected components. An important, if overused, example of such an ecology

is the Apple iPod + iTunes system. The iPod is a portable digital music player; iTunes is an

application to play and manage one‘s digital media library on a desktop computer, linked to

an online store for browsing and purchasing new music. The overall user experience arises

out of the tight integration between the components. As another example, personal fitness

devices such as heart rate monitors are starting to include web interfaces for analyzing and

sharing the collected data [224].

Sensor networks — collections of small, programmable, self-powered computing nodes

that communicate with each other over ad-hoc wireless networks, are another area where

behavior for multiple interconnected components has to be authored. While early sensor

networks were used for unattended data collection, for example in conflict areas or for

environmental monitoring, future applications, e.g., controlling energy usage in smart

buildings, will likely require end-user interfaces. Merrill‘s Siftables project [187] explicitly

realizes the potential of sensor networks as user interfaces. Each node has a small color

display and can sense neighboring nodes as well as acceleration. While existing research has

introduced hardware and software tools for programming sensor network applications (e.g.,

tinyOS [160]), and multi-display applications (e.g., Vigo [151]), such tools are aimed at

researchers and technology experts. Support for prototyping and end-user authoring of multi-

display or multi-device applications is still lacking and worthy of future research.

180

7.3 CLOSING REMARKS

The desktop computing paradigm has largely ossified around a common set of input devices

and interaction techniques. With the rise of mobile and ubiquitous computing, it has also

already eclipsed its zenith. While desktop computing still has an important role to play, a

wider variety of different computing devices are quickly populating our lives. Beyond bringing

new technologies for novel interfaces within the reach of interaction designers, this

dissertation advocated that tools should also explicitly support fundamental design process

steps. By encouraging exploration of alternatives, informed by feedback, design tools can help

designers create interfaces that truly fit their intended users, contexts, and tasks, while being

delightful to use. The research presented in this dissertation empowers designers to better

envision and realize a broader range of such alternative futures for the post-desktop

computing age.

